Examples concerning generic sets

Piotr Koszmider, piotr.koszmider@gmail.com
1. Generic sets in any forcing - the decision property
Outline

1. Generic sets in any forcing - the decision property
2. Generic sets in c.c.c. forcings - catching uncountable sets
Outline

1. Generic sets in any forcing - the decision property
2. Generic sets in c.c.c. forcings - catching uncountable sets
3. Generics in the Cohen forcing - composing functions with the generic function
Notation

1. For example, if A is an atomless Boolean algebra, then $A^* = A \{0\}$ with the Boolean order.

2. The canonical name for the generic set $\dot{G} = \{<\dot{p}, p> : p \in \mathcal{P}\}$.

3. The canonical names for the ground model elements $\dot{x} = \{<\dot{y}, p> : y \in x, p \in \mathcal{P}\}$.

4. If $\mathcal{P} \parallel - \dot{\mathcal{P}}$ and $\mathcal{P} \parallel - (p, q \in \dot{\mathcal{G}} \Rightarrow \exists r \leq p, q [r \in \dot{\mathcal{G}}])$.

5. If $D \subseteq \mathcal{P}$ is dense, then $\mathcal{P} \parallel - \dot{\mathcal{D}} \cap \dot{\mathcal{G}} \neq \emptyset$.

6. If A is an atomless complete Boolean algebra, then $[\phi] = \bigvee\{a \in A^* : a \parallel - \phi\}$.

7. If we can prove that $\mathcal{P} \parallel - \phi$, then we can prove that $\text{Con}(\text{ZFC})$ implies $\text{Con}(\text{ZFC} + \phi)$.
Notation

1. \((P, \leq) \) partial order (nonatomic) with which we force,

\[A^* = A \{0\} \]

with the Boolean order.

The canonical name for the generic set \(\dot{G} = \{ <\dot{p}, p> : p \in P \} \).

The canonical names for the ground model elements \(\dot{x} = \{ <\dot{y}, p> : y \in x, p \in P \} \).

\(p \parallel - \dot{p} \in \dot{G}, P \parallel - (p, q \in \dot{G} \Rightarrow \exists r \leq p, q \ [r \in \dot{G}]) \)

If \(D \subseteq P \) is dense, then \(P \parallel - \dot{D} \cap \dot{G} \neq \emptyset \).

If \(A \) is an atomless complete Boolean algebra then \[\left[\phi \right] = \bigvee \{ a \in A^* : a \parallel - \phi \} \]

If we can prove that \(P \parallel - \phi \), then we can prove that Con(ZFC) implies Con(ZFC + \(\phi \)).
Notation

1. \((P, \leq)\) partial order (nonatomic) with which we force,
Notation

1. (P, \leq) partial order (nonatomic) with which we force, for example if A is an atomless Boolean algebra, then $A^* = A \setminus \{0\}$ with the Boolean order.
Notation

1. \((P, \leq)\) partial order (nonatomic) with which we force, for example if \(A\) is an atomless Boolean algebra, then \(A^* = A \setminus \{0\}\) with the Boolean order.

2. The canonical name for the generic set \(\dot{G} = \{< \check{p}, p > : p \in P\}\).
(1) \((P, \leq)\) partial order (nonatomic) with which we force, for example if \(A\) is an atomless Boolean algebra, then \(A^* = A \setminus \{0\}\) with the Boolean order

(2) The canonical name for the generic set \(\dot{G} = \{< \dot{p}, p >: p \in P\}\)

(3) The canonical names for the ground model elements \(\check{x} = \{< \check{y}, p >: y \in x, p \in P\}\).
1. \((P, \leq)\) partial order (nonatomic) with which we force, for example if \(A\) is an atomless Boolean algebra, then \(A^* = A \setminus \{0\}\) with the Boolean order.

2. The canonical name for the generic set \(\dot{G} = \{< \check{p}, p >: p \in P\}\).

3. The canonical names for the ground model elements \(\check{x} = \{< \check{y}, p >: y \in x, p \in P\}\).

4. \(p \parallel = \check{p} \in \dot{G}\),
Notation

1. (P, \leq) partial order (nonatomic) with which we force, for example if A is an atomless Boolean algebra, then $A^* = A \setminus \{0\}$ with the Boolean order.

2. The canonical name for the generic set $\dot{G} = \{< \dot{p}, p > : p \in P\}$.

3. The canonical names for the ground model elements $\dot{x} = \{< \dot{y}, p > : y \in x, p \in P\}$.

4. $p \models \dot{p} \in \dot{G}$.
(\(P, \leq\)) partial order (nonatomic) with which we force, for example if \(A\) is an atomless Boolean algebra, then \(A^* = A \setminus \{0\}\) with the Boolean order

2. The canonical name for the generic set \(\dot{G} = \{< \dot{p}, p > : p \in P\}\)

3. The canonical names for the ground model elements \(\dot{x} = \{< \dot{y}, p > : y \in x, p \in P\}\).

4. \(p \models \dot{p} \in \dot{G}, \quad P \models (p, q \in \dot{G} \Rightarrow \exists r \leq p, q \ [r \in \dot{G}]\))
1. (P, \leq) partial order (nonatomic) with which we force, for example if A is an atomless Boolean algebra, then $A^* = A \setminus \{0\}$ with the Boolean order.

2. The canonical name for the generic set $\dot{G} = \{< \check{p}, p > : p \in P\}$

3. The canonical names for the ground model elements

 $\check{x} = \{< \check{y}, p > : y \in x, p \in P\}$.

4. $p \Vdash \check{p} \in \dot{G}, \quad P \Vdash (p, q \in \dot{G} \Rightarrow \exists r \leq p, q \ [r \in \dot{G}])$

5. If $D \subseteq P$ is dense, then $P \Vdash \check{D} \cap \dot{G} \neq \emptyset$
(1) \((P, \leq)\) partial order (nonatomic) with which we force, for example if \(A\) is an atomless Boolean algebra, then \(A^* = A \setminus \{0\}\) with the Boolean order.

(2) The canonical name for the generic set \(\hat{G} = \{<\hat{p}, p>: p \in P\}\).

(3) The canonical names for the ground model elements \(\check{x} = \{<\check{y}, p>: y \in x, p \in P\}\).

(4) \(p \models \check{\exists} p \in \hat{G}, \quad P \models (p, q \in \hat{G} \Rightarrow \exists r \leq p, q [r \in \hat{G}])\).

(5) If \(D \subseteq P\) is dense, then \(P \models \check{\exists} D \cap \hat{G} \neq \emptyset\).

(6) If \(A\) is an atomless complete Boolean algebra then \([\phi] = \bigvee\{a \in A^*: a \models \check{\neg} \phi\}\).
Notation

1. (P, \leq) partial order (nonatomic) with which we force, for example if A is an atomless Boolean algebra, then $A^* = A \setminus \{0\}$ with the Boolean order.

2. The canonical name for the generic set $\dot{G} = \{< \dot{p}, p>: p \in P\}$

3. The canonical names for the ground model elements
 $\check{x} = \{< \check{y}, p>: y \in x, p \in P\}$.

4. $p \forces \check{p} \in \dot{G}$, $P \forces (p, q \in \dot{G} \Rightarrow \exists r \leq p, q [r \in \dot{G}])$

5. If $D \subseteq P$ is dense, then $P \forces \check{D} \cap \dot{G} \neq \emptyset$

6. If A is an atomless complete Boolean algebra then
 $[\phi] = \bigvee \{a \in A^*: a \forces \phi\}$

7. If we can prove that $P \forces \phi$, then we can prove that $\text{Con}(\text{ZFC})$ implies $\text{Con}(\text{ZFC}+\phi)$
Example 1. The decision property
Example 1. The decision property

Motivation:

Theorem

Suppose that A is an atomless Boolean algebra. Then A is an ultrafilter in A.

Proof.

For each $a \in A$ consider the dense set in A

$$D_a = \{ p \in A^*: p \leq a \text{ or } p \leq -a \}$$
Example 1. The decision property
Motivation:

Theorem

Suppose that A is an atomless Boolean algebra. Then $A^* \models \hat{G}$ is an ultrafilter in A.
Example 1. The decision property
Motivation:

Theorem

Suppose that A is an atomless Boolean algebra. Then $A^ \models \dot{G}$ is an ultrafilter in A*

Proof.

For each $a \in A^*$ consider the dense set in A^*

$$D_a = \{ p \in A^* : p \leq a \text{ or } p \leq -a \}$$
Theorem

(The decision property)

For each formula ϕ the following set is dense in P:

$$\{ p \in P : p \models \neg \phi \text{ or } p \models \neg \neg \phi \}$$
Theorem
(The decision property)

1. For each formula ϕ the following set is dense in P:

$$\{ p \in P : p \models \neg \phi \text{ or } p \models \neg \neg \phi \}$$

2. $[\neg \phi] = \neg [\phi]$
Theorem
(The decision property)

1. For each formula ϕ the following set is dense in P:

 \[\{ p \in P : p \models \neg \phi \text{ or } p \models \neg \neg \phi \}\]

2. $[\neg \phi] = \neg [\phi]$

3. $P \models [\neg \phi] \in \dot{G}$ or $[\phi] \in \dot{G}$
Problem

Using forcing and generic ultrafilters get nontrivial countably generated ultrafilters in uncountable Boolean algebras

\[P \text{ is c.c.c. iff it does not have uncountable family of pairwise incompatible conditions} \]

If \(P \) is c.c.c and \(\alpha \) is a cardinal, then \(P \parallel^\ast \check{\alpha} \) is a cardinal, i.e., c.c.c. forcings preserve cardinals and in particular preserve the uncountable

i.e., if \(X \) is uncountable \(P \parallel^\ast \check{X} \) is uncountable

If \(P \) is countable, then it is c.c.c.
Problem

Using forcing and generic ultrafilters get nontrivial countably generated ultrafilters in uncountable Boolean algebras

1. P is c.c.c. iff it does not have uncountable family of pairwise incompatible conditions
Problem

Using forcing and generic ultrafilters get nontrivial countably generated ultrafilters in uncountable Boolean algebras

1. P is c.c.c. iff it does not have uncountable family of pairwise incompatible conditions

2. If P is c.c.c and α is a cardinal, then $P \forces \check{\alpha}$ is a cardinal, i.e., c.c.c. forcings preserves cardinals and in particular preserve the uncountable
Problem

Using forcing and generic ultrafilters get nontrivial countably generated ultrafilters in uncountable Boolean algebras

1. \(P \) is c.c.c. iff it does not have uncountable family of pairwise incompatible conditions
2. If \(P \) is c.c.c and \(\alpha \) is a cardinal, then \(P \vDash \check{\alpha} \) is a cardinal, i.e., c.c.c. forcings preserves cardinals and in particular preserve the uncountable
3. i.e., if \(X \) is uncountable \(P \vDash \check{X} \) is uncountable
Problem

Using forcing and generic ultrafilters get nontrivial countably generated ultrafilters in uncountable Boolean algebras

1. P is c.c.c. iff it does not have uncountable family of pairwise incompatible conditions
2. If P is c.c.c and α is a cardinal, then $P \Vdash \check{\alpha}$ is a cardinal, i.e., c.c.c. forcings preserves cardinals and in particular preserve the uncountable
3. i.e., if X is uncountable $P \Vdash \check{X}$ is uncountable
4. If P is countable, then it is c.c.c.
We say that $B \subseteq A$ is a dense subalgebra of A iff for every $a \in A^*$ there is $b \in B^*$ such that $b \leq a$.
We say that $B \subseteq A$ is a dense subalgebra of A iff for every $a \in A^*$ there is $b \in B^*$ such that $b \leq a$.

Theorem

Let B be a dense subalgebra of A then $B^* \parallel\!\!\parallel$ The filter of A generated by \mathring{G}_B is an ultrafilter of A
We say that \(B \subseteq A \) is a dense subalgebra of \(A \) iff for every \(a \in A^* \) there is \(b \in B^* \) such that \(b \leq a \).

Theorem

Let \(B \) be a dense subalgebra of \(A \) then \(B^* \) \(\Vdash \) The filter of \(A \) generated by \(\hat{G}_B \) is an ultrafilter of \(A \)

Proof.

For each \(a \in A^* \) consider the dense set in \(B^* \)

\[
D_a = \{ b \in B^* : b \leq a \text{ or } b \leq -a \}
\]
Definition

Let $B \subseteq A$ be Boolean algebras. We say that B is deep in A if and only if

$$\forall a \in A \quad \forall b \in B \quad \exists c \in B \quad c \leq b \cap a \quad \text{or} \quad c \leq b - a.$$
Definition
Let $B \subseteq A$ be Boolean algebras. We say that B is deep in A if and only if
\[\forall a \in A \quad \forall b \in B \quad \exists c \in B \quad c \leq b \cap a \quad \text{or} \quad c \leq b - a. \]

Theorem
Suppose that B is a countable deep subalgebra of an algebra A. Then $B^* \models A$ has a countably generated ultrafilter.
Definition
Let $B \subseteq A$ be Boolean algebras. We say that B is deep in A if and only if
\[\forall a \in A \quad \forall b \in B \quad \exists c \in B \quad c \leq b \cap a \quad \text{or} \quad c \leq b - a. \]

Theorem
Suppose that B is a countable deep subalgebra of an algebra A. Then $B^* \parallel - A$ has a countably generated ultrafilter.

Theorem
It is consistent with arbitrary big continuum that each $A \subseteq \wp(N)$ of countable independence has an ultrafilter which is countably or ω_1-generated.
Example 2. Catching uncountable sets
Example 2. Catching uncountable sets

Motivation:
Example 2. Catching uncountable sets

Motivation:

Theorem

Suppose that P satisfies c.c.c., and $X \subseteq P$ is uncountable, then there is $p \in P$ such that $p \models \check{X} \cap \check{G}$ is uncountable

Piotr Koszmider ()
Generic sets
Hejnice, 09 9 / 16
Theorem

Suppose that P satisfies c.c.c., and $X \subseteq P$ is uncountable, then there is $p \in P$ such that $p \models \check{X} \cap \dot{G}$ is uncountable.

Proof.

1. We may w.l.o.g. assume that $X = \{ x_\alpha : \alpha < \omega_1 \}$.
2. If the theorem is false, for each p there is $q \leq p$ and α_q such that $q \models \check{X} \cap \dot{G} \subseteq \{ \check{x}_\alpha : \alpha < \check{\alpha}_q \} \& \check{X} \cap \dot{G} \not\subseteq \{ \check{x}_\alpha : \alpha < \check{\beta} \}$ for $\check{\beta} < \check{\alpha}_q$.
3. There cannot be uncountably many conditions which force pairwise contradictory information, so $\{ \alpha_q : q \in P \}$ is countable, so it has its supremum $\beta < \omega_1$ which satisfies $P \models \check{X} \cap \dot{G} \subseteq \{ x_\alpha : \alpha < \check{\beta} \}$.
4. But for each $p \in P$ we have $p \models \check{p} \in \dot{G}$, so for each $p \in X$ we have $p \models \check{p} \in \check{X} \cap \dot{G}$, so $p \beta + 1 \models \check{p} \beta + 1 \in \check{X} \cap \dot{G}$, a contradiction.
Theorem

Suppose that P satisfies c.c.c., and $X \subseteq P$ is uncountable, then there is $p \in P$ such that $p \Vdash X \cap \dot{G}$ is uncountable

Proof.

1. We may w.l.o.g. assume that $X = \{ x_\alpha : \alpha < \omega_1 \}$

2. If the theorem is false, for each p there is $q \leq p$ and α_q such that $q \Vdash X \cap \dot{G} \subseteq \{ x_\alpha : \alpha < \alpha_q \} \& X \cap \dot{G} \not\subseteq \{ x_\alpha : \alpha < \beta \}$ for $\beta < \alpha_q$

3. There cannot be uncountable many conditions which force pairwise contradictory information, so $\{ \alpha_q : q \in P \}$ is countable, so it has its supremum $\beta < \omega_1$ which satisfies $P \Vdash X \cap \dot{G} \subseteq \{ x_\alpha : \alpha < \beta \}$

4. But for each $p \in P$ we have $p \Vdash \dot{G} \subseteq \dot{X}$, so for each $p \in X$ we have $p \Vdash X \cap \dot{G}$, so $p_{\beta + 1} \Vdash X \cap \dot{G}$, a contradiction.

Piotr Koszmider ()

Generic sets

Hejnice, 09 10 / 16
Theorem

Suppose that P satisfies c.c.c., and $X \subseteq P$ is uncountable, then there is $p \in P$ such that $p \models \check{X} \cap \dot{G}$ is uncountable.

Proof.

1. We may w.l.o.g. assume that $X = \{x_\alpha : \alpha < \omega_1\}$.
Theorem

Suppose that P satisfies c.c.c., and $X \subseteq P$ is uncountable, then there is $p \in P$ such that $p \models \check{X} \cap \dot{G}$ is uncountable

Proof.

1. We may w.l.o.g. assume that $X = \{x_\alpha : \alpha < \omega_1\}$

2. If the theorem is false, for each p there is $q \leq p$ and α_q such that $q \models \check{X} \cap \dot{G} \subseteq \{\check{x}_\alpha : \alpha < \check{\alpha}_q\}$ & $\check{X} \cap \dot{G} \not\subseteq \{\check{x}_\alpha : \alpha < \check{\beta}\}$ for $\check{\beta} < \check{\alpha}_q$
Theorem

Suppose that P satisfies c.c.c., and $X \subseteq P$ is uncountable, then there is $p \in P$ such that $p \models \check{X} \cap \check{G}$ is uncountable

Proof.

1. We may w.l.o.g. assume that $X = \{x_\alpha : \alpha < \omega_1\}$
2. If the theorem is false, for each p there is $q \leq p$ and α_q such that $q \models \check{X} \cap \check{G} \subseteq \{\check{x}_\alpha : \alpha < \check{\alpha}_q\}$ & $\check{X} \cap \check{G} \not\subseteq \{\check{x}_\alpha : \alpha < \check{\beta}\}$ for $\check{\beta} < \check{\alpha}_q$
3. There cannot be uncountable many conditions which force pairwise contradictory information, so $\{\alpha_q : q \in P\}$ is countable, so it has its supremum $\beta < \omega_1$ which satisfies $P \models \check{X} \cap \check{G} \subseteq \{x_\alpha : \alpha < \check{\beta}\}$
Theorem

Suppose that P satisfies c.c.c., and $X \subseteq P$ is uncountable, then there is $p \in P$ such that $p \models \check{X} \cap \check{G}$ is uncountable.

Proof.

1. We may w.l.o.g. assume that $X = \{x_\alpha : \alpha < \omega_1\}$.

2. If the theorem is false, for each p there is $q \leq p$ and α_q such that $q \models \check{X} \cap \check{G} \subseteq \{\check{x}_\alpha : \alpha < \check{\alpha}_q\}$ & $\check{X} \cap \check{G} \not\subseteq \{\check{x}_\alpha : \alpha < \check{\beta}\}$ for $\check{\beta} < \check{\alpha}_q$.

3. There cannot be uncountable many conditions which force pairwise contradictory information, so $\{\alpha_q : q \in P\}$ is countable, so it has its supremum $\beta < \omega_1$ which satisfies $P \models \check{X} \cap \check{G} \subseteq \{x_\alpha : \alpha < \check{\beta}\}$.

4. But for each $p \in P$ we have $p \models \check{p} \in \check{G}$, so for each $p \in X$ we have $p \models \check{p} \in \check{X} \cap \check{G}$, so $p_{\beta+1} \models \check{p}_{\beta+1} \in \check{X} \cap \check{G}$, a contradiction.
Theorem

(CH) There is a \(c : [\omega_1]^2 \to \{0, 1\} \) such that for each pairwise disjoint family of \(k \)-element sets (\(k \in \mathbb{N} \)) \(a_\xi = \{\alpha_1^{\xi}, \ldots, \alpha_k^{\xi}\} \) of \(\omega_1 \), for each \(M : \{1, \ldots, k\} \times \{1, \ldots, k\} \to \{0, 1\} \)

\[\exists \xi < \eta < \omega_1 \quad \forall 1 \leq i < j \leq k \quad c(\alpha_i^{\xi}, \alpha_j^{\eta}) = M(i, j). \]

We say that \(a_\xi \) and \(a_\eta \) realize matrix \(M \) and that \(c \) realizes every matrix.
(CH) There is a \(c : [\omega_1]^2 \rightarrow \{0, 1\} \) such that for each pairwise disjoint family of \(k \)-element sets \((k \in \mathbb{N}) \) \(a_\xi = \{\alpha_1^\xi, \ldots, \alpha_k^\xi\} \) of \(\omega_1 \), for each \(M : \{1, \ldots, k\} \times \{1, \ldots, k\} \rightarrow \{0, 1\} \)

\[
\exists \xi < \eta < \omega_1 \quad \forall 1 \leq i < j \leq k \quad c(\alpha_i^\xi, \alpha_j^\eta) = M(i, j).
\]

We say that \(a_\xi \) and \(a_\eta \) realize matrix \(M \) and that \(c \) realizes every matrix.

Suppose that \(c : [\omega_1]^2 \rightarrow \{0, 1\} \) realizes every matrix. Then, for each \(k \times k \) matrix \(M_0 \) there is a c.c.c. forcing \(P \) which forces that there is an uncountable pairwise disjoint family \(\{a_\xi : \xi < \omega_1\} \) such that \(a_\xi \) and \(a_\eta \) realize matrix \(M_0 \) for every \(\xi < \eta < \omega_1 \). In paricular, \(c \) does not realize every matrix.
Theorem

Suppose that \(c : [\omega_1]^2 \to \{0, 1\} \) realizes every matrix. Then, for each \(k \times k \) matrix \(M_0 \) there is a c.c.c. forcing \(P \) which forces that there is an uncountable pairwise disjoint family \(\{a_\xi : \xi < \omega_1\} \) such that \(a_\xi \) and \(a_\eta \) realize matrix \(M_0 \) for every \(\xi < \eta < \omega_1 \). In particular, \(c \) does not realize every matrix.
Theorem

Suppose that $c : [\omega_1]^2 \rightarrow \{0, 1\}$ realizes every matrix. Then, for each $k \times k$ matrix M_0 there is a c.c.c. forcing P which forces that there is an uncountable pairwise disjoint family $\{a_\xi : \xi < \omega_1\}$ such that a_ξ and a_η realize matrix M_0 for every $\xi < \eta < \omega_1$. In particular, c does not realize every matrix.

Proof.

1. Fix $c : [\omega_1]^2 \rightarrow \{0, 1\}$, Suppose c realizes every matrix.
Theorem

Suppose that \(c : [\omega_1]^2 \to \{0, 1\} \) realizes every matrix. Then, for each \(k \times k \) matrix \(M_0 \) there is a c.c.c. forcing \(P \) which forces that there is an uncountable pairwise disjoint family \(\{a_\xi : \xi < \omega_1\} \) such that \(a_\xi \) and \(a_\eta \) realize matrix \(M_0 \) for every \(\xi < \eta < \omega_1 \). In particular, \(c \) does not realize every matrix.

Proof.

1. Fix \(c : [\omega_1]^2 \to \{0, 1\} \), Suppose \(c \) realizes every matrix.

2. Fix a \(k \times k \) matrix \(M_0 \). Construct a forcing \(P \) consisting of all pairwise disjoint finite families \(p \) of \(k \)-element sets such that if \(a, b \in p \) and \(a < b \), then \(a \) and \(b \) realize \(M_0 \).
Theorem

Suppose that $c : [\omega_1]^2 \rightarrow \{0, 1\}$ realizes every matrix. Then, for each $k \times k$ matrix M_0 there is a c.c.c. forcing P which forces that there is an uncountable pairwise disjoint family $\{a_\xi : \xi < \omega_1\}$ such that a_ξ and a_η realize matrix M_0 for every $\xi < \eta < \omega_1$. In paricular, c does not realize every matrix.

Proof.

1. Fix $c : [\omega_1]^2 \rightarrow \{0, 1\}$, Suppose c realizes every matrix.

2. Fix a $k \times k$ matrix M_0. Construct a forcing P consisting of all pairwise disjoint finite families p of k-element sets such that if $a, b \in p$ and $a < b$, then a and b realize M_0.

3. The assumption that c realizes every matrix implies that P is c.c.c.
Theorem

Suppose that $c : [\omega_1]^2 \to \{0, 1\}$ realizes every matrix. Then, for each $k \times k$ matrix M_0 there is a c.c.c. forcing P which forces that there is an uncountable pairwise disjoint family $\{a_\xi : \xi < \omega_1\}$ such that a_ξ and a_η realize matrix M_0 for every $\xi < \eta < \omega_1$. In particular, c does not realize every matrix.

Proof.

1. Fix $c : [\omega_1]^2 \to \{0, 1\}$, Suppose c realizes every matrix.

2. Fix a $k \times k$ matrix M_0. Construct a forcing P consisting of all pairwise disjoint finite families p of k-element sets such that if $a, b \in p$ and $a < b$, then a and b realize M_0.

3. The assumption that c realizes every matrix implies that P is c.c.c.

4. Given any uncountable family $(p_\xi : \xi < \omega_1)$ where p_ξ has just one element, by the previous discussion we have a condition p which force that $G \cap \{p_\xi : \xi < \omega_1\}$ is uncountable, completing the proof.
Theorem

\((\text{MA} \vdash \neg \text{CH})\) For each \(c : [\omega_1]^2 \rightarrow \{0, 1\}\) there is \(k \in \mathbb{N}\) (arbitrary big) and there is pairwise disjoint family of \(k\)-element sets \(a_\xi = \{\alpha_1^\xi, \ldots, \alpha_k^\xi\}\) of \(\omega_1\), and there is \(M : \{1, \ldots, k\} \times \{1, \ldots, k\} \rightarrow \{0, 1\}\) such that

\[\forall \xi < \eta < \omega_1 \quad \exists 1 \leq i < j \leq k \quad c(\alpha_i^\xi, \alpha_j^\eta) \neq M(i, j).\]

i.e., no \(c\) realizes every matrix.
Example 3. Composing functions with the generic function
Example 3. Composing functions with the generic function

Motivation:

Let P consists of all functions $p : \{1, \ldots, n\} \to \omega$ with the inverse inclusion (i.e., the Cohen forcing). Let $c : \omega \to \omega$ be the generic function, i.e., $\dot{c} = \bigcup \{ p : p \in \dot{G} \}$.

Use c to get the consistency of the existence of the Souslin tree, i.e., an uncountable tree without uncountable branches and without uncountable antichains.
Example 3. Composing functions with the generic function

Motivation:

Let P consists of all functions $p : \{1, ..., n\} \rightarrow \omega$ with the inverse inclusion (i.e., the Cohen forcing). Let $c : \omega \rightarrow \omega$ be the generic function i.e, $\dot{c} = \bigcup \{\rho : \rho \in \dot{G}\}$. Use c to get the consistency of the existence of the Souslin tree i.e., an uncountable tree without uncountable branches and without uncountable antichains.
Example 3. Composing functions with the generic function

Motivation:

Let P consists of all functions $p : \{1, \ldots, n\} \to \omega$ with the inverse inclusion (i.e., the Cohen forcing). Let $c : \omega \to \omega$ be the generic function i.e, $\dot{c} = \bigcup\{p : p \in \dot{G}\}$.

Use c to get the consistency of the existence of the Souslin tree i.e., an uncountable tree without uncountable branches and without uncountable antichains.
Definition

Let $e_\alpha : \alpha \rightarrow \omega$ for $\alpha < \omega_1$ be bijections. We say that $(e_\alpha)_{\alpha < \omega_1}$ is coherent iff

$$\forall \alpha < \beta < \omega_1 \quad \{ \xi < \alpha : e_\alpha(\xi) \neq e_\beta(\xi) \} \text{ is finite.}$$
Definition

Let \(e_\alpha : \alpha \to \omega \) for \(\alpha < \omega_1 \) be bijections. We say that \((e_\alpha)_{\alpha<\omega_1}\) is coherent iff

\[
\forall \alpha < \beta < \omega_1 \quad \{ \xi < \alpha : e_\alpha(\xi) \neq e_\beta(\xi) \} \text{ is finite.}
\]

Theorem

\[
T((e_\alpha)_{\alpha<\omega_1}) = \{ f : \alpha \in \omega_1, f : \alpha \to \omega \ \{ \xi < \alpha : f(\xi) \neq e_\alpha(\xi) \} \text{ is finite} \}
\]

with inclusion forms an Aronszajn tree, i.e., without an uncountable branch.
Definition

Let \(e_\alpha : \alpha \to \omega \) for \(\alpha < \omega_1 \) be bijections. We say that \((e_\alpha)_{\alpha<\omega_1}\) is coherent iff

\[
\forall \alpha < \beta < \omega_1 \quad \{ \xi < \alpha : e_\alpha(\xi) \neq e_\beta(\xi) \} \text{ is finite.}
\]

Theorem

\[
T((e_\alpha)_{\alpha<\omega_1}) = \{ f : \alpha \in \omega_1, f : \alpha \to \omega \{ \xi < \alpha : f(\xi) \neq e_\alpha(\xi) \} \text{ is finite} \}
\]

with inclusion forms an Aronszajn tree, i.e., without an uncountable branch.

Let \(P \) consists of all functions \(p : \{1, \ldots, n\} \to \omega \) with the inverse inclusion (i.e., the Cohen forcing). Let \(c : \omega \to \omega \) be the generic function i.e, \(\dot{c} = \bigcup \{ p : p \in \dot{G} \} \). We will look

\[
T((c \circ e_\alpha)_{\alpha<\omega_1}).
\]
Theorem

P forces that $T = T((\dot{c} \circ \dot{e}_\alpha)_{\alpha < \omega_1})$ is a Souslin tree, i.e., it has no uncountable antichains nor uncountable branches.
Theorem

\(P \) forces that \(T = T((\dot{c} \circ \check{\varepsilon}_\alpha)_{\alpha < \omega_1}) \) is a Souslin tree, i.e., it has no uncountable antichains nor uncountable branches.

Proof.

1. Suppose \(P \models (\dot{c} \circ f_\alpha)_{\alpha < \omega_1} \) is an uncountable antichain in \(T \)
Theorem

P forces that $T = T((\dot{c} \circ \dot{e}_\alpha)_{\alpha < \omega_1})$ is a Souslin tree, i.e., it has no uncountable antichains nor uncountable branches.

Proof.

1. Suppose $P \forces (\dot{c} \circ \dot{f}_\alpha)_{\alpha < \omega_1}$ is an uncountable antichain in T

2. Take p_α and $f_\alpha \in T((e_\alpha)_{\alpha < \omega_1})$ such that $p_\alpha \forces \check{\dot{f}}_\alpha = \dot{f}_\alpha$,

Piotr Koszmider ()

Generic sets

Hejnice, 09 16 / 16
Theorem

P forces that $T = T((\dot{c} \circ \dot{e}_\alpha)_{\alpha < \omega_1})$ is a Souslin tree, i.e., it has no uncountable antichains nor uncountable branches.

Proof.

1. Suppose $P \models (\dot{c} \circ \dot{f}_\alpha)_{\alpha < \omega_1}$ is an uncountable antichain in T
2. Take p_α and $f_\alpha \in T((e_\alpha)_{\alpha < \omega_1})$ such that $p_\alpha \models \check{f}_\alpha = \check{f}_\alpha$.
3. Since P is countable may w.l.o.g. assume that $p_\alpha = p : \{1, ..., n\} \to \omega$ for all $\alpha < \omega_1$.
Theorem

P forces that $T = T((c \circ \check{e}_\alpha)_{\alpha < \omega_1})$ is a Souslin tree, i.e., it has no uncountable antichains nor uncountable branches.

Proof.

1. Suppose $P \vdash (c \circ f_\alpha)_{\alpha < \omega_1}$ is an uncountable antichain in T

2. Take p_α and $f_\alpha \in T((e_\alpha)_{\alpha < \omega_1})$ such that $p_\alpha \vdash \check{f}_\alpha = \check{f}_\alpha$,

3. Since P is countable may w.l.o.g. assume that $p_\alpha = p : \{1, \ldots, n\} \rightarrow \omega$ for all $\alpha < \omega_1$.

4. Take $F_\alpha = f_\alpha^{-1}[\{1, \ldots, n\}] \subseteq \omega_1$, and assume the F_α's for a Δ-system with root Δ and that all f_α's agree on Δ.
Theorem

P forces that $T = T((\dot{c} \circ \check{e}_\alpha)_{\alpha < \omega_1})$ is a Souslin tree, i.e., it has no uncountable antichains nor uncountable branches.

Proof.

1. Suppose $P \models (\dot{c} \circ \check{f}_\alpha)_{\alpha < \omega_1}$ is an uncountable antichain in T.
2. Take p_α and $f_\alpha \in T((e_\alpha)_{\alpha < \omega_1})$ such that $p_\alpha \models \check{f}_\alpha = \check{f}_\alpha$.
3. Since P is countable may w.l.o.g. assume that $p_\alpha = p : \{1, \ldots, n\} \to \omega$ for all $\alpha < \omega_1$.
4. Take $F_\alpha = f_\alpha^{-1}[\{1, \ldots n\}] \subseteq \omega_1$, and assume the F_α's for a Δ-system with root Δ and that all f_α's agree on Δ.
5. Choose any f_α and f_β and find $m \in \omega$ such that $m \geq n$ and

$$\{\xi : f_\alpha(\xi) \neq f_\beta(\xi)\} \subseteq f_\alpha^{-1}[\{1, \ldots, m\}], f_\beta^{-1}[\{1, \ldots, m\}].$$
Theorem

P forces that $T = T((\dot{c} \circ \dot{\varepsilon}_\alpha)_{\alpha < \omega_1})$ is a Souslin tree, i.e., it has no uncountable antichains nor uncountable branches.

Proof.

1. Suppose $P \forces (\dot{c} \circ \dot{f}_\alpha)_{\alpha < \omega_1}$ is an uncountable antichain in T
2. Take p_α and $f_\alpha \in T((e_\alpha)_{\alpha < \omega_1})$ such that $p_\alpha \forces \dot{\varepsilon}_\alpha = \dot{f}_\alpha$,
3. Since P is countable may w.l.o.g. assume that $p_\alpha = p : \{1, ..., n\} \to \omega$ for all $\alpha < \omega_1$.
4. Take $F_\alpha = f_\alpha^{-1}[\{1, ...n\}] \subseteq \omega_1$, and assume the F_αs for a Δ-system with root Δ and that all f_α’s agree on Δ.
5. Choose any f_α and f_β and find $m \in \omega$ such that $m \geq n$ and

$$\{\xi : f_\alpha(\xi) \neq f_\beta(\xi)\} \subseteq f_\alpha^{-1}[\{1, ..., m\}], f_\beta^{-1}[\{1, ..., m\}]$$.

6. Put $q = p \cup 0|[n + 1, m]$. Because $q \forces \dot{q} \in \dot{G}$, we have $q \forces \dot{q} \subseteq \dot{c}$, and so q forces that $c \circ \dot{f}_\alpha$ and $c \circ \dot{f}_\beta$ are compatible.