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problem

Every first countable group is metrizable.

Definition

A topological space X is Fréchet-Urysohn (or just Fréchet) if
whenever a point x € X is in the closure of a set A, there is a
sequence of elements of A converging to x.

Remark
Every first countable space is Fréchet.
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Malykhin's EXa m ple

e Let G = {f € 2*1: |supp(f)| < w}. Then G is a countably compact
Fréchet topological group that is not first countable.

m The group G in the previous example is not countable. In fact,
all countable subsets of G are metrizable (and thus first

countable).
m /f a topological group has a first countable dense subspace then

such group is also first countable.
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Problem (Malykhin, 1978)

Is there a countable (separable) Fréchet topological group which is
non metrizable?
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Definition

A group is Boolean if each of its elements is its own inverse.

Proposition

Every countable Boolean group is isomorphic to ([w]<%, A).
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Let Z be an (free) ideal on w. Then

The Boolean case T<w _ {J C [w]<“’: (3/ € Z)(Va € J)(I Na# @)}

is an ideal on [w]<“. Let the dual filter of Z<% be a neighbourhood
base at (), then use it to give a group topology 77 on ([w]<¥, A).

Definition

Given a space X and a point x € X let
mZ,={/CX:x¢I}and
m I ={JCX: (VI €Z)(|InJ| <w)}, ie the set of all
converging sequences to x.
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The Boolean case PropOSItlon

m 77 is Fréchet if and only if <% is Fréchet.

m cof(Z<%) = cof(Z), so 1z is first countable if and only if
cofiT) = w.
m coflJ) < p implies J is Fréchet, for any ideal J.
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For each one of the following assumptions, there is an example of the
kind ([w]<%,77) to Malykhin's question:

HpP>w.

m (Nyikos, 1992) p = b.

The Boolean case

b = min{|B|: B is an unbounded subset of “w},
p = min{|F|: F is a subfamily of [w] with the sfip, which has no

infinite pseudo-intersection}.
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Theorem (Todorgevié¢-Uzcategui, 2005)

Every countable Fréchet topological group whose topology is analytic
is metrizable.
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Definition
Let U be an open cover of a space X. Then:
m U is an w-cover if for every finite set F C X thereisa U € U
such that F C U.
m U is a y-cover if every x € X is cointained in all but finitely
many elements of U.

Cp(X) Fréchet

A space X is a y-space if every w-cover of X contains a y-subcover.
A ~-space which is separable metric is called y-set. In the same way
we define non(~-set) = min{|X|: X is not a 7-set}.
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Theorem (Gerlits-Nagy)
non(~y-set)=p so every separable metric space of size < p is a y-set.

Cp(X) Fréchet

Definition

A set X C R has strong measure zero (SMZ) if for every sequence of
positive reals (e,: n € w) there exists a sequence of intervals
(In: n € w) such that diam(/,) <&, for n € w and X C |, ln-

Theorem (Gerlits-Nagy/Laver)

Every ~-set is SMZ so it is consistent with ZFC that every ~y-set is
countable.
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Theorem (Gerlits-Nagy, 1982)

Cp(X) Fréchet

Co(X) is Fréchet if and only if X is a y-space.

Corollary (Gerlits-Nagy, 1982)

The existence of C,(X) which is separable Fréchet non-metrizable is
equivalent to the existence of an uncountable ~y-set.
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Given an abelian topological group G its (dual) group of characters is

G* ={x: G — T: x is a continuous homomorphism}.

Pre-compact

topologics with the compact-open topology.

Theorem (Pontryagin)

If G is abelian locally compact then so is G* and, morover, G** is
naturally isomorphic to G.

Remark (Pontryagin)

G* is compact if and only if G is discrete.
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Definition

A topological group G is precompact (or equivalently totally

S bounded) if it is a dense subgroup of a compact group (eq. if finitely
: many translates of very nbhd of id cover G).

topologies

Definition
Let G be an abelian group (discrete) and X C G*. We say that X
separates points of G if for every id # g € G there is an x € X such

that x(g) # 0.



Pre-compact topologies

Countable
Fréchet Groups

Pre-compact
topologies

on abelian groups




Pre-compact topologies on abelian groups

Countable
Fréchet Groups

Given G an abelian group and X C G* that separates points of G let
SR Tx be the weakest topology on G which makes all x € X continuous.



Pre-compact topologies on abelian groups

Countable
Fréchet Groups

Given G an abelian group and X C G* that separates points of G let
SR Tx be the weakest topology on G which makes all x € X continuous.

Proposition

(G, 7x) is precompact, morover, every precompact group topology on
G is of the form 7x.
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Given a countable abelian group G, g € G and m > 0 let

m " 1
S Uy ={xeG": d(x(g),0) < ;}
topologies

and given A C G let
Up ={U;": g € A}.
A set X C G* is yg-set, if for every infinite A C G if Uy is an

w-cover of X for every m > 0, then there is an infinite B C A such
that Ug' is a y-cover of X for every m > 0.
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Theorem (Hru3ak-R.)

Let G be an countable abelian group and X C G* separates points of
G. Then, (G,7x) is Fréchet if and only if X is a yg-set.

Pre-compact

opologies
fopoloE Remark

If X C G* is a y-set then X is a yg-set.

Corollary

The existence of a non-metrizable precompact Fréchet group
topology on a countable abelian group is equivalent to the existence
of an uncountable ~yg-set.
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Conjecture

It is consistent with ZFC that every ~g-set is countable, or
equivalently, it is consistent with ZFC that every countable abelian
precompact Fréchet group is metrizable.

m Is there a non-metrizable countable Fréchet group?

Pre-compact
topologies

m Is there a non-metrizable countable Boolean Fréchet group?
m Is yg-set notion weaker than ~y-set notion?
m Are there uncountable ~g-sets?
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