Finite chain condition and packing completeness for ideals on countable groups

Taras Banakh and Nadya Lyaskovska

37-th Winter School, Hejnice 2009
Definition
A family \mathcal{I} of subsets of a group G is *ideal* if
- $G \notin \mathcal{I}$;
- \mathcal{I} is closed under taking subsets;
- \mathcal{I} is closed under finite unions.

Such an ideal \mathcal{I} is called *invariant* if

$$\forall A \in \mathcal{I} \forall x \in G \ x + A \in \mathcal{I}.$$

Trivial examples: $\mathcal{I} = \{\emptyset\}$, $\mathcal{I} = [G]^{<\omega}$.

Nontrivial Examples: Ask Jana Flašková.
Definition
A family \mathcal{I} of subsets of a group G is *ideal* if

- $G \notin \mathcal{I}$;
- \mathcal{I} is closed under taking subsets;
- \mathcal{I} is closed under finite unions.

Such an ideal \mathcal{I} is called *invariant* if

$$\forall A \in \mathcal{I} \; \forall x \in G \; x + A \in \mathcal{I}.$$

Trivial examples: $\mathcal{I} = \{\emptyset\}$, $\mathcal{I} = [G]^<\omega$.

Nontrivial Examples: Ask Jana Flašková.
Definition
A family \mathcal{I} of subsets of a group G is *ideal* if
- $G \notin \mathcal{I}$;
- \mathcal{I} is closed under taking subsets;
- \mathcal{I} is closed under finite unions.
Such an ideal \mathcal{I} is called *invariant* if

$$\forall A \in \mathcal{I} \ \forall x \in G \ x + A \in \mathcal{I}.$$

Trivial examples: $\mathcal{I} = \{\emptyset\}, \mathcal{I} = [G]^{<\omega}$.

Nontrivial Examples: Ask Jana Flašková.
Definition
A family \mathcal{I} of subsets of a group G is *ideal* if
- $G \notin \mathcal{I}$;
- \mathcal{I} is closed under taking subsets;
- \mathcal{I} is closed under finite unions.

Such an ideal \mathcal{I} is called *invariant* if

$$\forall A \in \mathcal{I} \ \forall x \in G \ \ x + A \in \mathcal{I}.$$

Trivial examples: $\mathcal{I} = \{\emptyset\}$, $\mathcal{I} = [G]^{<\omega}$.

Nontrivial Examples: Ask Jana Flašková.
Classical examples of ideals on \mathbb{R}:

- \mathcal{N} the ideal of Lebesgue null sets;
- \mathcal{UN} the ideal of universally null sets;
- \mathcal{M} the ideal of meager subsets;
- \mathcal{UM} the ideal of universally meager subsets;
- \mathcal{US} the ideal of universally small subsets.

What are the counterparts of those ideals for discrete groups like $G = \mathbb{Z}$?
Classical examples of ideals on \mathbb{R}:

- N the ideal of Lebesgue null sets;
- UN the ideal of universally null sets;
- M the ideal of meager subsets;
- UM the ideal of universally meager subsets;
- US the ideal of universally small subsets.

What are the counterparts of those ideals for discrete groups like $G = \mathbb{Z}$?
Classical examples of ideals on \mathbb{R}:

- \mathcal{N} the ideal of Lebesgue null sets;
- \mathcal{UN} the ideal of universally null sets;
- \mathcal{M} the ideal of meager subsets;
- \mathcal{UM} the ideal of universally meager subsets;
- \mathcal{US} the ideal of universally small subsets.

What are the counterparts of those ideals for discrete groups like $G = \mathbb{Z}$?
Classical examples of ideals on \mathbb{R}:

- \mathcal{N} the ideal of Lebesgue null sets;
- \mathcal{UN} the ideal of universally null sets;
- \mathcal{M} the ideal of meager subsets;
- \mathcal{UM} the ideal of universally meager subsets;
- \mathcal{US} the ideal of universally small subsets.

What are the counterparts of those ideals for discrete groups like $G = \mathbb{Z}$?
The answer is easy for the first two ideals:
Just take any Banach (=shift-invariant finitely additive probability) measure \(\mu \) on \(G \) and consider the ideal:

\[N_\mu \]

of null subsets of \(G \) with respect to the measure \(\mu \).
Such ideals are important because of

Theorem

Each countably generated invariant ideal \(\mathcal{I} \) on a countable abelian group \(G \) lies in the ideal \(N_\mu \) for a suitable Banach measure \(\mu \).
The intersection of all null ideals gives the ideal

\[UN = \bigcap_{\mu} N_{\mu} \]

of universally null subsets of \(G \).

So we get the inclusion:

\[UN = \bigcap_{\mu} N_{\mu} \subseteq \bigcup_{\mu} N_{\mu}. \]

Note that the latter union is not an ideal in \(G \) and coincides with the union of all invariant ideals on \(G \)!

Question: What about the ideal \(M \) of meager sets? What can be understood under “nowhere dense” subsets of \(G \) (for example, in case \(G = \mathbb{Z} \))?
The intersection of all null ideals gives the ideal

\[\mathcal{UN} = \bigcap_{\mu} \mathcal{N}_\mu \]

of universally null subsets of \(G \).

So we get the inclusion:

\[\mathcal{UN} = \bigcap_{\mu} \mathcal{N}_\mu \subset \bigcup_{\mu} \mathcal{N}_\mu. \]

Note that the latter union is not an ideal in \(G \) and coincides with the union of all invariant ideals on \(G \)!

Question: What about the ideal \(\mathcal{M} \) of meager sets? What can be understood under “nowhere dense” subsets of \(G \) (for example, in case \(G = \mathbb{Z} \))?
Large subsets of groups

A subset $A \subset G$ is *large* if it belongs to no invariant ideal on G. This happens if and only if $F + A = G$ for some finite subset $F \subset G$.

Example: *Any subset with non-empty interior in a totally bounded topological group G is large.*

Theorem

A subset $A \subset G$ of a countable abelian group G is large if and only if $\mu(A) > 0$ for every invariant measure μ on G.

So, the union $\bigcup_{\mu} \mathcal{N}_\mu$ equals the union of all ideals on G and consists of all non-large subsets.
Large subsets of groups

A subset $A \subset G$ is *large* if it belongs to no invariant ideal on G. This happens if and only if $F + A = G$ for some finite subset $F \subset G$.

Example: Any subset with non-empty interior in a totally bounded topological group G is large.

Theorem

A subset $A \subset G$ of a countable abelian group G is large if and only if $\mu(A) > 0$ for every invariant measure μ on G.

So, the union $\bigcup_{\mu} N_{\mu}$ equals the union of all ideals on G and consists of all non-large subsets.
A subset $A \subset G$ is *large* if it belongs to no invariant ideal on G. This happens if and only if $F + A = G$ for some finite subset $F \subset G$.

Example: *Any subset with non-empty interior in a totally bounded topological group G is large.*

Theorem

A subset $A \subset G$ of a countable abelian group G is large if and only if $\mu(A) > 0$ for every invariant measure μ on G.

So, the union $\bigcup_\mu N_\mu$ equals the union of all ideals on G and consists of all non-large subsets.
By the way, the following intriguing problem concerning large sets is still open:

Problem (Ellis)

Is it true that for each large subset $A \subset \mathbb{Z}$ the difference $A - A$ is a neighborhood of zero in some totally bounded group topology on \mathbb{Z}.
Definition
A subset A of a group G is small if for every large set $L \subset G$ the difference $L \setminus A$ is large.

Theorem
For a subset A of a countable abelian group G TFAE:
1. A is small;
2. for every finite $F \subset G$ the set $G \setminus (F + A)$ is large;
3. A is nowhere dense in some (Hausdorff) totally bounded invariant topology on G.

An invariant topology on G is totally bounded if each open non-empty subset of G is large.
Small subsets in groups

Definition
A subset A of a group G is *small* if for every large set $L \subset G$ the difference $L \setminus A$ is large.

Theorem
For a subset A of a countable abelian group G TFAE:

1. A is small;
2. for every finite $F \subset G$ the set $G \setminus (F + A)$ is large;
3. A is nowhere dense in some (Hausdorff) totally bounded invariant topology on G.

An invariant topology on G is *totally bounded* if each open non-empty subset of G is large.
Thus: small sets are exactly nowhere dense subsets in suitable totally bounded topologies.

It follows from the definition that the family S of small subsets of a group is an invariant ideal. This ideal relates to the other ideals as follows:

$$\mathcal{U} \mathcal{N} \subset S \subset \bigcup_{\mu} \mathcal{N}_\mu.$$

Question: What can be understood by universally small subset?

Hint: We need a counterpart of the countable chain condition for ideals in countable groups.
Packing index

Given a subset $A \subset G$ consider the cardinal

$$\text{pack}(A) = \sup\{|B| : B \subset G \quad \{b + A\}_{b \in B} \text{ is disjoint}\}$$

called the packing index of A.

Example: $\text{pack}(2\mathbb{Z}) = 2$.
Problem (Omiljanowski)

Is it true that the packing index $\text{pack}(A)$ of a Borel subset of \mathbb{R} is either at most countable or else equal to \mathfrak{c}.

(This is true if A is σ-compact.)
Let I is an ideal of subsets of a group. We define a family A of subsets of G to be I-disjoint if $A \cap A' \in I$ for any two distinct sets $A, A' \in A$. If $I = \{\emptyset\}$ (resp. $I = [G]^{<\omega}$), then I-disjoint is the same as (almost) disjoint in the usual sense.

Introducing an ideal parameter in the definition of a packing index, we obtain the notion of the I-packing index

$$I\text{-pack}(A) = \sup\{|B| : B \subset G \{b + A\}_{b \in B} \text{ is } I\text{-disjoint}\}.$$
Definition
An ideal \(I \) on \(G \) is pack-\textit{complete} if each subset \(A \subset G \) with \(I\text{-}\text{pack}(A) \geq \aleph_0 \) belongs to \(I \).

So, the packing completeness can be thought as a counterpart of ccc-property for ideals on countable groups.
Examples of packing complete ideals:

The following ideals are packing complete:

- \mathcal{N}_μ for every invariant measure μ on G;
- $\mathcal{U}\mathcal{N} = \bigcap_\mu \mathcal{N}_\mu$;
- S, the ideal of small subsets of a countable abelian group G.
The packing completion of an ideal

Theorem
For every ideal \mathcal{I} on a countable abelian group G the intersection $\tilde{\mathcal{I}}$ of all packing complete ideals that contain \mathcal{I} is a well-defined packing complete ideal called the packing completion of \mathcal{I}. It is equal to the union

$$\tilde{\mathcal{I}} = \bigcup_{\alpha < \omega_1} \mathcal{I}_\alpha$$

where $\mathcal{I}_0 = \mathcal{I}$ and \mathcal{I}_α is the ideal generated by all subsets with infinite $\mathcal{I}_{<\alpha}$-packing index.
The packing completion \mathcal{US} of the empty ideal $\mathcal{I} = \{\emptyset\}$ is the smallest packing complete ideal. So, we get the chain of packing complete ideals:

$$\mathcal{US} \subset \mathcal{UN} \subset S \subset \bigcup_{\mu} \mathcal{N}_{\mu}.$$

The last two inclusions cannot be reversed.

Problem

1. Is $\mathcal{US} \neq \mathcal{UN}$?
2. Find a combinatorial characterization of subsets belonging to the ideal \mathcal{US}.
3. What is the descriptive complexity of the ideals \mathcal{US} and \mathcal{UN}?
Thank you!