A survey on small measures
on compact spaces and Boolean algebras

Grzegorz Plebanek
Insytut Matematyczny, Uniwersytet Wroctawski

Winter School i Abstract Analysis, Hejnice, January 2014

G. Plebanek (IM UWr) Small measures July 2013 1/13



Navrwy xpnuatwy petpov avdpwmos
(Panton chrematon metron anthropos)

Protagoras (490 — 420 BC)
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Given a compact space K, P(K) denotes the space of all probability
regular Borel measures o K. Then P(K) C C(K)* is given its weak*

topology, i.e. the weakest topology making functions P(K) > u — [ g du
continuous for all g € C(K).

... Boolean algebras

For a Boolean algebra A, P(2() denotes the space of all finitely additive
probability measures on 2.

P(21) is a closed subset of [0,1]%; so it is a compact Hausdorff space.

e If K is totally disconnected compactum and 2 = clopen(K) then
P(K) is homeomorphic to P(2l) via p — |2l

o If 2 is a Boolean algebra then P(2() is homeomorphic to P(K), where
K is the Stone space of 2.
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the measure algebra of the Lebesgue measure iff L1(u) is a separable
Banach space.

For x € K the measure . is CD. d, is SCD iff x is a G5 point.

Every CD measure has a separable support.
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Small measures on Boolean algebras

A measure p € P(21)

@ has countable type if there is a countable algebra € C 2 such that
inf{u(alc) : c € €} =0 for every a € 2.

e is countably determined (CD) if ...

e is strongly countably determined (SCD) if there is a countable
algebra € C 2 such that inf{u(a\ c): c < a,c € €} =0 for every
open a € 2.

The type of u € P(2l) is uncountable iff there is {a¢ : £ < w1} C A such
that infezy, p(agAay,) > 0.
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Measures of uncountable type

Theorem (Fremlin '97)

Assume MA(w1).
If A is a Boolean algebra then there is € P(2l) of uncountable type iff A
contains an uncountable independent family.

If K is a compact space then there is u € P(K) of uncountable type iff K
maps continuously onto [0, 1]“1.

Theorem (Kunen & van Mill '95; GP '95)

The following are equivalent

© every measure on a Corson compact space has countable type;
@ 2“1 cannot be covered by w1 many null sets;

© every measure on a first-countable compact space has countable type.
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The class CD of spaces admitting only CD measures

The

class CD

contains scattered compacta and metric compacta;

Pol '82: is stable under taking closed subspaces, continuous images,
countable product and the functor K — P(K);

Mercourakis '96: contains Radon-Nikodym compacta;

contains Eberlein compacta (weakly compact subsets of Banach
spaces;

Sapounakis '80: contains compact lines;

Brandsma & van Mill '98: contains monotonically normal compact
spaces (this follows from (2), (5) and M.E. Rudin result, that every
monotonically normal compact space is a continuous image of a
compact line).

Borodulin-Nadzieja '07: contains Stone spaces of minimally generated
Boolean algebras.
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Baire-1 functions on some Polish space X, equipped with the topology of
pointwise convergence.
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Measures and Rosenthal compacta

Definition

K is Rosenthal compact if K is homeomorphic to a subset of B1(X), of
Baire-1 functions on some Polish space X, equipped with the topology of
pointwise convergence.

Theorem

Every measure on a Rosenthal compact space has countable type.

See Bourgain's thesis from 1974, Todorcevic '99 proof from '99 and
Marciszewski & GP '12.

Problem (Roman Pol)

Is every measure on a Rosenthal compact space countably determined ?
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Spaces with SCD measures

Theorem (Pol '82)
Every 1 € P(K) is SCD iff P(K) is first-countable.

Theorem (GP '00)

It is relatively consistent that every measure on a first-countable compact
space is SCD.

Problem (David H. Fremlin, 32 £)

Is this a consequence of MA(w1) ?

Theorem (Mikotaj Krupski &GP)

Every compact space either carries a SCD measure or carries a measure of
uncountable type.
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Efimov spaces and measures

Definition

A Efimov space is a compact space containing no nontrivial converging
sequences and no copy of Sw
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Definition
A Efimov space is a compact space containing no nontrivial converging
sequences and no copy of Sw

@ K contains no copy of Sw iff K admits no continuous surjection onto
[0, 1]°.

@ Hence if K contains no converging sequence and every p € P(K) has
countable type then K is Efimov.

@ Dzamonja & GP '07: Under CH there is such a space K.

@ Dow & Pichardo-Mendoza '09: Under CH there is a minimally
generated Boolean algebra 2l such that its Stone space K is Efimov.
It follows from Borodulin-Nadzieja '07 that every p € P(K) is CD (in
fact every nonatomic u € P(K) is SCD).
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The topology of P(K)

Definition
A topological space X has countable tightness, 7(X) = w, if for every
A C X and x € A there is a countable /| C A such that x € /.
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The topology of P(K)

Definition
A topological space X has countable tightness, 7(X) = w, if for every
A C X and x € A there is a countable /| C A such that x € /.
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The topology of P(K)

Definition
A topological space X has countable tightness, 7(X) = w, if for every
A C X and x € A there is a countable /| C A such that x € /.

Q Assume that 7(P(K)) = w. Does every u € P(K) have countable
type?
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The topology of P(K)

Definition
A topological space X has countable tightness, 7(X) = w, if for every
A C X and x € A there is a countable /| C A such that x € /.

Q Assume that 7(P(K)) = w. Does every u € P(K) have countable
type?

@ Suppose that P(K) is a Frechet space. Is every u € P(K) countably
determined? )

Motivation for 1
@ (1) is true under MA(w1) by Fremlin's result.

v
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The topology of P(K)

Definition
A topological space X has countable tightness, 7(X) = w, if for every
A C X and x € A there is a countable /| C A such that x € /.

v

@ Assume that 7(P(K)) = w. Does every u € P(K) have countable
type?

@ Suppose that P(K) is a Frechet space. Is every 1 € P(K) countably
determined? )

Motivation for 1
@ (1) is true under MA(w1) by Fremlin's result.
e Talagrand: if 7(P(K)) < wy then every i € P(K) has type < w;?

v
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The topology of P(K)

Definition
A topological space X has countable tightness, 7(X) = w, if for every
A C X and x € A there is a countable / C A such that x € /.

v

@ Assume that 7(P(K)) = w. Does every u € P(K) have countable
type?

@ Suppose that P(K) is a Frechet space. Is every 1 € P(K) countably
determined? )

Motivation for 1
@ (1) is true under MA(w1) by Fremlin's result.
e Talagrand: if 7(P(K)) < wy then every i € P(K) has type < w;?
@ (1) generalizes the result on Rosenthal compacta.

v
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The topology of P(K)

Theorem (Sobota & GP)

If P(K x K) has countable tightness then every measure on K has
countable type (and so does every measure on K x K).
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The topology of P(K)

Theorem (Sobota & GP)

If P(K x K) has countable tightness then every measure on K has
countable type (and so does every measure on K x K).

Corollary

@ Every measure on a Rosenthal compact space has countable type

(using Godefroy '80: if K is Rosenthal then so are K x K and
P(K x K)).
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The topology of P(K)

Theorem (Sobota & GP)

If P(K x K) has countable tightness then every measure on K has
countable type (and so does every measure on K x K).

Corollary

@ Every measure on a Rosenthal compact space has countable type

(using Godefroy '80: if K is Rosenthal then so are K x K and
P(K x K)).

e P(K x K) has countable tightness iff C(K x K) has property (C) of
Corson (see Pol '82, Frankiewicz, GP, Ryll-Nardzewski '01).
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The topology of P(K)

Theorem (Sobota & GP)

If P(K x K) has countable tightness then every measure on K has
countable type (and so does every measure on K x K).

Corollary

@ Every measure on a Rosenthal compact space has countable type
(using Godefroy '80: if K is Rosenthal then so are K x K and
P(K x K)).

e P(K x K) has countable tightness iff C(K x K) has property (C) of
Corson (see Pol '82, Frankiewicz, GP, Ryll-Nardzewski '01).

e For every K, either P(K x K) has uncountable tightness or a Gs
point.
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The topology of P(K)

Theorem (Sobota & GP)

If P(K x K) has countable tightness then every measure on K has
countable type (and so does every measure on K x K).

Corollary

@ Every measure on a Rosenthal compact space has countable type
(using Godefroy '80: if K is Rosenthal then so are K x K and
P(K x K)).

e P(K x K) has countable tightness iff C(K x K) has property (C) of
Corson (see Pol '82, Frankiewicz, GP, Ryll-Nardzewski '01).

e For every K, either P(K x K) has uncountable tightness or a Gs
point.

A Banach space has property (C) if for every family C of closed and
convex subsets of X, if (Co # () for every countable Cyp C C then (C # 0.
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Problem (Roman Pol)

Does countable tightness of P(K) imply countable tightness of P(K x K)?
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