Examples concerning iterated forcing

Piotr Koszmider, piotr.koszmider@gmail.com
Motivation: We will sketch the proof of the relative consistency (assuming the existence of a strongly inaccessible cardinal) of MA + \(\neg \text{CH} \) + There is no Kurepa tree
MA = For every c.c.c. partial order P and a family \mathcal{F} of cardinality $< 2^{\omega}$ of dense subsets of P there is a filter $G \subseteq P$ such that $D \cap G \neq \emptyset$ for all $D \in \mathcal{F}$
Tree = partial order where for each $t \in T$ the set $\{s \in T : s < t\}$ is well ordered.
1. Tree = partial order where for each $t \in T$ the set $\{s \in T : s < t\}$ is well ordered

2. $\text{Lev}_\alpha(T)$ is the set of such elements that $\{s \in T : s < t\} \equiv \alpha$
1. Tree = partial order where for each $t \in T$ the set $\{s \in T : s < t\}$ is well ordered

2. $\text{Lev}_\alpha(T)$ is the set of such elements that $\{s \in T : s < t\} \equiv \alpha$

3. ω_1-tree = a tree with nonempty countable levels for $\alpha < \omega_1$ and $\text{Lev}_{\omega_1} = \emptyset$ i.e., with height ω_1
1. Tree = partial order where for each $t \in T$ the set $\{s \in T : s < t\}$ is well ordered

2. $\text{Lev}_\alpha(T)$ is the set of such elements that $\{s \in T : s < t\} \equiv \alpha$

3. ω_1-tree = a tree with nonempty countable levels for $\alpha < \omega_1$ and $\text{Lev}_{\omega_1} = \emptyset$ i.e., with height ω_1

4. Branch through T = maximal linearly ordered subset of T
1. Tree = partial order where for each $t \in T$ the set $\{s \in T : s < t\}$ is well ordered.

2. $Lev_\alpha(T)$ is the set of such elements that $\{s \in T : s < t\} \equiv \alpha$.

3. ω_1-tree = a tree with nonempty countable levels for $\alpha < \omega_1$ and $Lev_{\omega_1} = \emptyset$ i.e., with height ω_1.

4. Branch through T = maximal linearly ordered subset of T.

5. Antichain in T = set of pairwise incomparable elements.
1. Tree = partial order where for each $t \in T$ the set $\{s \in T : s < t\}$ is well ordered

2. $\text{Lev}_\alpha(T)$ is the set of such elements that $\{s \in T : s < t\} \equiv \alpha$

3. ω_1-tree = a tree with nonempty countable levels for $\alpha < \omega_1$ and $\text{Lev}_{\omega_1} = \emptyset$ i.e., with height ω_1

4. Branch through T = maximal linearly ordered subset of T

5. Antichain in T = set of pairwise incomparable elements

6. Suslin tree = ω_1-tree without uncountable antichain and without uncountable branch
1. Tree = partial order where for each $t \in T$ the set $\{s \in T : s < t\}$ is well ordered

2. $\text{Lev}_\alpha(T)$ is the set of such elements that $\{s \in T : s < t\} \equiv \alpha$

3. ω_1-tree = a tree with nonempty countable levels for $\alpha < \omega_1$ and $\text{Lev}_{\omega_1} = \emptyset$ i.e., with height ω_1

4. Branch through T = maximal linearly ordered subset of T

5. Antichain in T = set of pairwise incomparable elements

6. Suslin tree = ω_1-tree without uncountable antichain and without uncountable branch

7. Kurepa tree = ω_1-tree with more than ω_1 uncountable branches
Outline

1. On iterations of forcings
2. On Suslin-free forcings
3. The consistency of MA + ¬CH + There is no Kurepa tree
1. On iterations of forcings
Outline

1. On iterations of forcings
2. On Suslin-free forcings

Piotr Koszmider

Iterated forcing

Hejnice, 09
Outline

1. On iterations of forcings
2. On Suslin-free forcings
3. The consistency of MA + ¬CH + There is no Kurepa tree
Iterations of forcings of length α are sets of sequences of length α.

If P_α is an iteration of length α and \dot{Q}_α is a P_α-name for an atomless partial order, then we define the iteration $P_\alpha \ast \dot{Q}_\alpha$ of length $\alpha + 1$.

$p \ast \dot{q} \in P_\alpha \ast \dot{Q}_\alpha$ iff $p \in P_\alpha$ and $p \parallel \dot{q} \in \dot{Q}_\alpha$.

$p \ast \dot{q} \leq p' \ast \dot{q}'$ iff $p \leq P_\alpha p'$ and $p \parallel \dot{q} \leq \dot{Q}_\alpha \dot{q}'$.

If P_α' are iterations of lengths α' respectively and $P_\alpha' | \alpha'' = P_\alpha''$ for all $\alpha'' < \alpha' < \alpha$, then we define the iteration P_α of length α with supports κ:

$p \in P_\alpha$ iff $\forall \alpha' < \alpha$, $p | \alpha' \in P_\alpha'$ and $\text{supp}(p) = \{ \alpha' < \alpha : p(\alpha') \neq 1 \dot{Q}_\alpha \}$ has cardinality $< \kappa$.
1. Iterations of forcings of length α are sets of sequences of length α.

2. Iterations of forcings P_0 of length 1 are just forcings.
1. Iterations of forcings of length α are sets of sequences of length α.

2. Iterations of forcings P_0 of length 1 are just forcings.

3. If P_α is an iteration of length α and \dot{Q}_α is a P_α-name for an atomless partial order, then we define the iteration $P_\alpha * \dot{Q}_\alpha$ of length $\alpha + 1$.
1. Iterations of forcings of length α are sets of sequences of length α.
2. Iterations of forcings P_0 of length 1 are just forcings.
3. If P_α is an iteration of length α and \dot{Q}_α is a P_α-name for an atomless partial order, then we define the iteration $P_\alpha \ast \dot{Q}_\alpha$ of length $\alpha + 1$.
4. $p \bowtie q \in P_\alpha \ast \dot{Q}_\alpha$ iff $p \in P_\alpha$ and $p \models q \in \dot{Q}_\alpha$.
1. Iterations of forcings of length α are sets of sequences of length α.

2. Iterations of forcings P_0 of length 1 are just forcings.

3. If P_α is an iteration of length α and \dot{Q}_α is a P_α-name for an atomless partial order, then we define the iteration $P_\alpha \ast \dot{Q}_\alpha$ of length $\alpha + 1$.

4. $p \leq \dot{q} \in P_\alpha \ast \dot{Q}_\alpha$ iff $p \in P_\alpha$ and $p \Vdash \dot{q} \in \dot{Q}_\alpha$.

5. $p \leq \dot{q} \preceq p' \preceq \dot{q}'$ iff $p \leq_{P_\alpha} p'$ and $p \Vdash \dot{q} \preceq \dot{Q}_\alpha \dot{q}'$.
1. Iterations of forcings of length α are sets of sequences of length α.

2. Iterations of forcings P_0 of length 1 are just forcings.

3. If P_α is an iteration of length α and \dot{Q}_α is a P_α-name for an atomless partial order, then we define the iteration $P_\alpha * \dot{Q}_\alpha$ of length $\alpha + 1$.

4. $p \blacktriangledown \dot{q} \in P_\alpha * \dot{Q}_\alpha$ iff $p \in P_\alpha$ and $p \forces \dot{q} \in \dot{Q}_\alpha$.

5. $p \blacktriangleleft \dot{q} \leq p' \blacktriangleleft \dot{q}'$ iff $p \leq P_\alpha p'$ and $p \forces \dot{q} \leq \dot{Q}_\alpha \dot{q}'$.

6. If $P_{\alpha'}$'s are iterations of lengths α' respectively and $P_{\alpha'}|_{\alpha''} = P_{\alpha''}$ for all $\alpha'' < \alpha' < \alpha$ then we define the iteration P_α of length α with supports $< \kappa$:

 $$p \in P_\alpha \text{ iff } \forall \alpha' < \alpha \ p|_{\alpha'} \in P_{\alpha'}$$

 $$\text{supp}(p) = \{ \alpha' < \alpha : p(\alpha') \neq 1_{\dot{Q}_\alpha} \} \text{ has cardinality } < \kappa$$
Observations A:

1. We identify P_β for $\beta < \alpha$ with a suborder of P_α. Also P_β-names correspond to some P_α-names.
Observations A:

1. We identify P_β for $\beta < \alpha$ with a suborder of P_α. Also P_β-names correspond to some P_α-names.

2. For each $\beta < \alpha$ the iteration P_α is equivalent to $P_\beta \ast P_{[\alpha,\beta)}$ where $P_{[\alpha,\beta)}$ is an appropriate iteration.
Observations A:

1. We identify P_β for $\beta < \alpha$ with a suborder of P_α. Also P_β-names correspond to some P_α-names.

2. For each $\beta < \alpha$ the iteration P_α is equivalent to $P_\beta \ast P_{[\alpha, \beta)}$ where $\dot{P}_{[\alpha, \beta)}$ is an appropriate iteration.

3. If D is dense in P_β then P_α forces that

$$\dot{G}\upharpoonright \beta = \{p\upharpoonright \beta : p \in \dot{G}\} \cap \dot{D} \neq \emptyset$$
Observations A:

1. We identify P_β for $\beta < \alpha$ with a suborder of P_α. Also P_β-names correspond to some P_α-names.

2. For each $\beta < \alpha$ the iteration P_α is equivalent to $P_\beta^* P_{[\alpha, \beta)}$ where $P_{[\alpha, \beta)}$ is an appropriate iteration.

3. If D is dense in P_β then P_α forces that

 $$\hat{G}\mid_\beta = \{ p\mid_\beta : p \in \hat{G} \} \cap \hat{D} \neq \emptyset$$

4. If \hat{D} is a P_β-name for a dense subset of \hat{Q}_β, then P_α forces that

 $$\hat{G}(\beta) = \{ p(\beta) : p \in \hat{G} \} \cap \hat{D} \neq \emptyset$$
Observations B:

1. If $P_\beta \parallel \dot{Q}_\beta$ is c.c.c for each $\beta < \alpha$, and P_α is an iteration with finite support, then P_α is c.c.c.
Observations B:

1. If $P_\beta \parallel \check{Q}_\beta$ is c.c.c for each $\beta < \alpha$, and P_α is an iteration with finite support, then P_α is c.c.c.

2. But there could be P_1, Q_1 both c.c.c. such that $P_1^* \check{Q}_1$ is not c.c.c. (because $P_1 \parallel \check{Q}_1$ is c.c.c.)
Observations B:

1. If $P_\beta \forces \dot{Q}_\beta$ is c.c.c for each $\beta < \alpha$, and P_α is an iteration with finite support, then P_α is c.c.c.

2. But there could be P_1, Q_1 both c.c.c. such that $P_1 \ast \check{Q}_1$ is not c.c.c. (because $P_1 \not\forces \check{Q}_1$ is c.c.c.)

3. If P is reversed Suslin tree then P is c.c.c. but $P \ast \check{P}$ is not c.c.c. because $P \times P \subseteq P \ast \check{P}$ is not c.c.c.
Observations C:

1. In general if \dot{x} is a P_α-name for α a limit ordinal of (large) cofinality there may not be $\beta < \alpha$ and a P_β-name \dot{y} such that $P_\alpha \models \dot{x} = \dot{y}$
Observations C:

1. In general if \dot{x} is a P_α-name for α a limit ordinal of (large) cofinality there may not be $\beta < \alpha$ and a P_β-name \dot{y} such that $P_\alpha \models \dot{x} = \dot{y}$

2. Let κ be a cardinal. Let P_α be an iteration with finite supports of c.c.c. forcings where $\kappa < \text{cf}(\alpha)$ is uncountable. If $P_\alpha \models \dot{x} \subseteq \check{\kappa}$. Then there is $\beta < \alpha$ and a P_β-name \dot{y} such that $P_\alpha \models \dot{x} = \dot{y}$
Theorem

Let κ be a cardinal. Let P_α be an iteration with finite supports of c.c.c. forcings where $\kappa < \text{cf}(\alpha)$ is uncountable. If $P_\alpha \models \dot{x} \subseteq \dot{\kappa}$. Then there is $\beta < \alpha$ and a P_β-name \dot{y} such that $P_\alpha \models \dot{x} = \dot{y}$.
Theorem

Let κ be a cardinal. Let P_α be an iteration with finite supports of c.c.c. forcings where $\kappa < \text{cf}(\alpha)$ is uncountable. If $P_\alpha \models \check{x} \subseteq \check{\kappa}$. Then there is $\beta < \alpha$ and a P_β-name \dot{y} such that $P_\alpha \models \check{x} = \dot{y}$

Proof.
Theorem

Let κ be a cardinal. Let P_α be an iteration with finite supports of c.c.c. forcings where $\kappa < \text{cf}(\alpha)$ is uncountable. If $P_\alpha \models \dot{x} \subseteq \check{\kappa}$. Then there is $\beta < \alpha$ and a P_β-name \dot{y} such that $P_\alpha \models \dot{x} = \dot{y}$

Proof.

1. If $A \subseteq P_\alpha$ is an antichain, then $\bigcup \{\text{supp}(p) : p \in A\}$ is bounded in α.
Theorem

Let κ be a cardinal. Let P_α be an iteration with finite supports of c.c.c. forcings where $\kappa < \text{cf}(\alpha)$ is uncountable. If $P_\alpha \models \dot{x} \subseteq \check{\kappa}$. Then there is $\beta < \alpha$ and a P_β-name \dot{y} such that $P_\alpha \models \dot{x} = \dot{y}$

Proof.

1. If $A \subseteq P_\alpha$ is an antichain, then $\bigcup \{\text{supp}(p) : p \in A\}$ is bounded in α.

2. For every $\xi < \kappa$ define a maximal antichain A_ξ among conditions of P_α which force $\check{\xi} \in \dot{x}$
Theorem

Let κ be a cardinal. Let P_α be an iteration with finite supports of c.c.c. forcings where $\kappa < \text{cf}(\alpha)$ is uncountable. If $P_\alpha \Vdash \dot{x} \subseteq \check{\kappa}$. Then there is $\beta < \alpha$ and a P_β-name \dot{y} such that $P_\alpha \Vdash \dot{x} = \dot{y}$

Proof.

1. If $A \subseteq P_\alpha$ is an antichain, then $\bigcup \{ \text{supp}(p) : p \in A \}$ is bounded in α.

2. For every $\xi < \kappa$ define a maximal antichain A_ξ among conditions of P_α which force $\check{\xi} \in \dot{x}$

3. Define $\dot{y} = \bigcup_{\xi \in \kappa} \{ \check{\xi} \} \times A_\xi$
Theorem (GCH) There is a finite support iteration P_κ of length ω_2 of c.c.c. forcings such that $P_{\omega_2} \models MA + 2^\omega = \omega_2$
Theorem

(GCH) There is a finite support iteration P_κ of length ω_2 of c.c.c. forcings such that $P_{\omega_2} \models MA + 2^\omega = \omega_2$

Proof.
Theorem

(GCH) There is a finite support iteration P_κ of length ω_2 of c.c.c. forcings such that $P_{\omega_2} \models MA + 2^\omega = \omega_2$

Proof.

Do the right book-keeping so that
Theorem

(GCH) There is a finite support iteration P_κ of length ω_2 of c.c.c. forcings such that $P_{\omega_2} \models MA + 2^\omega = \omega_2$

Proof.

Do the right book-keeping so that whenever $P_{\omega_2} \models |\dot{P}| \leq \omega_1$ and $P_{\omega_2} \models \dot{P}$ is c.c.c., and $\{\dot{D}_\xi : \xi < \omega_1\}$ are P_{ω_2}-names for dense sets of \dot{P} then there is $\beta < \omega_2$ such that $P_\beta \models \dot{P} = \dot{Q}_\beta$ and there are P_β-names $\{\dot{E}_\xi : \xi < \omega_1\}$ such that $P_\beta \models \dot{E}_\xi = \dot{D}_\xi$ for $\xi < \omega_1$
Theorem

(GCH) There is a finite support iteration P_κ of length ω_2 of c.c.c. forcings such that $P_{\omega_2} \models MA + 2^\omega = \omega_2$

Proof.

Do the right book-keeping so that whenever $P_{\omega_2} \Vdash |\dot{P}| \leq \omega_1$ and $P_{\omega_2} \Vdash \dot{P}$ is c.c.c., and $\{\dot{D}_\xi : \xi < \omega_1\}$ are P_{ω_2}-names for dense sets of \dot{P} then there is $\beta < \omega_2$ such that $P_\beta \Vdash \dot{P} = \dot{Q}_\beta$ and there are P_β-names $\{\dot{E}_\xi : \xi < \omega_1\}$ such that $P_\beta \Vdash \dot{E}_\xi = \dot{D}_\xi$ for $\xi < \omega_1$. Then P_β forces that \dot{Q}_β forces that

$$\dot{G}(\beta) = \{p(\beta) : p \in \dot{G}\}$$

is a filter in $\dot{P} = \dot{Q}_\beta$ meeting all $\dot{E}_\xi = \dot{D}_\xi$.

Piotr Koszmider ()

Iterated forcing

Hejnice, 09 11 / 14
Theorem

(GCH) There is a finite support iteration P_κ of length ω_2 of c.c.c. forcings such that $P_{\omega_2} \forces \text{MA} + 2^\omega = \omega_2$

Proof.

Do the right book-keeping so that whenever $P_{\omega_2} \forces |\dot{P}| \leq \omega_1$ and $P_{\omega_2} \forces \dot{P}$ is c.c.c., and $\{\dot{D}_\xi : \xi < \omega_1\}$ are P_{ω_2}-names for dense sets of \dot{P} then there is $\beta < \omega_2$ such that $P_\beta \forces \dot{P} = \dot{Q}_\beta$ and there are P_β-names $\{\dot{E}_\xi : \xi < \omega_1\}$ such that $P_\beta \forces \dot{E}_\xi = \dot{D}_\xi$ for $\xi < \omega_1$

Then P_β forces that \dot{Q}_β forces that

$$\dot{G}(\beta) = \{ p(\beta) : p \in \dot{G} \}$$

is a filter in $\dot{P} = \dot{Q}_\beta$ meeting all $\dot{E}_\xi = \dot{D}_\xi$. This is preserved from P_β to P_{ω_2} because P_{ω_2} is equivalent to $P_\beta^* P_{[\beta, \omega_2)}$.
Motivation: We will sketch the proof of the relative consistency (assuming the existence of a strongly inaccessible cardinal) of MA + \neg CH + There is no Kurepa tree
Proof.

Preparatory stage

1. First (using an inaccessible cardinal) obtain the consistency of CH + There is no Kurepa tree

2. And moreover for any c.c.c. forcing P of cardinality ω_1 $P\parallel -$ There is no Kurepa tree.

3. Assume: no c.c.c. forcing P of cardinality ω_1 forces that there is a Kurepa tree.
Proof.

Preparatory stage

1. First (using an inaccessible cardinal) obtain the consistency of CH
 + There is no Kurepa tree
Proof.

Preparatory stage

1. First (using an inaccessible cardinal) obtain the consistency of CH
 + There is no Kurepa tree

2. And moreover for any c.c.c. forcing P of cardinality ω_1 $P \Vdash$ There is no Kurepa tree.
Proof.

Preparatory stage

1. First (using an inaccessible cardinal) obtain the consistency of CH
 + There is no Kurepa tree

2. And moreover for any c.c.c. forcing P of cardinality ω_1 $P \Vdash$ There
 is no Kurepa tree.

3. Assume: no c.c.c. forcing P of cardinality ω_1 forces that there is
 Kurepa tree
Proof.

Main stage
Proof.

Main stage

1. Iterate all c.c.c forcings of cardinality ω_1 which do not add uncountable branches through an ω_1-trees.
Proof.

Main stage

1. Iterate all c.c.c forcings of cardinality ω_1 which do not add uncountable branches through an ω_1-trees

2. Prove that if P is c.c.c. and adds an uncountable branch through an ω_1-tree, then there is Q which is c.c.c., does not add uncountable branches through ω_1-trees and

 $Q \models \neg \bar{P}$ is not c.c.c.
Proof.

Main stage

1. Iterate all c.c.c forcings of cardinality ω_1 which do not add uncountable branches through an ω_1-trees

2. Prove that if P is c.c.c. and adds an uncountable branch through an ω_1-tree, then there is Q which is c.c.c., does not add uncountable branches through ω_1-trees and

$$Q \Vdash \check{P} \text{ is not c.c.c.}$$

3. Prove that if for each $\beta < \alpha$ we have $P_\beta \Vdash \check{Q}_\beta$ does not add an uncountable branches through ω_1-trees, then P_α has this property as well as for each $\beta < \alpha$ we have that P_β forces that $P_{[\beta, \alpha]}$ has this property.