Pseudocompact inverse primitive (semi)topological semigroups

Oleg Gutik

National University of Lviv, Ukraine

January 29, 2014
Winter School in Abstract Analysis. Section Set Theory & Topology,
25th January — 1st February 2014, Hejnice, Chech Republic
The Čech-Stone compactification of a Tychonoff space X is a compact Hausdorff space βX containing X as a dense subspace so that each continuous map $f : X \to Y$ to a compact Hausdorff space Y extends to a continuous map $\bar{f} : \beta X \to Y$, i.e., the following diagram commutes:

\[
\begin{array}{ccc}
X & \xrightarrow{\beta} & \beta X \\
\downarrow{f} & & \downarrow{\bar{f}} \\
Y & \xleftarrow{\beta} & \beta Y
\end{array}
\]

Every continuous map $f : X \to Y$ of Tychonoff spaces X and Y extends to the unique continuous map $\beta f : \beta X \to \beta Y$:

\[
\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow{\beta} & \downarrow{\beta} & \downarrow{\beta} \\
\beta X & \xleftarrow{\beta f} & \beta Y
\end{array}
\]
The Čech-Stone compactification of a Tychonoff space X is a compact Hausdorff space βX containing X as a dense subspace so that each continuous map $f : X \to Y$ to a compact Hausdorff space Y extends to a continuous map $\bar{f} : \beta X \to Y$, i.e., the following diagram commutes:

\[
\begin{array}{c}
X \xleftarrow{\beta} \beta X \\
\downarrow f \\
Y
\end{array}
\begin{array}{c}
\downarrow \bar{f} \\
\end{array}
\]

Every continuous map $f : X \to Y$ of Tychonoff spaces X and Y extends to the unique continuous map $\beta f : \beta X \to \beta Y$:
The Čech-Stone compactification of a Tychonoff space X is a compact Hausdorff space βX containing X as a dense subspace so that each continuous map $f : X \to Y$ to a compact Hausdorff space Y extends to a continuous map $\bar{f} : \beta X \to Y$, i.e., the following diagram commutes:

$$
\begin{array}{ccc}
X & \xleftarrow{\beta} & \beta X \\
\downarrow{f} & & \downarrow{\bar{f}} \\
Y & \xleftarrow{\beta} & \beta X
\end{array}
$$

Every continuous map $f : X \to Y$ of Tychonoff spaces X and Y extends to the unique continuous map $\beta f : \beta X \to \beta Y$:

$$
\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow{\beta} & & \downarrow{\beta} \\
\beta X & \xrightarrow{\beta f} & \beta Y
\end{array}
$$
The Čech-Stone compactification of a Tychonoff space X is a compact Hausdorff space βX containing X as a dense subspace so that each continuous map $f: X \to Y$ to a compact Hausdorff space Y extends to a continuous map $\bar{f}: \beta X \to Y$, i.e., the following diagram commutes:

\[
\begin{array}{ccc}
X & \overset{\beta}{\longrightarrow} & \beta X \\
\downarrow f & & \downarrow \bar{f} \\
Y & \underset{f}{\leftarrow} & \beta X
\end{array}
\]

Every continuous map $f: X \to Y$ of Tychonoff spaces X and Y extends to the unique continuous map $\beta f: \beta X \to \beta Y$:

\[
\begin{array}{ccc}
X & \overset{f}{\longrightarrow} & Y \\
\downarrow \beta & & \downarrow \beta \\
\beta X & \overset{\beta f}{\longrightarrow} & \beta Y
\end{array}
\]
The Glicksberg Theorem, 1959

For Tychonoff topological spaces X, Y and Z a continuous map $f : X \times Y \to Z$ extends to a continuous map $\overline{f} : \beta X \times \beta Y \to \beta Z$ if and only if the product $X \times Y$ is pseudocompact.

A Tychonoff topological spaces X is called pseudocompact if every continuous map $f : X \to \mathbb{R}$ is bounded.

Reznichenko, 1994

Let X, Y and Z be Tychonoff topological spaces and continuous map $f : X \times Y \to Z$ be a continuous map. If X are Y pseudocompact then f extends to a separately continuous map $\overline{f} : \beta X \times \beta Y \to \beta Z$.
The Glicksberg Theorem, 1959

For Tychonoff topological spaces X, Y and Z a continuous map $f : X \times Y \to Z$ extends to a continuous map $\overline{f} : \beta X \times \beta Y \to \beta Z$ if and only if the product $X \times Y$ is pseudocompact.

A Tychonoff topological spaces X is called **pseudocompact** if every continuous map $f : X \to \mathbb{R}$ is bounded.

Reznichenko, 1994

Let X, Y and Z be Tychonoff topological spaces and continuous map $f : X \times Y \to Z$ be a continuous map. If X are Y pseudocompact then f extends to a separately continuous map $\overline{f} : \beta X \times \beta Y \to \beta Z$.
The Glicksberg Theorem, 1959

For Tychonoff topological spaces X, Y and Z a continuous map $f : X \times Y \to Z$ extends to a continuous map $\overline{f} : \beta X \times \beta Y \to \beta Z$ if and only if the product $X \times Y$ is pseudocompact.

A Tychonoff topological spaces X is called pseudocompact if every continuous map $f : X \to \mathbb{R}$ is bounded.

Reznichenko, 1994

Let X, Y and Z be Tychonoff topological spaces and continuous map $f : X \times Y \to Z$ be a continuous map. If X are Y pseudocompact then f extends to a separately continuous map $\overline{f} : \beta X \times \beta Y \to \beta Z$.
A Grothendieck pair

Definition

Let X and Y be Tychonoff topological spaces. We shall say that (X, Y) is a **Grothendieck pair** if every continuous image of X in $C_p(Y)$ has the compact closure in $C_p(Y)$.

Arkhangelskii, 1984

If (X, Y) is a Grothendieck pair then X is pseudocompact.

Reznichenko, 1994

Let X and Y be Tychonoff pseudocompact spaces. Then (X, Y) is a Grothendieck pair if and only if (Y, X) is a Grothendieck pair.

Reznichenko, 1994

If a Tychonoff pseudocompact space X satisfies one of the following conditions: (i) X is countably compact; (ii) X has countable tightness; (iii) X is separable; (iv) X is a k-space, then (X, Y) is a Grothendieck pair for every Tychonoff pseudocompact space Y.
Definition
Let X and Y be Tychonoff topological spaces. We shall say that (X, Y) is a **Grothendieck pair** if every continuous image of X in $C_p(Y)$ has the compact closure in $C_p(Y)$.

Arkhangelskii, 1984
If (X, Y) is a Grothendieck pair then X is pseudocompact.

Reznichenko, 1994
Let X and Y be Tychonoff pseudocompact spaces. Then (X, Y) is a Grothendieck pair if and only if (Y, X) is a Grothendieck pair.

Reznichenko, 1994
If a Tychonoff pseudocompact space X satisfies one of the following conditions: (i) X is countably compact; (ii) X has countable tightness; (iii) X is separable; (iv) X is a k-space, then (X, Y) is a Grothendieck pair for every Tychonoff pseudocompact space Y.
Definition

Let X and Y are Tychonoff topological spaces. We shall say that (X, Y) is a **Grothendieck pair** if every continuous image of X in $C_p(Y)$ has the compact closure in $C_p(Y)$.

Arkhangelskii, 1984

If (X, Y) is a Grothendieck pair then X is pseudocompact.

Reznichenko, 1994

Let X and Y be Tychonoff pseudocompact spaces. Then (X, Y) is a Grothendieck pair if and only if (Y, X) is a Grothendieck pair.

Reznichenko, 1994

If a Tychonoff pseudocompact space X satisfies one of the following conditions: (i) X is countably compact; (ii) X has countable tightness; (iii) X is separable; (iv) X is a k-space, then (X, Y) is a Grothendieck pair for every Tychonoff pseudocompact space Y.
A Grothendieck pair

Definition

Let X and Y are Tychonoff topological spaces. We shall say that (X, Y) is a **Grothendieck pair** if every continuous image of X in $C_p(Y)$ has the compact closure in $C_p(Y)$.

Arkhangelskii, 1984

If (X, Y) is a Grothendieck pair then X is pseudocompact.

Reznichenko, 1994

Let X and Y be Tychonoff pseudocompact spaces. Then (X, Y) is a Grothendieck pair if and only if (Y, X) is a Grothendieck pair.

Reznichenko, 1994

If a Tychonoff pseudocompact space X satisfies one of the following conditions: (i) X is countably compact; (ii) X has countable tightness; (iii) X is separable; (iv) X is a k-space, then (X, Y) is a Grothendieck pair for every Tychonoff pseudocompact space Y.
Reznichenko, 1994

Let X, Y and Z be Tychonoff topological spaces such that (X, Y) is a Grothendieck pair. Then every separately continuous map $f : X \times Y \to Z$ can be extended to a separately continuous map $\beta f : \beta X \times \beta Y \to \beta Z$.

Reznichenko, 1994

Let X, Y and Z be Tychonoff Pseudocompact topological spaces. Then every continuous map $f : X \times Y \to Z$ can be extended to a separately continuous map $\beta f : \beta X \times \beta Y \to \beta Z$.

Oleg Gutik

Pseudocompact inverse primitive (semi)topological semigroups
Reznichenko, 1994

Let X, Y and Z be Tychonoff topological spaces such that (X, Y) is a Grothendieck pair. Then every separately continuous map $f: X \times Y \to Z$ can be extended to a separately continuous map $\beta f: \beta X \times \beta Y \to \beta Z$.

Reznichenko, 1994

Let X, Y and Z be Tychonoff Pseudocompact topological spaces. Then every continuous map $f: X \times Y \to Z$ can be extended to a separately continuous map $\beta f: \beta X \times \beta Y \to \beta Z$.

Oleg Gutik

Pseudocompact inverse primitive (semi)topological semigroups
Some Definitions

A topological space

- equipped with a continuous group operation and continuous inversion is called a *topological group*;
- equipped with a continuous group operation is called a *paratopological group*;
- equipped with a separately continuous group operation and continuous inversion is called a *quasitopological group*;
- equipped with a separately continuous group operation is called a *semitopological group*.
A topological space

- equipped with a continuous group operation and continuous inversion is called a \textit{topological group};
- equipped with a continuous group operation is called a \textit{paratopological group};
- equipped with a separately continuous group operation and continuous inversion is called a \textit{quasitopological group};
- equipped with a separately continuous group operation is called a \textit{semitopological group}.

Some Definitions
A topological space

- equipped with a continuous group operation and continuous inversion is called a *topological group*;
- equipped with a continuous group operation is called a *paratopological group*;
- equipped with a separately continuous group operation and continuous inversion is called a *quasitopological group*;
- equipped with a separately continuous group operation is called a *semitopological group*.

Some Definitions

Oleg Gutik

Pseudocompact inverse primitive (semi)topological semigroups
A topological space
- equipped with a continuous group operation and continuous inversion is called a **topological group**;
- equipped with a continuous group operation is called a **paratopological group**;
- equipped with a separately continuous group operation and continuous inversion is called a **quasitopological group**;
- equipped with a separately continuous group operation is called a **semitopological group**.
A topological space

- equipped with a continuous group operation and continuous inversion is called a **topological group**;
- equipped with a continuous group operation is called a **paratopological group**;
- equipped with a separately continuous group operation and continuous inversion is called a **quasitopological group**;
- equipped with a separately continuous group operation is called a **semitopological group**.
A **semigroup** is a non-empty set with associative binary operation.

A semigroup \(S \)
- is called **inverse** if for every \(x \in S \) there exists unique \(y \in S \) such that \(xyx = x \) and \(yxy = y \), and in this case \(y \) is called inverse of \(x \) in \(S \) and denoted by \(x^{-1} \) (for an inverse semigroup \(S \) the map \(\iota : S \to S : x \mapsto x^{-1} \) is called inversion);
- is a **semilattice** if it is a commutative semigroup of idempotents;
- is **simple** if \(S \) does not contain proper ideals;
- is **0-simple** if \(S \) does not contains no proper ideals distinct from \(\{0\} \);
- is **completely simple** if \(S \) is simple and contains minimal left and right ideals;
- is **completely 0-simple** if \(S \) is 0-simple and contains minimal left and right ideals distinct from \(\{0\} \).
A semigroup is a non-empty set with associative binary operation.

A semigroup S

- is called inverse if for every $x \in S$ there exists unique $y \in S$ such that $xyx = x$ and $yxy = y$, and in this case y is called inverse of x in S and denoted by x^{-1} (for an inverse semigroup S the map $\iota : S \to S : x \mapsto x^{-1}$ is called inversion);
- is a semilattice if it is a commutative semigroup of idempotents;
- is simple if S does not contain proper ideals;
- is 0-simple if S does not contain no proper ideals distinct from $\{0\}$;
- is completely simple if S is simple and contains minimal left and right ideals;
- is completely 0-simple if S is 0-simple and contains minimal left and right ideals distinct from $\{0\}$.
A **semigroup** is a non-empty set with associative binary operation.

A semigroup S
- is called **inverse** if for every $x \in S$ there exists unique $y \in S$ such that $xyx = x$ and $yxy = y$, and in this case y is called inverse of x in S and denoted by x^{-1} (for an inverse semigroup S the map $\iota: S \to S: x \mapsto x^{-1}$ is called **inversion**);
- is a **semilattice** if it is a commutative semigroup of idempotents;
- is **simple** if S does not contain proper ideals;
- is **0-simple** if S does not contains no proper ideals distinct from $\{0\}$;
- is **completely simple** if S is simple and contains minimal left and right ideals;
- is **completely 0-simple** if S is 0-simple and contains minimal left and right ideals distinct from $\{0\}$.
A semigroup is a non-empty set with associative binary operation.

A semigroup S
- is called inverse if for every $x \in S$ there exists unique $y \in S$ such that $xyx = x$ and $yxy = y$, and in this case y is called inverse of x in S and denoted by x^{-1} (for an inverse semigroup S the map $\iota : S \to S : x \mapsto x^{-1}$ is called inversion);
- is a semilattice if it is a commutative semigroup of idempotents;
- is simple if S does not contain proper ideals;
- is 0-simple if S does not contain no proper ideals distinct from $\{0\}$;
- is completely simple if S is simple and contains minimal left and right ideals;
- is completely 0-simple if S is 0-simple and contains minimal left and right ideals distinct from $\{0\}$.
A **semigroup** is a non-empty set with associative binary operation.

A semigroup S
- is called **inverse** if for every $x \in S$ there exists unique $y \in S$ such that $xyx = x$ and $yxy = y$, and in this case y is called inverse of x in S and denoted by x^{-1} (for an inverse semigroup S the map $\iota : S \to S : x \mapsto x^{-1}$ is called **inversion**);
- is a **semilattice** if it is a commutative semigroup of idempotents;
- is **simple** if S does not contain proper ideals;
 - is **0-simple** if S does not contains no proper ideals distinct from $\{0\}$;
 - is **completely simple** if S is simple and contains minimal left and right ideals;
 - is **completely 0-simple** if S is 0-simple and contains minimal left and right ideals distinct from $\{0\}$.

Oleg Gutik

Pseudocompact inverse primitive (semi)topological semigroups
A **semigroup** is a non-empty set with associative binary operation.

A semigroup S

- is called **inverse** if for every $x \in S$ there exists unique $y \in S$ such that $xyx = x$ and $yxy = y$, and in this case y is called inverse of x in S and denoted by x^{-1} (for an inverse semigroup S the map $\iota : S \to S : x \mapsto x^{-1}$ is called *inversion*);
- is a **semilattice** if it is a commutative semigroup of idempotents;
- is **simple** if S does not contain proper ideals;
- is **0-simple** if S does not contains no proper ideals distinct from $\{0\}$;
- is **completely simple** if S is simple and contains minimal left and right ideals;
- is **completely 0-simple** if S is 0-simple and contains minimal left and right ideals distinct from $\{0\}$.

Oleg Gutik
Some Definitions

A semigroup is a non-empty set with associative binary operation.

A semigroup S
- is called **inverse** if for every $x \in S$ there exists unique $y \in S$ such that $xyx = x$ and $yxy = y$, and in this case y is called inverse of x in S and denoted by x^{-1} (for an inverse semigroup S the map $\iota: S \to S$: $x \mapsto x^{-1}$ is called *inversion*);
- is a **semilattice** if it is a commutative semigroup of idempotents;
- is **simple** if S does not contain proper ideals;
- is **0-simple** if S does not contains no proper ideals distinct from $\{0\}$;
- is **completely simple** if S is simple and contains minimal left and right ideals;
- is **completely 0-simple** if S is 0-simple and contains minimal left and right ideals distinct from $\{0\}$.
A semigroup is a non-empty set with associative binary operation.

A semigroup S

- is called **inverse** if for every $x \in S$ there exists unique $y \in S$ such that $xyx = x$ and $yxy = y$, and in this case y is called inverse of x in S and denoted by x^{-1} (for an inverse semigroup S the map $\iota : S \to S : x \mapsto x^{-1}$ is called **inversion**);
- is a **semilattice** if it is a commutative semigroup of idempotents;
- is **simple** if S does not contain proper ideals;
- is **0-simple** if S does not contains no proper ideals distinct from $\{0\}$;
- is **completely simple** if S is simple and contains minimal left and right ideals;
- is **completely 0-simple** if S is 0-simple and contains minimal left and right ideals distinct from $\{0\}$.
A subset idempotents $E(S)$ of a semigroup S admits a natural partial order \leq:

$$e \leq f \quad \text{if and only if} \quad ef = fe = e, \quad e, f \in E(S).$$

An idempotent e of a semigroup S is primitive if it minimal in $E(S) \setminus \{0\}$.

A topological space S

- equipped with a continuous semigroup operation and continuous inversion is called a topological inverse semigroup;
- equipped with a continuous semigroup operation is called a topological semigroup;
- with separately a continuous semigroup operation is called a semitopological semigroup.

Later we shall assume that all spaces are Hausdorff.
Some Definitions

A subset idempotents $E(S)$ of a semigroup S admits a natural partial order \leq:

$$e \leq f \quad \text{if and only if} \quad ef = fe = e, \quad e, f \in E(S).$$

An idempotent e of a semigroup S is primitive if it minimal in $E(S) \setminus \{0\}$.

A topological space S

- equipped with a continuous semigroup operation and continuous inversion is called a topological inverse semigroup;
- equipped with a continuous semigroup operation is called a topological semigroup;
- with separately a continuous semigroup operation is called a semitopological semigroup.

Later we shall assume that all spaces are Hausdorff.
Some Definitions

A subset idempotents $E(S)$ of a semigroup S admits a **natural partial order** \leq:

$$e \leq f \quad \text{if and only if} \quad ef = fe = e, \quad e, f \in E(S).$$

An idempotent e of a semigroup S is **primitive** if it minimal in $E(S) \setminus \{0\}$.

A topological space S

- equipped with a continuous semigroup operation and continuous inversion is called a **topological inverse semigroup**;
- equipped with a continuous semigroup operation is called a **topological semigroup**;
- with separately a continuous semigroup operation is called a **semitopological semigroup**.

Later we shall assume that all spaces are Hausdorff.
Some Definitions

A subset idempotents $E(S)$ of a semigroup S admits a natural partial order \leq:

$$e \leq f \quad \text{if and only if} \quad ef = fe = e, \quad e, f \in E(S).$$

An idempotent e of a semigroup S is primitive if it minimal in $E(S) \setminus \{0\}$.

A topological space S

- equipped with a continuous semigroup operation and continuous inversion is called a topological inverse semigroup;
- equipped with a continuous semigroup operation is called a topological semigroup;
- with separately a continuous semigroup operation is called a semitopological semigroup.

Later we shall assume that all spaces are Hausdorff.
Some Definitions

A subset idempotents \(E(S) \) of a semigroup \(S \) admits a natural partial order \(\leq \):

\[
e \leq f \quad \text{if and only if} \quad ef = fe = e, \quad e, f \in E(S).
\]

An idempotent \(e \) of a semigroup \(S \) is primitive if it minimal in \(E(S) \setminus \{0\} \).

A topological space \(S \)

- equipped with a continuous semigroup operation and continuous inversion is called a topological inverse semigroup;
- equipped with a continuous semigroup operation is called a topological semigroup;
- with separately a continuous semigroup operation is called a semitopological semigroup.

Later we shall assume that all spaces are Hausdorff.
Some Definitions

A subset idempotents $E(S)$ of a semigroup S admits a *natural partial order* \leq:

$$e \leq f \quad \text{if and only if} \quad ef = fe = e, \quad e, f \in E(S).$$

An idempotent e of a semigroup S is *primitive* if it minimal in $E(S) \setminus \{0\}$.

A topological space S

- equipped with a continuous semigroup operation and continuous inversion is called a *topological inverse semigroup*;
- equipped with a continuous semigroup operation is called a *topological semigroup*;
- with separately a continuous semigroup operation is called a *semitopological semigroup*.

Later we shall assume that all spaces are Hausdorff.
A subset idempotents \(E(S) \) of a semigroup \(S \) admits a *natural partial order* \(\leq \):

\[
e \leq f \quad \text{if and only if} \quad ef = fe = e, \quad e, f \in E(S).
\]

An idempotent \(e \) of a semigroup \(S \) is *primitive* if it minimal in \(E(S) \setminus \{0\} \).

A topological space \(S \)

- equipped with a continuous semigroup operation and continuous inversion is called a *topological inverse semigroup*;
- equipped with a continuous semigroup operation is called a *topological semigroup*;
- with separately a continuous semigroup operation is called a *semitopological semigroup*.

Later we shall assume that all spaces are Hausdorff.
Let \mathcal{C} be a class of compact Hausdorff semitopological semigroups. By a \mathcal{C}-compactification of a semitopological semigroup S we understand a pair $(\mathcal{C}(S), \eta)$ consisting of a compact semitopological semigroup $\mathcal{C}(S) \in \mathcal{C}$ and a continuous homomorphism $\eta : S \to \mathcal{C}(S)$ (called the canonic homomorphism) such that for each continuous homomorphism $h : S \to K$ to a semitopological semigroup $K \in \mathcal{C}$ there is a unique continuous homomorphism $\bar{h} : \mathcal{C}(S) \to K$ such that $h = \bar{h} \circ \eta$.

We shall be interested in \mathcal{C}-compactifications for the following classes of semigroups:

- WAP of compact semitopological semigroups;
- AP of compact topological semigroups.

The corresponding \mathcal{C}-compactifications of a semitopological semigroup S will be denoted by $\text{WAP}(S)$ and $\text{AP}(S)$. The notation came from the abbreviations for weakly almost periodic, almost periodic, and strongly almost periodic function rings that determine those compactifications.
Let \mathcal{C} be a class of compact Hausdorff semitopological semigroups. By a \mathcal{C}-compactification of a semitopological semigroup S we understand a pair $(\mathcal{C}(S), \eta)$ consisting of a compact semitopological semigroup $\mathcal{C}(S) \in \mathcal{C}$ and a continuous homomorphism $\eta : S \to \mathcal{C}(S)$ (called the canonic homomorphism) such that for each continuous homomorphism $h : S \to K$ to a semitopological semigroup $K \in \mathcal{C}$ there is a unique continuous homomorphism $\overline{h} : \mathcal{C}(S) \to K$ such that $h = \overline{h} \circ \eta$.

We shall be interested in \mathcal{C}-compactifications for the following classes of semigroups:

- \mathcal{WAP} of compact semitopological semigroups;
- \mathcal{AP} of compact topological semigroups.

The corresponding \mathcal{C}-compactifications of a semitopological semigroup S will be denoted by $\mathcal{WAP}(S)$ and $\mathcal{AP}(S)$. The notation came from the abbreviations for weakly almost periodic, almost periodic, and strongly almost periodic function rings that determine those compactifications.
<table>
<thead>
<tr>
<th>Source</th>
<th>Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reznichenko, 1995</td>
<td>For any Tychonoff countably compact semitopological semigroup S the semigroup operation of S extends to a separately continuous semigroup operation on βS, which implies that βS coincides with the WAP-compactification of S.</td>
</tr>
<tr>
<td>Reznichenko, 1995</td>
<td>For any Tychonoff pseudocompact topological semigroup S the semigroup operation of S extends to a separately continuous semigroup operation βS, which implies that βS coincides with the WAP-compactification of S.</td>
</tr>
<tr>
<td>Banakh, Dimitrova, 2010</td>
<td>For any Tychonoff topological semigroup S with pseudocompact square $S \times S$ the semigroup operation of S extends to a continuous semigroup operation on βS, which implies that βS coincides with the AP-compactification of S.</td>
</tr>
</tbody>
</table>
Reznichenko, 1995

For any Tychonoff countably compact semitopological semigroup S the semigroup operation of S extends to a separately continuous semigroup operation on βS, which implies that βS coincides with the WAP-compactification of S.

Reznichenko, 1995

For any Tychonoff pseudocompact topological semigroup S the semigroup operation of S extends to a separately continuous semigroup operation βS, which implies that βS coincides with the WAP-compactification of S.

Banakh, Dimitrova, 2010

For any Tychonoff topological semigroup S with pseudocompact square $S \times S$ the semigroup operation of S extends to a continuous semigroup operation on βS, which implies that βS coincides with the AP-compactification of S.
Semigroup compactifications

Reznichenko, 1995

For any Tychonoff countably compact semitopological semigroup S the semigroup operation of S extends to a separately continuous semigroup operation on βS, which implies that βS coincides with the WAP-compactification of S.

Reznichenko, 1995

For any Tychonoff pseudocompact topological semigroup S the semigroup operation of S extends to a separately continuous semigroup operation βS, which implies that βS coincides with the WAP-compactification of S.

Banakh, Dimitrova, 2010

For any Tychonoff topological semigroup S with pseudocompact square $S \times S$ the semigroup operation of S extends to a continuous semigroup operation on βS, which implies that βS coincides with the AP-compactification of S.
The Comfort-Ross Theorem

<table>
<thead>
<tr>
<th>Comfort & Ross, 1966</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Tychonoff product of any non-empty family of pseudocompact topological groups is a pseudocompact space.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comfort & Ross, 1966</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Čech-Stone compactification βG of a pseudocompact topological group is a topological group and the group operation of βG is an extension of the group operation of G.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Korovin, 1992</th>
</tr>
</thead>
<tbody>
<tr>
<td>There exists a Tychonoff pseudocompact semitopological group which is not a paratopological group.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hernandes & Tkachenko, 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>There exist two Tychonoff pseudocompact quasitopological groups G and H such that the product $G \times H$ is not pseudocompact.</td>
</tr>
</tbody>
</table>
The Comfort-Ross Theorem

Comfort & Ross, 1966

The Tychonoff product of any non-empty family of pseudocompact topological groups is a pseudocompact space.

Comfort & Ross, 1966

The Čech-Stone compactification βG of a pseudocompact topological group is a topological group and the group operation of βG is an extension of the group operation of G.

Korovin, 1992

There exists a Tychonoff pseudocompact semitopological group which is not a paratopological group.

Hernandes & Tkachenko, 2006

There exist two Tychonoff pseudocompact quasitopological groups G and H such that the product $G \times H$ is not pseudocompact.
The Comfort-Ross Theorem

Comfort & Ross, 1966

The Tychonoff product of any non-empty family of pseudocompact topological groups is a pseudocompact space.

Comfort & Ross, 1966

The Čech-Stone compactification βG of a pseudocompact topological group is a topological group and the group operation of βG is an extension of the group operation of G.

Korovin, 1992

There exists a Tychonoff pseudocompact semitopological group which is not a paratopological group.

Hernandes & Tkachenko, 2006

There exist two Tychonoff pseudocompact quasitopological groups G and H such that the product $G \times H$ is not pseudocompact.
The Comfort-Ross Theorem

Comfor & Ross, 1966

The Tychonoff product of any non-empty family of pseudocompact topological groups is a pseudocompact space.

Comfor & Ross, 1966

The Čech-Stone compactification βG of a pseudocompact topological group is a topological group and the group operation of βG is an extension of the group operation of G.

Korovin, 1992

There exists a Tychonoff pseudocompact semitopological group which is not a paratopological group.

Hernandes & Tkachenko, 2006

There exist two Tychonoff pseudocompact quasitopological groups G and H such that the product $G \times H$ is not pseudocompact.
Theorem

For a Tychonoff space X the following conditions are equivalent:

(i) X is pseudocompact;

(ii) every locally finite family of non-empty open subsets of X is finite;

(iii) every locally finite open cover of X has a finite subcover.
Comfort-Ross like Theorem

Ravsky, 2012

The Tychonoff product of any non-empty family of pseudocompact paratopological groups is a pseudocompact space.

G & Repovš, 2007

Let S be a 0-simple countable compact topological inverse semigroup. Then the Stone-Čech compactification of S admits a structure of 0-simple topological inverse semigroup with respect to which the inclusion mapping of S into βS is a topological isomorphism.

G & Pavlyk, 2013

Let $\{S_i : i \in I\}$ be a non-empty family of primitive Hausdorff pseudocompact topological inverse semigroups. Then the direct product $\prod_{j \in I} S_j$ with the Tychonoff topology is a pseudocompact topological inverse semigroup.

G & Pavlyk, 2013

Let S be a primitive pseudocompact topological inverse semigroup. Then the Stone-Čech compactification of S admits a structure of primitive topological inverse semigroup with respect to which the inclusion mapping of S into βS is a topological isomorphism.
<table>
<thead>
<tr>
<th>Source</th>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ravsky, 2012</td>
<td>The Tychonoff product of any non-empty family of pseudocompact paratopological groups is a pseudocompact space.</td>
</tr>
<tr>
<td>G & Repovš, 2007</td>
<td>Let S be a 0-simple countable compact topological inverse semigroup. Then the Stone-Čech compactification of S admits a structure of 0-simple topological inverse semigroup with respect to which the inclusion mapping of S into βS is a topological isomorphism.</td>
</tr>
<tr>
<td>G & Pavlyk, 2013</td>
<td>Let ${S_i: i \in I}$ be a non-empty family of primitive Hausdorff pseudocompact topological inverse semigroups. Then the direct product $\prod_{j \in I} S_j$ with the Tychonoff topology is a pseudocompact topological inverse semigroup.</td>
</tr>
<tr>
<td>G & Pavlyk, 2013</td>
<td>Let S be a primitive pseudocompact topological inverse semigroup. Then the Stone-Čech compactification of S admits a structure of primitive topological inverse semigroup with respect to which the inclusion mapping of S into βS is a topological isomorphism.</td>
</tr>
</tbody>
</table>
Ravsky, 2012

The Tychonoff product of any non-empty family of pseudocompact paratopological groups is a pseudocompact space.

G & Repovš, 2007

Let S be a 0-simple countable compact topological inverse semigroup. Then the Stone-Čech compactification of S admits a structure of 0-simple topological inverse semigroup with respect to which the inclusion mapping of S into βS is a topological isomorphism.

G & Pavlyk, 2013

Let $\{S_i : i \in \mathcal{I}\}$ be a non-empty family of primitive Hausdorff pseudocompact topological inverse semigroups. Then the direct product $\prod_{j \in \mathcal{J}} S_j$ with the Tychonoff topology is a pseudocompact topological inverse semigroup.

G & Pavlyk, 2013

Let S be a primitive pseudocompact topological inverse semigroup. Then the Stone-Čech compactification of S admits a structure of primitive topological inverse semigroup with respect to which the inclusion mapping of S into βS is a topological isomorphism.
Comfort-Ross like Theorem

Ravsky, 2012
The Tychonoff product of any non-empty family of pseudocompact paratopological groups is a pseudocompact space.

G & Repovš, 2007
Let S be a 0-simple countable compact topological inverse semigroup. Then the Stone-Čech compactification of S admits a structure of 0-simple topological inverse semigroup with respect to which the inclusion mapping of S into βS is a topological isomorphism.

G & Pavlyk, 2013
Let $\{S_i : i \in J\}$ be a non-empty family of primitive Hausdorff pseudocompact topological inverse semigroups. Then the direct product $\prod_{j \in J} S_j$ with the Tychonoff topology is a pseudocompact topological inverse semigroup.

G & Pavlyk, 2013
Let S be a primitive pseudocompact topological inverse semigroup. Then the Stone-Čech compactification of S admits a structure of primitive topological inverse semigroup with respect to which the inclusion mapping of S into βS is a topological isomorphism.
Let S be a group and λ be a cardinal ≥ 1. On the set $B_\lambda(S) = (\lambda \times S \times \lambda) \sqcup \{0\}$ we define the semigroup operation as follows

$$(\alpha, a, \beta) \cdot (\gamma, b, \delta) = \begin{cases} (\alpha, ab, \delta), & \text{if } \beta = \gamma; \\ 0, & \text{if } \beta \neq \gamma, \end{cases}$$

and $$(\alpha, a, \beta) \cdot 0 = 0 \cdot (\alpha, a, \beta) = 0 \cdot 0 = 0,$$ for all $\alpha, \beta, \gamma, \delta \in \lambda$ and $a, b \in S$.

The semigroup $B_\lambda(S)$ is called the Brandt semigroup. Every completely 0-simple inverse semigroup is isomorphic to Brandt semigroup for some cardinal λ and group S.

For all $\alpha, \beta \in \lambda$ we denote $S_{\alpha, \beta} = \{(\alpha, s, \beta) : s \in S\}$.
Let S be a group and λ be a cardinal ≥ 1. On the set $B_\lambda(S) = (\lambda \times S \times \lambda) \sqcup \{0\}$ we define the semigroup operation as follows:

$$(\alpha, a, \beta) \cdot (\gamma, b, \delta) = \begin{cases} (\alpha, ab, \delta), & \text{if } \beta = \gamma; \\ 0, & \text{if } \beta \neq \gamma, \end{cases}$$

and $(\alpha, a, \beta) \cdot 0 = 0 \cdot (\alpha, a, \beta) = 0 \cdot 0 = 0$, for all $\alpha, \beta, \gamma, \delta \in \lambda$ and $a, b \in S$.

The semigroup $B_\lambda(S)$ is called the Brandt semigroup. Every completely 0-simple inverse semigroup is isomorphic to Brandt semigroup for some cardinal λ and group S.

For all $\alpha, \beta \in \lambda$ we denote $S_{\alpha, \beta} = \{(\alpha, s, \beta) : s \in S\}$.
Let \(\{S_\iota : \iota \in \mathcal{I} \} \) be a disjoint family of semigroups with zero such that \(0_\iota \) is zero in \(S_\iota \) for any \(\iota \in \mathcal{I} \). We put \(S = \{0\} \cup \bigcup \{S_\iota \setminus \{0_\iota\} : \iota \in \mathcal{I}\} \), where \(0 \notin \bigcup \{S_\iota \setminus \{0_\iota\} : \iota \in \mathcal{I}\} \), and define a semigroup operation on \(S \) in the following way

\[
s \cdot t = \begin{cases}
st, & \text{if } st \in S_\iota \setminus \{0_\iota\} \text{ for some } \iota \in \mathcal{I}; \\ 0, & \text{otherwise}. \end{cases}
\]

The semigroup \(S \) with such defined operation is called the orthogonal sum of the family of semigroups \(\{S_\iota : \iota \in \mathcal{I}\} \) and in this case we shall write \(S = \sum_{\iota \in \mathcal{I}} S_\iota \).

Petrich, 1984

A semigroup \(S \) is a primitive inverse semigroup if and only if \(S \) is the orthogonal sum of a non-empty family of Brandt semigroups.
Let \(\{S_\iota : \iota \in \mathcal{I}\} \) be a disjoint family of semigroups with zero such that \(0_\iota \) is zero in \(S_\iota \) for any \(\iota \in \mathcal{I} \). We put \(S = \{0\} \cup \bigcup \{S_\iota \setminus \{0_\iota\} : \iota \in \mathcal{I}\} \), where \(0 \notin \bigcup \{S_\iota \setminus \{0_\iota\} : \iota \in \mathcal{I}\} \), and define a semigroup operation on \(S \) in the following way

\[
s \cdot t = \begin{cases} st, & \text{if } st \in S_\iota \setminus \{0_\iota\} \text{ for some } \iota \in \mathcal{I}; \\ 0, & \text{otherwise.} \end{cases}
\]

The semigroup \(S \) with such defined operation is called the \textit{orthogonal sum} of the family of semigroups \(\{S_\iota : \iota \in \mathcal{I}\} \) and in this case we shall write \(S = \sum_{\iota \in \mathcal{I}} S_\iota \).

\textbf{Petrich, 1984}

A semigroup \(S \) is a primitive inverse semigroup if and only if \(S \) is the orthogonal sum of a non-empty family of Brandt semigroups.
Let S be a Hausdorff primitive inverse countably compact semitopological semigroup and S be an orthogonal sum of the family $\{B_{\lambda_i}(G_i) : i \in I\}$ of semitopological Brandt semigroups with zeros. Suppose that for every $i \in I$ there exists a maximal non-zero subgroup $(G_i)_{\alpha_i,\alpha_i}, \alpha_i \in \lambda_i$, such that at least one of the following conditions holds:

1. the group $(G_i)_{\alpha_i,\alpha_i}$ is left precompact;
2. $(G_i)_{\alpha_i,\alpha_i}$ is a pseudocompact paratopological group;
3. the group $(G_i)_{\alpha_i,\alpha_i}$ is left ω-precompact pseudocompact;
4. the subsemigroup $S_{\alpha_i,\alpha_i} = (G_i)_{\alpha_i,\alpha_i} \cup \{0\}$ is a topological semigroup.

Then S admits the unique topology which turns S into a semitopological semigroup.

We recall that a group G endowed with a topology is left (ω)-precompact, if for each neighborhood U of the unit of G there exists a (countable) finite subset F of G such that $FU = G$.

Oleg Gutik
Let S be a semiregular primitive inverse pseudocompact semitopological semigroup and S be an orthogonal sum of the family $\{B_{\lambda_i}(G_i): i \in \mathcal{I}\}$ of semitopological Brandt semigroups with zeros. Let for every $i \in \mathcal{I}$ there exists a maximal non-zero subgroup $(G_i)_{\alpha_i,\alpha_i}$, $\alpha_i \in \lambda_i$, such that at least the one of the following conditions holds:

1. the group $(G_i)_{\alpha_i,\alpha_i}$ is left precompact;
2. $(G_i)_{\alpha_i,\alpha_i}$ is a pseudocompact paratopological group;
3. the group $(G_i)_{\alpha_i,\alpha_i}$ is left ω-precompact pseudocompact;
4. the subsemigroup $S_{\alpha_i,\alpha_i} = (G_i)_{\alpha_i,\alpha_i} \cup \{0\}$ is a topological semigroup.

Then S admits the unique topology which turns S into a semitopological semigroup.
Let \(S \) be a Hausdorff primitive inverse pseudocompact topological semigroup and \(S \) be an orthogonal sum of the family \(\{B_{\lambda_i}(G_i) : i \in \mathcal{I}\} \) of topological Brandt semigroups with zeros. Then the following assertions hold:

\begin{enumerate}[(i)]
 \item every cardinal \(\lambda_i \) is finite;
 \item every maximal subgroup of \(S \) is open-and-closed subset of \(S \) and hence is pseudocompact;
 \item for every \(i \in \mathcal{I} \) the maximal Brandt semigroup \(B_{\lambda_i}(G_i) \) is a pseudocompact;
 \item if \(B(\alpha_i, e_i, \alpha_i) \) is a base of the topology at the unity \((\alpha_i, e_i, \alpha_i) \) of a maximal non-zero subgroup \((G_i)_{\alpha_i, \alpha_i} \) of \(S \), \(i \in \mathcal{I} \), such that \(U \subseteq (G_i)_{\alpha_i, \alpha_i} \) for any \(U \in B(\alpha_i, e_i, \alpha_i) \), then the family

\[B(\beta_i, x, \gamma_i) = \left\{ (\beta_i, x, \alpha_i) \cdot U \cdot (\alpha_i, e_i, \gamma_i) : U \in B(\alpha_i, e_i, \alpha_i) \right\} \]

is a base of the topology at the point \((\beta_i, x, \gamma_i) \in (G_i)_{\beta_i, \gamma_i} \subseteq B_{\lambda_i}(G_i) \), for all \(\beta_i, \gamma_i \in \lambda_i \);

\end{enumerate}

If in addition the topological space \(S \) is semiregular then

\begin{enumerate}[(v)]
 \item the family

\[B_0 = \left\{ S \setminus \left((G_{i_1})_{\alpha_{i_1}, \beta_{i_1}} \cup \cdots \cup (G_{i_k})_{\alpha_{i_k}, \beta_{i_k}} \right) : i_1, \ldots, i_k \in \mathcal{I}, \alpha_{i_k}, \beta_{i_k} \in \lambda_{i_k}, \right. \]

\[k \in \mathbb{N}, \left. \{(\alpha_{i_1}, \beta_{i_1}), \ldots, (\alpha_{i_k}, \beta_{i_k})\} \right\} \text{ is finite} \}

is a base of the topology at zero of \(S \).
Let \(\{S_j : j \in J\} \) be a non-empty family of primitive semitopological inverse semigroups such that for each \(j \in J \) the semigroup \(S_j \) is either semiregular pseudocompact or Hausdorff countably compact, and moreover each maximal subgroup of \(S_j \) a pseudocompact paratopological group. Then the direct product \(\prod_{j \in J} S_j \) with the Tychonoff topology is a pseudocompact semitopological inverse semigroup.

Let \(\{S_i : i \in I\} \) be a non-empty family of primitive inverse semiregular pseudocompact (Hausdorff countably) topological semigroups. Then the direct product \(\prod_{j \in J} S_j \) with the Tychonoff topology is a pseudocompact inverse topological semigroup.
G & Ravsky, 2013

Let \(\{S_j : j \in J\} \) be a non-empty family of primitive semitopological inverse semigroups such that for each \(j \in J \) the semigroup \(S_j \) is either semiregular pseudocompact or Hausdorff countably compact, and moreover each maximal subgroup of \(S_j \) a pseudocompact paratopological group. Then the direct product \(\prod_{j \in J} S_j \) with the Tychonoff topology is a pseudocompact semitopological inverse semigroup.

G & Ravsky, 2013

Let \(\{S_i : i \in I\} \) be a non-empty family of primitive inverse semiregular pseudocompact (Hausdorff countably) topological semigroups. Then the direct product \(\prod_{j \in J} S_j \) with the Tychonoff topology is a pseudocompact inverse topological semigroup.
Let S be a primitive inverse pseudocompact quasi-regular topological semigroup. Then the Stone-Čech compactification of S admits a structure of primitive topological inverse semigroup with respect to which the inclusion mapping of S into βS is a topological isomorphism.

Let S be a regular primitive inverse countably compact semitopological semigroup and S be an orthogonal sum of the family $\{B_{\lambda_i}(G_i) : i \in \mathcal{I}\}$ of semitopological Brandt semigroups with zeros. Suppose that for every $i \in \mathcal{I}$ there exists a maximal non-zero subgroup $(G_i)_{\alpha_i,\alpha_i}$, $\alpha_i \in \lambda_i$, such that at least one of the following conditions holds:

1. The group $(G_i)_{\alpha_i,\alpha_i}$ is left precompact;
2. The group $(G_i)_{\alpha_i,\alpha_i}$ is left ω-precompact pseudocompact;
3. The subsemigroup $S_{\alpha_i,\alpha_i} = (G_i)_{\alpha_i,\alpha_i} \cup \{0\}$ is a topological semigroup.

Then the Stone-Čech compactification of S admits a structure of primitive inverse semitopological semigroup with continuous inversion with respect to which the inclusion mapping of S into βS is a topological isomorphism.
G & Ravsky, 2013

Let S be a primitive inverse pseudocompact quasi-regular topological semigroup. Then the Stone-Čech compactification of S admits a structure of primitive topological inverse semigroup with respect to which the inclusion mapping of S into βS is a topological isomorphism.

G & Ravsky, 2013

Let S be a regular primitive inverse countably compact semitopological semigroup and S be an orthogonal sum of the family $\{B_{\lambda_i}(G_i) : i \in \mathcal{I}\}$ of semitopological Brandt semigroups with zeros. Suppose that for every $i \in \mathcal{I}$ there exists s maximal non-zero subgroup $(G_i)_{\alpha_i,\alpha_i}$, $\alpha_i \in \lambda_i$, such that at least the one of the following conditions holds:

1. the group $(G_i)_{\alpha_i,\alpha_i}$ is left precompact;
2. the group $(G_i)_{\alpha_i,\alpha_i}$ is left ω-precompact pseudocompact;
3. the subsemigroup $S_{\alpha_i,\alpha_i} = (G_i)_{\alpha_i,\alpha_i} \cup \{0\}$ is a topological semigroup.

Then the Stone-Čech compactification of S admits a structure of primitive inverse semitopological semigroup with continuous inversion with respect to which the inclusion mapping of S into βS is a topological isomorphism.
Thank You for Your attention!