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large free groups in groups of automorphism

groups of automorphisms

Let A be a countable structure (in fact, we should write A = (A, F,R,C)). By
Aut(A) we denote the group of automorphisms of A.
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groups of automorphisms

Let A be a countable structure (in fact, we should write A = (A, F,R,C)). By
Aut(A) we denote the group of automorphisms of A.

general problem

Detect those countable structures A, whose groups of auomorphisms Aut(A)
contains a large free group.
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introduction — general problem

large free groups in groups of automorphism

groups of automorphisms

Let A be a countable structure (in fact, we should write A = (A, F,R,C)). By
Aut(A) we denote the group of automorphisms of A.

general problem

Detect those countable structures A, whose groups of auomorphisms Aut(A)
contains a large free group.

Macperson (1986)

If A is w-categorical, then Aut(A) contains a dense free subgroup of w
generators.

Automorphism group of a random graph contains a dense free subgroup of 2
generators.
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large free groups in groups of automorphism

groups of automorphisms

Let A be a countable structure (in fact, we should write A = (A, F,R,C)). By
Aut(A) we denote the group of automorphisms of A.

general problem

Detect those countable structures A, whose groups of auomorphisms Aut(A)
contains a large free group.

Macperson (1986)

If A is w-categorical, then Aut(A) contains a dense free subgroup of w
generators.

Automorphism group of a random graph contains a dense free subgroup of 2
generators.

Melles and Shelah (1994)

If Ais a saturated model of a complete theory T with |A| = X\ > |T]|, then
Aut(A) has a dense free subgroup of of cardinality 2*.
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introduction — general problem

ultrahomogneous structures, c-largeness

ultrahomogeneous structure

We say that a countable structure A is ultrahomogeneous, if each isomorphism
between finitely generated substructures of A can be extended to an
automorphism of A.
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introduction — general problem

ultrahomogneous structures, c-largeness

ultrahomogeneous structure

We say that a countable structure A is ultrahomogeneous, if each isomorphism
between finitely generated substructures of A can be extended to an
automorphism of A.

examples

w, (Q, <),...
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ultrahomogneous structures, c-largeness

ultrahomogeneous structure

We say that a countable structure A is ultrahomogeneous, if each isomorphism
between finitely generated substructures of A can be extended to an
automorphism of A.

examples

w, (Q, <),...

"our" version of the problem

Detect those countable ultrahomogeneous structures A such that there exists a
family H C Aut(A) of c-many free generators.
Such groups Aut(A) will be called c-/arge.
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ultrahomogeneous structure

We say that a countable structure A is ultrahomogeneous, if each isomorphism
between finitely generated substructures of A can be extended to an
automorphism of A.

examples

w, (Q, <),...

"our" version of the problem

Detect those countable ultrahomogeneous structures A such that there exists a
family H C Aut(A) of c-many free generators.
Such groups Aut(A) will be called c-/arge.
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introduction — general problem

free generators

Let y1,y2,... be a set of letters, m, k > 1, r,....,rc € {1, ..., m} be such that
ri # riy1 for i € {1,...,k — 1}, and ny,...,nx € Z\ {0}. Then

W(Y15 o, Yim) = Y Yok o Yok

is called a word of length n, where n = |n1| + ... + |nk].
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introduction — general problem

free generators

Let y1,y2,... be a set of letters, m, k > 1, r,....,rc € {1, ..., m} be such that
ri # riy1 for i € {1,...,k — 1}, and ny,...,nx € Z\ {0}. Then

W(Y15 o, Yim) = Y Yok o Yok

is called a word of length n, where n = |n1| + ... + |nk].

free generators

A family H C Aut(A) is a family of free generators if for every word
w(yi,....,¥m) and every distinct fi, ..., fn, € H, the function

W(fi,...,fm) = f* o f2 0. 0fk

is not the identity function

Filip Strobin Large free subgroups of automorphisms group of ultrahomogeneous spaces



introduction — general problem

examples

Filip Strobin e free subgroups of autol

rphisms group of ultrahomogeneous spaces




introduction — general problem

examples

"our" version of the problem

Detect those countable ultrahomogeneous structures A such that there exists a
family H C Aut(A) of c-many free generators.
Such groups Aut(A) will be called c-/arge.
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introduction — general problem

examples

"our" version of the problem

Detect those countable ultrahomogeneous structures A such that there exists a
family H C Aut(A) of c-many free generators.
Such groups Aut(A) will be called c-/arge.

positive example

Let A= w. Then Aut(A) = S - the group of all bijections of w.
S5 is c-large.

Filip Strobin Large free subgroups of automorphisms group of ultrahomogeneous spaces



introduction — general problem

examples

"our" version of the problem

Detect those countable ultrahomogeneous structures A such that there exists a
family H C Aut(A) of c-many free generators.
Such groups Aut(A) will be called c-/arge.

positive example

Let A= w. Then Aut(A) = S - the group of all bijections of w.
S5 is c-large.

negative example

Let A = (w,{Rn: n € w}), where R, are unary relations such that

x € R, iff x € {2n,2n + 1}.

Then for every f € Aut(A), f o f = id, so Aut(A) does not contain any
nonempty family of free generators.
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a method

the Rasiowa-Sikorski Lemma

filters,dense sets

Let (P, <) be a partially ordered set (poset).

We say that a set G C P is a filter, if:

— for every p,q € P, if p< g and p € G, then q € G;

— for every p1,p> € G, there is g € G such that g < p; for i =1, 2.
We say that a set D C P is dense, if:

— for every p € P, there is g € D such that g < p.
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a method

the Rasiowa-Sikorski Lemma

filters,dense sets

Let (P, <) be a partially ordered set (poset).

We say that a set G C P is a filter, if:

— for every p,q € P, if p< g and p € G, then q € G;

— for every p1,p> € G, there is g € G such that g < p; for i =1, 2.
We say that a set D C P is dense, if:

— for every p € P, there is g € D such that g < p.

the Rasiowa-Sikorski Lemma

Let (P, <) be a poset with ccc (in particular, countable) and {D, : n € w} be a
family of dense subsets of P.
Then there is a filter G C P (called a generic filter) such that for every n € w,

GN D, #0.
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a method

the Rasiowa-Sikorski Lemma

filters,dense sets

Let (P, <) be a partially ordered set (poset).

We say that a set G C P is a filter, if:

— for every p,q € P, if p< g and p € G, then q € G;

— for every p1,p> € G, there is g € G such that g < p; for i =1, 2.
We say that a set D C P is dense, if:

— for every p € P, there is g € D such that g < p.

the Rasiowa-Sikorski Lemma

Let (P, <) be a poset with ccc (in particular, countable) and {D, : n € w} be a
family of dense subsets of P.

Then there is a filter G C P (called a generic filter) such that for every n € w,
GN D, #0.

our idea

We will construct a countable poset (P, <), and a family of dense sets
{D, : n € w} such that the generic filter G will generate the family of ¢ many
free generators.
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the main result

the poset (P, <)

poset (P, <)

By P we denote the set of pairs (n, p), such that
- nEw;
- p:{0,1}" — Part(A);
- for every s € {0,1}",

dom(p(s))] = .

The set P is ordered in the following way: (n, p) < (k, q) iff
- n>k;
- if t <'s, then g(t) C p(s).
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the main result

the poset (P, <)

poset (P, <)

By P we denote the set of pairs (n, p), such that
- nEw;
- p:{0,1}" — Part(A);
- for every s € {0,1}",

dom(p(s))| = n.

The set P is ordered in the following way: (n, p) < (k, q) iff
- n>k;
- if t <'s, then g(t) C p(s).

(P, <) is countable.
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the main result

the poset (P, <)

poset (P, <)

By P we denote the set of pairs (n, p), such that
- neEw,;
- p:{0,1}" — Part(A);
- for every s € {0,1}",

dom(p(s))| = n.
The set P is ordered in the following way: (n, p) < (k, q) iff
- n>k;
- if t <'s, then g(t) C p(s).
(P, <) is countable.

partial automorphisms generated by a filter
Let G be a filter on (P, <) and a € {0,1}*. Then

g(a) = [J{p(ala) : (p,n) € G}
is a partial automorphism. Hence {g(a) : @ € {0,1}*} C Part(A).
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the main result

definitions of sets

For every k € A, let

Di = {(p,n) € P: Vscio,13n k € dom(p(s)) Nrng(p(s))}
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the main result

definitions of sets

For every k € A, let

Di = {(p,n) € P: Vscio,13n k € dom(p(s)) Nrng(p(s))}

sets Djlo°m

For every word w(y1, ..., ym), every k € N and every pairwise distinct
Si, -y Sm € {0, 1}, define

Db = {(n,p) : n > k, and for every

ti, ..., tm € {0,1}" with s; < t; we have w(p(t1), ..., p(tm)) # id}
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definitions of sets

For every k € A, let

Di = {(p,n) € P: Vscio,13n k € dom(p(s)) Nrng(p(s))}

sets Djlo°m

For every word w(y1, ..., ym), every k € N and every pairwise distinct
Si, -y Sm € {0, 1}, define

Db = {(n,p) : n > k, and for every

ti, ..., tm € {0,1}" with s; < t; we have w(p(t1), ..., p(tm)) # id}

sets Dy and D;l~°™ are "good”

Assume that G is a filter on P such that G N Dy # (0 and G N Dy = () for
all k,w,si, ..., sm.
Then {g(a) : @ € {0,1}*} is a family of ¢ many free generators.
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sets Dy and Djl'~°™ are "good”

Assume that G is a filter on P such that G N Dy # () and G N Dy}*m = () for
all k,w,si,...,sm.
Then {g(a) : « € {0,1}*} is a family of ¢ many free generators.
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sets Dy and Djl'~°™ are "good”

Assume that G is a filter on P such that G N Dy # () and G N Dy}*m = () for
all k,w,si,...,sm.
Then {g(a) : « € {0,1}*} is a family of ¢ many free generators.

proof

Let k € A. Let (p,n) € GN Di. Then for any a € {0,1}*,

k € dom(p(afn)) N rmg(p(als)) C dom(g(a)) N rng(g(a)).

Let w(y1,-...,¥m) be a word and az, ...,am € {0,1}* be distinct. Then there is
k € w such that aal, ...., @m|k are distinct.

Let (n,p) € G N D2 mlk Then there is xo € A such that
w(p(ailn), ..., p(am|n))(x0) # o
In particular,

w(g(a1), ..., g(ak))(x0) = w(p(a1ln), .-, P(@m]n))(x0) # xo-
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what should be assumed about A?

problem

What should be assumed about A, sets Dy and D;}>*~*™ are dense in P?
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what should be assumed about A?

problem

What should be assumed about A, sets Dy and D;}>*~*™ are dense in P?

denseness of Dy

Assume that A is such that each finitely generated substructure is finite. Then
for every k € N, the set Dy is dense in P.
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sets Dy} " - (xg, ..., Xp)-functions
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the main result

.., Xn)-functions

Let xo, ..., Xn be distinct elements. We say that a function g is an
(x0, ---, Xn)-function, if there are integers
0<ai<b<a<b<..<ak< bk <nsuch that for every r =1, ..., k,

g(xi) = xiy1 for every i = ar, ..., by — 1

or
g(xi) = xi—1 for every i = ar41, ..., br

and dom(g) contains exactly those x/s which appear in the above condition.
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.., Xn)-functions

Let xo, ..., Xn be distinct elements. We say that a function g is an
(x0, ---, Xn)-function, if there are integers
0<ai<b<a<b<..<ak< bk <nsuch that for every r =1, ..., k,

g(xi) = xiy1 for every i = ar, ..., by — 1

g(xi) = xi—1 for every i = ar41, ..., br

and dom(g) contains exactly those x/s which appear in the above condition.

(x0, ---, Xn)-functions are good

For every nonempty word w(y, ..., ym) of the length n, and distinct xq, ..., Xn,
there exist (xo, ..., X»)-functions gi, ...., gm such that w(gi, ...., gm)(x0) = Xn.
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(*) condition and main result
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(*) condition and main result

(*) condition

(*) For any finitely generated substructures By, B, C A and any m € N, there
exist pairwise distinct xo, ..., x, € A\ (B1 U B>) such that for any embedding
f : Bi — By, and for any (xo, ..., x»)-function g, there exists an embedding

fy - gen(By Udom(g)) — A such that f, g C f,.
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(*) condition and main result

(*) condition

(*) For any finitely generated substructures By, B, C A and any m € N, there
exist pairwise distinct xo, ..., x, € A\ (B1 U B>) such that for any embedding
f : Bi — By, and for any (xo, ..., x»)-function g, there exists an embedding

fy - gen(By Udom(g)) — A such that f, g C f,.

denseness of Djl» ™

Assume that A satisfies (x) and each finitely generated substructure of A is
finite. Then each set D;}>*~°" is dense in P.
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(*) condition and main result

(*) condition

(*) For any finitely generated substructures By, B, C A and any m € N, there
exist pairwise distinct xo, ..., x, € A\ (B1 U B>) such that for any embedding
f : Bi — By, and for any (xo, ..., x»)-function g, there exists an embedding

fy - gen(By Udom(g)) — A such that f, g C f,.

denseness of Djl» ™

Assume that A satisfies (x) and each finitely generated substructure of A is
finite. Then each set D;}>*~°" is dense in P.

main theorem, S. Gfab, 2013

Assume that A satisfies (*) and each finitely generated substructure of A is
finite. Then Aut(A) is c-large.
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corollaries

The structure w satisfies (x) and every finitely generated substructure is finite.
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corollaries

The structure w satisfies (x) and every finitely generated substructure is finite.

The group S of all bijections of w is c-large.
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corollaries

The structure w satisfies (x) and every finitely generated substructure is finite.

The group S of all bijections of w is c-large.

the structure (Q, <) satisfies () and every finitely generated substructure is
finite.
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the main result

corollaries

The structure w satisfies (x) and every finitely generated substructure is finite.

The group S of all bijections of w is c-large.

the structure (Q, <) satisfies () and every finitely generated substructure is
finite.

the group of all inequality preserving bijections of Q

The group of all inequality preserving bijections of Q is c-large.
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corollaries
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corollaries

rational Urysohn space

A rational Urysohn space is a countable metric space U with rational distances,
such that every finite metric space with rational distances has an isometric

copy in U.
A rational metric space satisfies (*) and finite substructures are finite.

rphisms group of ultrahomogeneous spaces
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corollaries

rational Urysohn space

A rational Urysohn space is a countable metric space U with rational distances,
such that every finite metric space with rational distances has an isometric
copy in U.

A rational metric space satisfies (*) and finite substructures are finite.

the group of isometries of U

The group of all isometries of a rational Urysohn space U is c-large.
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the main result

corollaries

rational Urysohn space

A rational Urysohn space is a countable metric space U with rational distances,
such that every finite metric space with rational distances has an isometric
copy in U.

A rational metric space satisfies (*) and finite substructures are finite.

the group of isometries of U

The group of all isometries of a rational Urysohn space U is c-large.

random graph

A random graph G is a countable graph such that for every finite X, Y C G,
there is a vertex with edges going to each vertex from X, and no edge going to
a vertex of Y.

A random graph satisfies (*) and each finitely generated substructure is finite.
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corollaries

rational Urysohn space

A rational Urysohn space is a countable metric space U with rational distances,
such that every finite metric space with rational distances has an isometric
copy in U.

A rational metric space satisfies (*) and finite substructures are finite.

the group of isometries of U

The group of all isometries of a rational Urysohn space U is c-large.

random graph

A random graph G is a countable graph such that for every finite X, Y C G,
there is a vertex with edges going to each vertex from X, and no edge going to
a vertex of Y.

A random graph satisfies (*) and each finitely generated substructure is finite.

the group of all automorphisms of a random graph

The group of all automorphisms of a random graph is c-large.
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corollaries
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corollaries

countable atomless Boolean algebra

A countable atomless Boolean algebra B satisfies (*) and finitely generated
subalgebras are finite.
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corollaries

countable atomless Boolean algebra

A countable atomless Boolean algebra B satisfies (*) and finitely generated
subalgebras are finite.

the group of all automorphisms of a countable atomless Boolean algebra

The group of all automorphisms of a countable atomless Boolean algebra is
c-large.
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more complicated problem

problem

Let F C Aut(A) be a family of free generators. Does there exists a family # of
cardinality ¢ such that F U #H is a family of free generators?
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more complicated problem

problem

Let F C Aut(A) be a family of free generators. Does there exists a family # of
cardinality ¢ such that F U #H is a family of free generators?

theorem, Gtab, S. (2013)

Let F C S* be a countable family of free generators. Then there is a family
H C S°° of cardinality ¢ such that 7 U # is a family of free generators.
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more complicated problem

problem

Let F C Aut(A) be a family of free generators. Does there exists a family # of
cardinality ¢ such that F U #H is a family of free generators?

theorem, Gtab, S. (2013)

Let F C S* be a countable family of free generators. Then there is a family
H C S°° of cardinality ¢ such that 7 U # is a family of free generators.

idea of a proof

(here A = w)
For every word w(yi, ..., Ym+1), every si, ...,sm € {0,1}* and every f, ..., fi € F,
the set

i " = {(n,p) : n > k, and for every

ti, ..., tm € {0,1}" with s; < t; we have w(p(t1), ..., p(tm), fi, ..., i) # id}.

is dense in PP.
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a result under MA(c)
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other results

a result under MA(c)

theorem, Gtab, S. (2013)

Assume MA(c). Then for every family 7 C S of less than ¢ many free
generators, there exists a family 7 C S°° of cardinality ¢ such that H U F is a
family of free generators.
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Thank you for your attention
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