Ultrafilter selection properties

(joint work with Robert Bonnet and Stevo Todorcevic)

Wiesław Kubis

Academy of Sciences of the Czech Republic
and
Jan Kochanowski University in Kielce, Poland
http://www.math.cas.cz/kubis/

Winter School in Abstract Analysis, Hejnice 2014
25 January – 1 February 2014
Definition

Let \mathbb{B} be a Boolean algebra, $\kappa \leq |\mathbb{B}|$ an infinite cardinal. We say that \mathbb{B} has the κ-selection property if for every generating set $G \subseteq \mathbb{B}$ there exists an ultrafilter p on \mathbb{B} such that

$$|p \cap G| \geq \kappa.$$

We say that \mathbb{B} is κ-Corson if it fails the κ-selection property.

Definition

A Boolean algebra \mathbb{B} has the strong κ-selection property if for every generating set $G \subseteq \mathbb{B}$ the set

$$\{p \in \text{Ult}(\mathbb{B}) : |p \cap G| \geq \kappa\}$$

has nonempty interior.
Definition

Let \mathcal{B} be a Boolean algebra, $\kappa \leq |\mathcal{B}|$ an infinite cardinal. We say that \mathcal{B} has the κ-selection property if for every generating set $G \subseteq \mathcal{B}$ there exists an ultrafilter p on \mathcal{B} such that

$$|p \cap G| \geq \kappa.$$

We say that \mathcal{B} is κ-Corson if it fails the κ-selection property.

Definition

A Boolean algebra \mathcal{B} has the strong κ-selection property if for every generating set $G \subseteq \mathcal{B}$ the set

$$\{p \in \text{Ult}(\mathcal{B}) : |p \cap G| \geq \kappa\}$$

has nonempty interior.
Definition

Let \mathbb{B} be a Boolean algebra, $\kappa \leq |\mathbb{B}|$ an infinite cardinal. We say that \mathbb{B} has the κ-selection property if for every generating set $G \subseteq \mathbb{B}$ there exists an ultrafilter p on \mathbb{B} such that

$$|p \cap G| \geq \kappa.$$

We say that \mathbb{B} is κ-Corson if it fails the κ-selection property.

Definition

A Boolean algebra \mathbb{B} has the strong κ-selection property if for every generating set $G \subseteq \mathbb{B}$ the set

$$\{p \in \text{Ult}(\mathbb{B}) : |p \cap G| \geq \kappa\}$$

has nonempty interior.
Fact

\mathcal{B} has the \aleph_0-selection property \implies \mathcal{B} is superatomic.
Inspirations:

1. Banach space theory and Corson compact spaces
2. Interval Boolean algebras
Inspirations:

1. Banach space theory and Corson compact spaces
2. Interval Boolean algebras
Definition
An interval Boolean algebra is a Boolean algebra generated by a linearly ordered set.
Given a chain C, denote by $\mathbb{B}(C)$ the Boolean algebra generated by C.

Definition
A hereditarily interval algebra is a Boolean algebra whose all subalgebras are interval.

Open problem (R. Bonnet)
Find an uncountable hereditarily interval algebra.
Definition

An interval Boolean algebra is a Boolean algebra generated by a linearly ordered set. Given a chain C, denote by $\mathbb{B}(C)$ the Boolean algebra generated by C.

Definition

A hereditarily interval algebra is a Boolean algebra whose all subalgebras are interval.

Open problem (R. Bonnet)

Find an uncountable hereditarily interval algebra.
Definition
An interval Boolean algebra is a Boolean algebra generated by a linearly ordered set. Given a chain \(C \), denote by \(\mathbb{B}(C) \) the Boolean algebra generated by \(C \).

Definition
A hereditarily interval algebra is a Boolean algebra whose all subalgebras are interval.

Open problem (R. Bonnet)
Find an uncountable hereditarily interval algebra.
Theorem (folklore)

Every hereditarily interval algebra is of the form $\mathbb{B}(C)$, where $C \subseteq \mathbb{R}$.

Proof.

Assume $\mathbb{B} = \mathbb{B}(C)$, where C is a chain.

1. Neither ω_1 nor its inverse embed into C.
2. There is an uncountable set $G \subseteq C$ such that $|p \cap G| \leq \aleph_0$ for every $p \in \text{Ult}(\mathbb{B})$.
3. $\mathbb{B}(G)$ is an uncountable interval algebra which fails the \aleph_1-selection property.
4. A contradiction (see one of the next slides).
Theorem (folklore)

Every hereditarily interval algebra is of the form $B(C)$, where $C \subseteq \mathbb{R}$.

Proof.

Assume $B = B(C)$, where C is a chain.

1. Neither ω_1 nor its inverse embed into C.
2. There is an uncountable set $G \subseteq C$ such that $|p \cap G| \leq \aleph_0$ for every $p \in \text{Ult}(B)$.
3. $B(G)$ is an uncountable interval algebra which fails the \aleph_1-selection property.
4. A contradiction (see one of the next slides).
Theorem (folklore)

*Every hereditarily interval algebra is of the form $\mathbb{B}(C)$, where $C \subseteq \mathbb{R}$.***

Proof.

Assume $\mathbb{B} = \mathbb{B}(C)$, where C is a chain.

1. Neither ω_1 nor its inverse embed into C.
2. There is an uncountable set $G \subseteq C$ such that $|p \cap G| \leq \aleph_0$ for every $p \in \text{Ult}(\mathbb{B})$.
3. $\mathbb{B}(G)$ is an uncountable interval algebra which fails the \aleph_1-selection property.
4. A contradiction (see one of the next slides).
Theorem (folklore)

Every hereditarily interval algebra is of the form $\mathbb{B}(C)$, where $C \subseteq \mathbb{R}$.

Proof.

Assume $\mathbb{B} = \mathbb{B}(C)$, where C is a chain.

1. Neither ω_1 nor its inverse embed into C.
2. There is an uncountable set $G \subseteq C$ such that $|p \cap G| \leq \aleph_0$ for every $p \in \text{Ult}(\mathbb{B})$.
3. $\mathbb{B}(G)$ is an uncountable interval algebra which fails the \aleph_1-selection property.
4. A contradiction (see one of the next slides).
Theorem (folklore)

Every hereditarily interval algebra is of the form $\mathcal{B}(C)$, where $C \subseteq \mathbb{R}$.

Proof.
Assume $\mathcal{B} = \mathcal{B}(C)$, where C is a chain.

1. Neither ω_1 nor its inverse embed into C.
2. There is an uncountable set $G \subseteq C$ such that $|p \cap G| \leq \aleph_0$ for every $p \in \text{Ult}(\mathcal{B})$.
3. $\mathcal{B}(G)$ is an uncountable interval algebra which fails the \aleph_1-selection property.
4. A contradiction (see one of the next slides).
Theorem (folklore)

Every hereditarily interval algebra is of the form $\mathbb{B}(C)$, where $C \subseteq \mathbb{R}$.

Proof.

Assume $\mathbb{B} = \mathbb{B}(C)$, where C is a chain.

1. Neither ω_1 nor its inverse embed into C.
2. There is an uncountable set $G \subseteq C$ such that $|p \cap G| \leq \aleph_0$ for every $p \in \text{Ult}(\mathbb{B})$.
3. $\mathbb{B}(G)$ is an uncountable interval algebra which fails the \aleph_1-selection property.
4. A contradiction (see one of the next slides).
Theorem (Nikiel, Purisch, Treybig independently: Bonnet, Rubin)

\(\mathcal{B}(\mathbb{R}) \) is not hereditarily interval.
Definition

A **poset algebra** is a Boolean algebra \mathbb{B} generated freely by a partially ordered set P. That is:

$$p_1 \land \ldots \land p_k \land \neg q_1 \land \ldots \land \neg q_\ell = 0 \implies (\exists \ i, j) \ p_i \leq q_j$$

for every $p_1, \ldots, p_k, q_1, \ldots, q_\ell$ in P. We write $\mathbb{B} = \mathbb{B}(P)$.

Fact

Every interval algebra is a poset algebra.
Definition

A **poset algebra** is a Boolean algebra \mathbb{B} generated freely by a partially ordered set P. That is:

$$p_1 \land \ldots \land p_k \land \neg q_1 \land \ldots \land \neg q_\ell = 0 \implies (\exists \ i, j) \ p_i \leq q_j$$

for every $p_1, \ldots, p_k, q_1, \ldots, q_\ell$ in P. We write $\mathbb{B} = \mathbb{B}(P)$.

Fact

Every interval algebra is a poset algebra.
Main results

Theorem

Let \mathbb{B} be a poset Boolean algebra, let κ be a regular cardinal such that $\aleph_0 < \kappa \leq |\mathbb{B}|$. Then \mathbb{B} has the κ-selection property.

Theorem

Let \mathbb{B} be an interval Boolean algebra, $\aleph_0 < \lambda^+ < |\mathbb{B}|$. Then \mathbb{B} has the strong λ^+-selection property.

Example

Let κ be any infinite cardinal. Then the free Boolean algebra with κ generators fails the strong \aleph_0-selection property.
Main results

Theorem

Let \mathbb{B} be a poset Boolean algebra, let κ be a regular cardinal such that $\aleph_0 < \kappa \leq |\mathbb{B}|$. Then \mathbb{B} has the κ-selection property.

Theorem

Let \mathbb{B} be an interval Boolean algebra, $\aleph_0 < \lambda^+ < |\mathbb{B}|$. Then \mathbb{B} has the strong λ^+-selection property.

Example

Let κ be any infinite cardinal. Then the free Boolean algebra with κ generators fails the strong \aleph_0-selection property.
Main results

Theorem
Let B be a poset Boolean algebra, let κ be a regular cardinal such that $\aleph_0 < \kappa \leq |B|$. Then B has the κ-selection property.

Theorem
Let B be an interval Boolean algebra, $\aleph_0 < \lambda^+ < |B|$. Then B has the strong λ^+-selection property.

Example
Let κ be any infinite cardinal. Then the free Boolean algebra with κ generators fails the strong \aleph_0-selection property.
Theorem

Let \mathcal{B} be a κ-Corson Boolean algebra, where $\kappa > \aleph_0$ is regular. Then every subalgebra of \mathcal{B} is κ-Corson.
About the proofs

Definition

The pointwise topology τ_p on a Boolean algebra \mathbb{B} is the topology generated by sets of the form

$$V_p^+ = \{ a \in \mathbb{B} : a \in p \} \quad \text{and} \quad V_p^- = \{ a \in \mathbb{B} : a \notin p \}$$

where $p \in \text{Ult}(\mathbb{B})$.

Theorem

Let \mathbb{B} be a κ-Corson Boolean algebra, where $\kappa = \text{cf} \kappa > \aleph_0$. Then every open cover of $\langle \mathbb{B}, \tau_p \rangle$ contains a subcover of size $< \kappa$.
About the proofs

Definition

The **pointwise topology** τ_p on a Boolean algebra \mathbb{B} is the topology generated by sets of the form

$$V_p^+ = \{ a \in \mathbb{B} : a \in p \} \quad \text{and} \quad V_p^- = \{ a \in \mathbb{B} : a \not\in p \}$$

where $p \in \text{Ult}(\mathbb{B})$.

Theorem

*Let \mathbb{B} be a κ-Corson Boolean algebra, where $\kappa = \text{cf } \kappa > \aleph_0$. Then every open cover of $\langle \mathbb{B}, \tau_p \rangle$ contains a subcover of size $< \kappa$.***
Lemma

Let \mathbb{B} be an infinite poset Boolean algebra. Then $\langle \mathbb{B}, \tau_p \rangle$ contains a closed discrete set of cardinality $|\mathbb{B}|$.

Remark

Nakhmanson (1985) proved that the Lindelöf number of $C_p(K)$ is κ whenever K is a compact linearly ordered space of weight $\kappa \geq \aleph_0$.

Lemma

Let \mathbb{B} be an infinite poset Boolean algebra. Then $\langle \mathbb{B}, \tau_p \rangle$ contains a closed discrete set of cardinality $|\mathbb{B}|$.

Remark

Nakhmanson (1985) proved that the Lindelöf number of $C_p(K)$ is κ whenever K is a compact linearly ordered space of weight $\kappa \geq \aleph_0$.

W.Kubiš (http://www.math.cas.cz/kubis/)
Elementary submodels

Definition

Let $\theta > \kappa > \aleph_0$ be regular cardinals. An elementary submodel M of $\langle H(\theta), \in \rangle$ is κ-stable if $M \cap \kappa$ is an initial segment of κ.

Fact

Given $A \in H(\theta)$ with $|A| < \kappa$, one can always find a κ-stable $M \preceq H(\theta)$ such that $A \in M$ and $|M| < \kappa$.
Elementary submodels

Definition
Let $\theta > \kappa > \aleph_0$ be regular cardinals. An elementary submodel M of $\langle H(\theta), \in \rangle$ is κ-stable if $M \cap \kappa$ is an initial segment of κ.

Fact
Given $A \in H(\theta)$ with $|A| < \kappa$, one can always find a κ-stable $M \subseteq H(\theta)$ such that $A \in M$ and $|M| < \kappa$.
Crucial Lemma, going back to Bandlow \(\approx 1990 \)

Let \(\mathcal{B} \) be a Boolean algebra, \(\kappa = \text{cf } \kappa > \aleph_0 \). Then \(\mathcal{B} \) is \(\kappa \)-Corson iff for every sufficiently closed \(\kappa \)-stable elementary submodel \(M \) of a big enough \(H(\theta) \) there is a “canonical” projection

\[
P_M : \mathcal{B} \to \mathcal{B} \cap M.
\]
THE END