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Polish Spaces

A Polish Topology is a separable topology induced by a
complete metric. A Polish Space is a topological space whose
topology is polish.

A subspace of a Polish space is Polish if and only it is Gδ.

The product of a countable collection of Polish spaces is
Polish. In particular, ωω and 2ω are both Polish.
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Polish Groups and Polish Actions

A Polish Group is a topological group whose topology is
polish.

One important example is S∞, the group of permutations of
natural numbers.

A continuous action of a Polish group G on a Polish space X
is called a Polish action. We will denote by EX

G the induced
orbit equivalence relation on X .

The orbit equivalence relation EX
G is analytic, but not always

Borel.
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Logic Action

Let L be a countable relational language, L = (Ri )i∈ω, for Ri

an ni - ary relation.

Let Mod(L) be the collection of countable L models.

Mod(L) inherits the Polish topology of Πi∈ω2ω
ni .

This is exactly the topology generated by

Aφ,ā = {M : M |= φ(ā)}.
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Logic Action

S∞ acts continuously on Mod(L) in the following way:

For a relation R:

Rg ·M(a1, ..., an) ⇐⇒ RM(g−1(a1), ..., g−1(an))

The induced orbit equivalence relation is 'L.
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Scott Analysis

Definition

Let M,N ∈ Mod(L), ā, b̄ ∈ ω<ω of the same length.

(M, ā) ≡0 (N , b̄) if for every φ(x̄) atomic,
M |= φ(ā) ⇐⇒ N |= φ(b̄).

(M, ā) ≡α+1 (N , b̄) if for every c ∈ ω there is d ∈ ω s.t.
(M, ā_c) ≡α (N , b̄_d) and for every d ∈ ω there is c ∈ ω
s.t. (N , b̄_d) ≡α (M, ā_c).

For λ limit, (M, ā) ≡λ (N , b̄) if for every α < λ,
(M, ā) ≡α (N , b̄).
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Scott Analysis

Definition

M≡α N if (M, ∅) ≡α (N , ∅).

Given M∈ Mod(L), there is α < ω1 such that if
(M, ā) ≡α (M, b̄) then (M, ā) ≡α+1 (M, b̄).

Definition

For M∈ Mod(L), δ(M), the Scott rank of M, is the least such
α.
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Definition

For M∈ Mod(L), δ(M), the Scott rank of M, is the least such
α.

Ohad Drucker ( Hebrew U. ) Hjorth Analysis of General Polish Group Actions



Scott Analysis

The basic properties of Scott Analysis are the following:

1 ≡α is a decreasing sequence of Borel and S∞ invariant
equivalence relations.

2 'L =
⋂
α<ω1

≡α .
3 The function δ : X → (ω1, <) is invariant under the action of

G and Borel, which is:

{M : δ(M) ≤ α}.

is Borel.
4 Given M∈ Mod(L), for every N ∈ Mod(L):

N ≡δ(M)+ωM =⇒M' N .
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Scott Analysis

Theorem ( Becker - Kechris )

'L is Borel if and only if there is an α < ω1 such that for every
M∈ Mod(L), δ(M) < α
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Questions

Problem

Generalize Scott analysis, or, find a topological version of Scott
analysis.

Is there a Scott analysis of Polish actions, which is, for every
(G ,X ) a Polish action:

1 A decreasing sequence ≡α of Borel equivalence relations
which are invariant under G .

2 EX
G =

⋂
α<ω1

≡α .
3 A function δ : X → (ω1, <) which is Borel and G - invariant.

4 There is an α < ω1 such that for every x ∈ X and for every
y ∈ X :

x ≡δ(x)+α y =⇒ x EX
G y .
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Questions

Better yet, can we find a Scott analysis of Polish actions such
that:

Theorem

EX
G is Borel if and only if there is an α such that for every x ∈ X,
δ(x) ≤ α.

Question ( Hjorth )

Let α be a countable ordinal. Is the following set Borel:

Aα = {x : [x ] is Π0
β for β < α + ω}
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Hjorth Analysis

Let (G ,X ) be a general Polish action. Fix P the poset of
nonempty open subsets of G .

g∗ denotes the generic element added by P.
For α < ω1, we define a relation ≤α between pairs of an
element of x and an open subset of G :

Definition

(x ,U) ≤α (y ,W ) if and only if for every A a Π0
α set, if

W 
 g∗y ∈ A then U 
 g∗x ∈ A.

Proposition

1 (x ,U) ≤1 (y ,W ) if and only if U · x ⊆W · y .

2 ≤α is reflexive and transitive. The sequence 〈≤α : α < ω1〉 is
decreasing.

3 ≤α is Borel.
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Hjorth Analysis

Definition

Let x0, x1 in X , α < ω1. x0 ≡α x1 iff for all V1 ⊆ G nonempty and
open there is V0 ⊆ G nonempty and open such that

(x0,V0) ≤α (x1,V1),

and vice versa:

For V0 there is V1 such that

(x1,V1) ≤α (x0,V0).

Proposition

≡α is a Borel and G - invariant equivalence relation.
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Hjorth Analysis

Proposition

Suppose A ⊆ X is an invariant Π0
α set, and x ≡α y . Then

x ∈ A ⇐⇒ y ∈ A.

Proof.

Assume x ∈ A for A a Π0
α invariant set.

As A is invariant, G 
 g∗ · x ∈ A.

Since x ≡α y , there is a non empty and open W such that
(y ,W ) ≤α (x ,G ).

By the definition and the above, W 
 g∗ · y ∈ A. In particular,
there is a g such that g · y ∈ A.

By the invariance of A, y must be in A.
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So far...

1 A decreasing sequence ≡α of Borel equivalence relations
which are invariant under G .

2 EX
G =

⋂
α<ω1

≡α .
3 A function δ : X → (ω1, <) which is Borel and G - invariant.

4 There is an α < ω1 such that for every x ∈ X and for every
y ∈ X :

x ≡δ(x)+α y =⇒ x EX
G y .

Ohad Drucker ( Hebrew U. ) Hjorth Analysis of General Polish Group Actions



Hjorth Rank

Definition

For x ∈ X , let δ(x) be the least α such that for every U,V ⊆ G
open and nonempty, and every α < ω1:

(x ,U) ≤α (x ,V )⇒ (x ,U) ≤α+1 (x ,V ).

Proposition

Hjorth rank is G invariant and Borel. In fact:
For every countable ordinal α:

{x : δ(x) ≤ α}

is Π0
α+k(α), for k(α) ∈ ω.
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Scott’s Isomorphism Theorem

Proposition

If δ(x0), δ(x1) ≤ δ and x0 ≡δ+1 x1 , then x0 and x1 are orbit
equivalent.

Theorem

For every x ∈ X there is a natural number m such that
[x ] = {y : y ≡δ(x)+m x}.

Proof.

The set {z : δ(z) ≤ δ(x)} is Π0
δ(x)+m for some m ∈ ω.

So if y ≡δ(x)+m x then δ(y) ≤ δ(x).

Hence if x and y are δ(x) + m + 1 equivalent, they are orbit
equivalent.
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1st mission accomplished

1 A decreasing sequence ≡α of Borel equivalence relations
which are invariant under G .

2 EX
G =

⋂
α<ω1

≡α .
3 A function δ : X → (ω1, <) which is Borel and G - invariant.

4 There is an α < ω1 such that for every x ∈ X and for every
y ∈ X :

x ≡δ(x)+α y =⇒ x EX
G y .

In our case, α = ω.
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What about the boundedness principle ?

Theorem

EX
G is Borel if and only if there is an α such that for every x ∈ X,
δ(x) ≤ α.
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Complexity of B · x

Let B ⊆ G be a Borel set, x ∈ X . What is the complexity of
B · x ?

B · x is analytic.

G · x is Borel.

F · x is not necessarily Borel for F closed.

Proposition

B · x is Borel if and only if B · Gx is Borel. In particular, U · x is
Borel, for U open.
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Complexity of B · x

Proposition

If G · x is Π0
α+1 for α ≥ 1 then for every open U, U · x is Π0

α+1.

Sketch of proof

α = 1: G · x is Gδ.

By a theorem of Effros, the canonical bijection G/Gx → G · x is a
homeomorphism.

Then U · x is open in G · x , hence Gδ in X .
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Complexity of B · x

Sketch of proof ( ctd. )

For arbitrary α, G · x =
⋂

n∈ω Bn. for 〈Bn : n ∈ ω〉 Σ0
α sets.

We then apply a Theorem of Hjorth to refine the topology of X to
a topology in which G · x is Gδ.

Using the case α = 1, U · x is Gδ in the new topology , and hence
U · x was Π0

α+1 in the original topology.
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The Boundedness Theorem

Theorem

Let (G ,X ) be a Polish action. Then EX
G is Borel if and only if

there is an α such that for every x, δ(x) ≤ α.

Proof.

If for every x , δ(x) ≤ α, then ≡α+ω= EX
G .

If EX
G is Borel, there is an α < ω1 such that all orbits are Π0

α+1.

For all U ⊆ G open, U · x is Π0
α+1.

It turns out that in this case, δ(x) ≤ α + 1.
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The Decomposition Theorem

Theorem ( Decomposition of Polish actions )

Let X be a Polish G - Space. There is a sequence {Aζ}ζ<ω1of
pairwise disjoint Borel subsets of X such that:

1 Aζ is invariant, and
⋃
ζ<ω1

Aζ = X .

2 EX
G � Aζ is Borel.

3 ( Boundedness ) If A ⊆ X is Borel invariant and EX
G � A is

Borel, then A ⊆
⋃
ζ<α Aζ for some α < ω1.

Proof.

Aζ = {x : δ(x) = ζ}
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Hjorth’s question

Theorem

For α countable, the set

Aα = {x : [x ] is Π0
β for β < α + ω}

is Borel.

Proof.

This set is in fact {x : δ(x) < α + ω}.

Corollary

For every countable α, there are either countably many or perfectly
many orbits that are Π0

β, for β < α + ω.
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