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In this talk we shall give some basic notions about minimally
generated boolean algebras and some spaces related to this
algebras.



This talk is motivated from the construction of a Efimov space
from b = c given by Dow and Shelah.



Definitions

Our algebras always will be subalgebras of P(ω).

Definition
We say that B is a minimal extension of A (A <m B), if there is no
a proper subalgebra between them.

Definition
A boolean algebra B will be minimally generated if there is a
sequence {aα : α < κ} such that Bβ <m Bβ+1, where
Bβ = 〈{aα : α < β}〉.
And it will be coherently minimally generated if for β < α
aα \ aβ ∈ Bα.
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Going back to the construction due to Dow and Shelah, they
constructed a space that is the Stone space of a boolean algebra
what is:

I its definition is given by a game (actually, a strategy for the
Scarborough-Stone game);

I mininmally generated;

I each play of the game gives you a coherently minimally
generated.
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A topological space is sequentially compact if every infinite subset
has a convergent subsequence.

Proposition

If B is a coherently minimally generated boolean algebra, then its
Stone space, St(B), is sequentially compact.

Corollary

If B is a coherently minimally generated boolean algebra then
St(B) \ {p} is sequentially compact if and only if there is no
sequence from St(B) converging to p.
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The Scarborough-Stone Game

In this game the players are going to construct a coherently
minimally generated subalgebra of P(ω) via a sequence of the
generators.

For the first ω steps just take an = ω \ n, and then the interesting
part happens...
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For α ≥ ω:

I Player I plays a partition {bα, ω \ bα};

I Player II chooses an element of such partition, let say aα.

Player I wins at stage λ if the space St(Bλ) \ {pλ} is sequentially
compact, (where pλ is the filter generated by the sequence of
generators).

At stage λ if Player I has not already won, then Player II chooses a
sequence of points from St(Bλ) that converges to pλ, and Player II
wins at stage λ+ 1 if such sequence still converges to pλ+1.
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Remark
If Player I has a winning strategy, then it gives you an Efimov
space and if Player II does not have a winning strategy then it
gives you a Scarborough-Stone example.

A winning strategy for Player I in this game is what is expected to
be.

I like more the topological version of that, it reduces to achieve
weak-D property in each step.
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Why is that?

I The closed discrete sets in St(B) \ {p} are exactly the
converging sequences to p.

I To kill the sequence we have to blow up it to locally finite
family of clopen sets.

I Here is where it is crucial the weak-D property because it is
easy to see that the extension of the algebra is minimal if and
only if the corresponding space has the weak-D property.
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We are interested in that kind of spaces. One of the most clear
spaces that we can get in that way is taking a tower {Fα : α < t}
and set aω+α to be Fα.

It is easy to see that it gives you a coherently minimally generated
boolean algebra and its stone space without a point is sequentially
compact.

In fact, Nyikos and Vaughan proved that those are exactly the
Franklin-Rajagopalan spaces.
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Let F be an ultrafilter, we want to find {aα : α < κ} ⊂ F such
that its related space have nice properties, sequentially
compactness is de golden property.

An easy case happens if the ultrafilter contains a tower, as seen
before.

If each aα were a pseudointersection of the family of the generators
that appear before it, then it fails in the D-property when the
previous case does not happen.
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Then we can kill every sequence of natural numbers but it is not
enough, it could be enough if we ensure to carry the D property
along the construction.

For that is enough to preserve D property while killing
pseudointersections.
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right?

Not at all.
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Thank you!



THE END


	Motivation

