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Notion

Definition

A function f : X → Y between topological spaces is called
compact-preserving, provided the set f (K ) ⊆ Y is compact for any
compact set K ⊆ X

Example

any continuous function;

any function with finite range.
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Background

Well known

A function f : R→ R is continuous iff f is compact preserving and
has the Darboux property (i.e. maps connected sets to connected
sets).
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Fréchet spaces

We recall that a topological space X is

Fréchet if for each A ⊂ X and a ∈ Ā there is {an}n∈ω ⊂ A
that converges to a;

strong Fréchet if for any decreasing sequence {An}n∈ω ⊆ X
and any a ∈

⋂
n∈ω Ān there is a sequence an ∈ An, n ∈ ω, that

converges to a.
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Let f : X → Y and x ∈ X .

Definition

f [x ] = {y ∈ Y : x ∈ clX (f −1(y))}

=
⋂
{f (Ox) : Ox is a neighborhood of x in X},

f [x ] can be interpreted as the oscillation of f at x .
If f is continuous at x and Y is a T1-space, then the set
f [x ] = {f (x)}.
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X− Fréchet space and Y− Hausdorff space.

Theorem 1

Let f : X → Y be compact-preserving. Then

∀x∈X∀Of (x)
∃Ox f (Ox) ⊂ f [x ] ∪ Of (x)

If X is strong Fréchet, then f [x ] \ Of (x) is finite.
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Sketch of the proof

Step 1 Suppose on the contrary that there is x0 without this property;

Step 2 Denote A = f −1(Y \ (f [x0] ∪Of (x0))) and notice than x0 ∈ Ā;

Step 3 Take a sequence {xn} ⊆ A s.t. xn → x0;

Step 4 Observe that {f (xn)} is one-to-one from some place;

Step 5 Notice that a set K = {f (x0)} ∪ {f (xn)}n∈ω is compact and
infinite;

Step 6 Throw out a non-isolated point y0 from K, K \ {y0} is not
compact;

Step 7 Observe that y0 6= f (x0);

Step 8 But K \ {y0} = f (S) where S = {x0} ∪ {xn}n∈ω \ f −1(y0) is
compact.
Contradiction!
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X− Fréchet (strong Fréchet) space and Y− Hausdorff space.

Corollary

Function f : X → Y is compact-preserving if (and only if)

∀x∈X∃Kx⊆Y ∀Of (x)
∃Ox f (Ox) ⊂ Kx ∪ Of (x)

and Kx \ Of (x) is finite.
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Well known

A function f : R→ R is continuous if and only if f is compact
preserving and has the Darboux property (i.e. maps connected sets
to connected sets).

X− locally connected strong Fréchet space and Y− Hausdorff
space.

Generalization

A function f : X → Y is continuous if and only if f is
compact-preserving and has the Darboux property.
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Notion

Let f : X → Y . A sequence {xn}n∈ω ⊆ X is called

injective if xn 6= xm for n 6= m;

f -injective if f (xn) 6= f (xm) for n 6= m.

Observation

For any compact-preserving function f : X → Y from a topological
space X to a Hausdorff space Y and each f -injective sequence
{xn}n∈ω ⊂ X that converges to a point x ∈ X the sequence
{f (xn)}n∈ω converges to the point f (x).
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We say that f : X → Y is

locally finite at a point x ∈ X if for some neighborhood
Ox ⊂ X of x , the image f (Ox) is finite;

locally infinite at x ∈ X if f is not locally finite at x ;

Corollary

X− sequentially Hausdorff Fréchet space, Y− Hausdorff space If f
is compact-preserving and locally infinite at each point x ∈ X then
f : X → Y is continuous.
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1 Let L be a vector space and a set A ⊆ L. We say that A is
κ-lineable if A ∪ {0} contains a κ-dimensional vector space;

2 Let L be a Banach space and a set A ⊆ L. We say that A is
spaceable if A ∪ {0} contains an infinite dimensional closed
vector space;

3 Let L be a linear commutative algebra and a set A ⊆ L. We
say that A is κ-algebrable if A ∪ {0} contains a κ-generated
algebra B (i.e. the minimal system of generators of B has
cardinality κ).
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Let L be a linear commutative algebra and a set A ⊆ L. We say
that A is strongly κ-algebrable if A ∪ {0} contains a κ-generated
algebra B that is isomorphic with a free algebra.
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EDF(R) is the set of all nowhere continuous real functions with
|f (R)| < ω.
EDC(R) is the set of all nowhere continuous compact-to-compact
functions.

Theorem

The set EDF(R) is 2c-algebrable but it is not strongly 1-algebrable.

Corollary

The set EDC(R) is 2c-algebrable.
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Question 2, Hejnice 2012

Is there a function f ∈ EDC(R) that has infinitely many values on
each interval?

Corollary

X− sequentially Hausdorff Fréchet space, Y− Hausdorff space If f
is compact-preserving and locally infinite at each point x ∈ X then
f : X → Y is continuous.

Answer

No.
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Thank you for your attention :)
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