Simplest Possible Wellorders of $H(\kappa^+)$

Peter Holy

University of Bristol

presenting joint work with Philipp Lücke

January 26, 2014
Question

How simple a wellordering of $H(\kappa^+)$ can one have definably (by a first order formula in the language of set theory) over $H(\kappa^+)$?
Basic Motivation

Question

How simple a wellordering of $H(\kappa^+)$ can one have definably (by a first order formula in the language of set theory) over $H(\kappa^+)$?

We want to measure complexity in terms of the standard Lévy hierarchy and in terms of the necessary parameters. Note that definable wellorders of $H(\omega_1)$ are closely connected to definable wellorders of the reals (or the Baire space ω_ω) and similarly, definable wellorders of $H(\kappa^+)$ are connected to definable wellorders of the generalized Baire space κ_κ.

Theorem (Gödel, 1920ies)

In \mathbf{L}, there is a (lightface) Σ_1-definable wellorder of $H(\kappa^+)$ for every infinite cardinal κ.
Basic Motivation

Question

How simple a wellordering of $H(\kappa^+)$ can one have definably (by a first order formula in the language of set theory) over $H(\kappa^+)$?

We want to measure complexity in terms of the standard Lévy hierarchy and in terms of the necessary parameters. Note that definable wellorders of $H(\omega_1)$ are closely connected to definable wellorders of the reals (or the Baire space ω_ω) and similarly, definable wellorders of $H(\kappa^+)$ are connected to definable wellorders of the generalized Baire space κ_κ.

Theorem (Gödel, 1920ies)

In L, there is a (lightface) Σ_1-definable wellorder of $H(\kappa^+)$ for every infinite cardinal κ.

Remark: Note that every Σ_n-definable wellordering $<$ is automatically Δ_n-definable, because $x < y$ holds iff $x \neq y$ and $y \not< x$.

Peter Holy (Bristol)
Simplest Possible Wellorders
January 26, 2014
Theorem (Gödel, 1920ies)

In L, there is a (lightface) Σ_1-definable wellorder of $H(\kappa^+)$ for every infinite cardinal κ.

Observation (folklore?)

It is inconsistent with ZFC to have a ZF−-provably Δ_1-definable wellorder of $H(\kappa^+)$ whenever κ is an infinite cardinal.

Theorem (Mansfield, 1970)

The existence of a Σ_1-definable wellorder of $H(\omega_1)$ is equivalent to the statement that there is a real x such that all reals are contained in $L[x]$.

Corollary

If there is a Σ_1-definable wellordering of $H(\omega_1)$, then CH holds.
Theorem (Gödel, 1920ies)

In \mathbf{L}, there is a (lightface) Σ_1-definable wellorder of $H(\kappa^+)$ for every infinite cardinal κ.

Observation (folklore?)

It is inconsistent with ZFC to have a ZF$^-$-provably Δ_1-definable wellorder of $H(\kappa^+)$ whenever κ is an infinite cardinal.
Theorem (Gödel, 1920ies)

In \mathbf{L}, there is a (lightface) Σ_1-definable wellorder of $H(\kappa^+)$ for every infinite cardinal κ.

Observation (folklore?)

It is inconsistent with ZFC to have a ZF^--provably Δ_1-definable wellorder of $H(\kappa^+)$ whenever κ is an infinite cardinal.

Theorem (Mansfield, 1970)

The existence of a Σ_1-definable wellorder of $H(\omega_1)$ is equivalent to the statement that there is a real x such that all reals are contained in $\mathbf{L}[x]$.
Theorem (Gödel, 1920ies)

In \(L \), there is a (lightface) \(\Sigma_1 \)-definable wellorder of \(H(\kappa^+) \) for every infinite cardinal \(\kappa \).

Observation (folklore?)

It is inconsistent with ZFC to have a ZF\(^{-}\)-provably \(\Delta_1 \)-definable wellorder of \(H(\kappa^+) \) whenever \(\kappa \) is an infinite cardinal.

Theorem (Mansfield, 1970)

The existence of a \(\Sigma_1 \)-definable wellorder of \(H(\omega_1) \) is equivalent to the statement that there is a real \(x \) such that all reals are contained in \(L[x] \).

Corollary

If there is a \(\Sigma_1 \)-definable wellordering of \(H(\omega_1) \), then CH holds.
Theorem (Friedman - Holy, 2011)

If κ is an uncountable cardinal with $\kappa = \kappa^{<\kappa}$ and $2^\kappa = \kappa^+$, then there is a cofinality-preserving forcing that introduces a Σ_1-definable wellordering of $H(\kappa^+)$ and preserves $2^\kappa = \kappa^+$.
The GCH setting

Theorem (Friedman - Holy, 2011)

If \(\kappa \) is an uncountable cardinal with \(\kappa = \kappa^{<\kappa} \) and \(2^\kappa = \kappa^+ \), then there is a cofinality-preserving forcing that introduces a \(\Sigma_1 \)-definable wellordering of \(H(\kappa^+) \) and preserves \(2^\kappa = \kappa^+ \).

Theorem (Asperó - Friedman, 2009)

If \(\kappa \) is an uncountable cardinal with \(\kappa = \kappa^{<\kappa} \) and \(2^\kappa = \kappa^+ \), then there is a cofinality-preserving forcing that introduces a lightface definable wellordering (of high complexity) of \(H(\kappa^+) \) and preserves \(2^\kappa = \kappa^+ \).
The GCH setting

Theorem (Friedman - Holy, 2011)

If κ is an uncountable cardinal with $\kappa = \kappa^{<\kappa}$ and $2^{\kappa} = \kappa^+$, then there is a cofinality-preserving forcing that introduces a Σ_1-definable wellordering of $H(\kappa^+)$ and preserves $2^{\kappa} = \kappa^+$.

Theorem (Asperó - Friedman, 2009)

If κ is an uncountable cardinal with $\kappa = \kappa^{<\kappa}$ and $2^{\kappa} = \kappa^+$, then there is a cofinality-preserving forcing that introduces a lightface definable wellordering (of high complexity) of $H(\kappa^+)$ and preserves $2^{\kappa} = \kappa^+$.

What if $2^{\kappa} > \kappa^+$?
The GCH setting

Theorem (Friedman - Holy, 2011)

If κ is an uncountable cardinal with $\kappa = \kappa^{<\kappa}$ and $2^{\kappa} = \kappa^+$, then there is a cofinality-preserving forcing that introduces a Σ_1-definable wellordering of $H(\kappa^+)$ and preserves $2^{\kappa} = \kappa^+$.

Theorem (Asperó - Friedman, 2009)

If κ is an uncountable cardinal with $\kappa = \kappa^{<\kappa}$ and $2^{\kappa} = \kappa^+$, then there is a cofinality-preserving forcing that introduces a lightface definable wellordering (of high complexity) of $H(\kappa^+)$ and preserves $2^{\kappa} = \kappa^+$.

What if $2^{\kappa} > \kappa^+$?

Theorem (Asperó - Holy - Lücke, 2013)

The assumption $2^{\kappa} = \kappa^+$ can be dropped in the second theorem above, replacing preservation of $2^{\kappa} = \kappa^+$ by preservation of the value of 2^{κ}.
Theorem (Friedman - Holy, 2011)

If κ is an uncountable cardinal with $\kappa = \kappa^{<\kappa}$ and $2^\kappa = \kappa^+$, then there is a cofinality-preserving forcing that introduces a Σ_1-definable wellordering of $H(\kappa^+)$ and preserves $2^\kappa = \kappa^+$.
Theorem (Friedman - Holy, 2011)

If κ is an uncountable cardinal with $\kappa = \kappa^{<\kappa}$ and $2^\kappa = \kappa^+$, then there is a cofinality-preserving forcing that introduces a Σ_1-definable wellordering of $H(\kappa^+)$ and preserves $2^\kappa = \kappa^+$.

Reminder (Mansfield)

If there is a Σ_1-definable wellordering of $H(\omega_1)$, then CH holds.
Theorem (Friedman - Holy, 2011)

If κ is an uncountable cardinal with $\kappa = \kappa^{<\kappa}$ and $2^\kappa = \kappa^+$, then there is a cofinality-preserving forcing that introduces a Σ_1-definable wellordering of $H(\kappa^+)$ and preserves $2^\kappa = \kappa^+$.

Reminder (Mansfield)

If there is a Σ_1-definable wellordering of $H(\omega_1)$, then CH holds.

What about Σ_1-definable wellorderings of $H(\kappa^+)$ for uncountable κ?

Question

If κ is an uncountable cardinal with $\kappa^{<\kappa} = \kappa$, does the existence of a Σ_1-definable wellordering of $H(\kappa^+)$ imply that $2^\kappa = \kappa^+$?
Almost Disjoint Coding

We will answer the above question negatively. To motivate our approach, we want to show how one can (quite easily) introduce Σ_2-definable wellorderings of $H(\kappa^+)$ when κ is uncountable and $\kappa^\kappa = \kappa$.

Given some suitable enumeration $\langle s_\alpha \mid \alpha < \kappa \rangle$ of κ^κ, forcing with Solovay’s almost disjoint coding forcing makes a given set $A \subseteq \kappa^\kappa$ Σ^0_2-definable over κ^κ - it adds a function $t: \kappa \to 2$ such that in the generic extension, for every $x \in \kappa^\kappa$,

\[x \in A \iff \exists \beta < \kappa \ t(\alpha) = 1 \text{ for all } \beta < \alpha < \kappa \text{ with } s_\alpha \subseteq x. \]
Almost Disjoint Coding

We will answer the above question negatively. To motivate our approach, we want to show how one can (quite easily) introduce Σ_2-definable wellorderings of $H(\kappa^+)\text{ when }\kappa\text{ is uncountable and }\kappa^{<\kappa} = \kappa$.

Given some suitable enumeration $\langle s_\alpha \mid \alpha < \kappa \rangle$ of κ^κ, forcing with Solovay’s almost disjoint coding forcing makes a given set $A \subseteq \kappa^\kappa \Sigma_2^0$-definable over κ^κ - it adds a function $t : \kappa \rightarrow 2$ such that in the generic extension, for every $x \in \kappa^\kappa$,

$$x \in A \iff \exists \beta < \kappa \ t(\alpha) = 1 \text{ for all } \beta < \alpha < \kappa \text{ with } s_\alpha \subseteq x.$$

So we could pick any wellordering $<$ of $H(\kappa^+)$, code it by $A \subseteq \kappa^\kappa$ and make it Δ_1-definable over $H(\kappa^+)$ of a P-generic extension. But forcing with P adds new subsets of κ, so $<$ is not a wellordering of $H(\kappa^+)$ anymore.
Observation

If κ is an uncountable cardinal with $\kappa^{<\kappa} = \kappa$, then there is a $<\kappa$-closed, κ^+-cc partial order $P \subseteq H(\kappa^+)$ that introduces a Σ_2-definable wellordering of $H(\kappa^+)$.

Proof-Sketch: Pick any wellordering \prec of $H(\kappa^+)$ and code it by $A \subseteq \kappa$. Apply the almost disjoint coding forcing (denote it by P) to make A (and thus \prec) Δ_1-definable over $H(\kappa^+)$. P is κ^+-cc and $P \subseteq H(\kappa^+)$. This implies that every element x of $H(\kappa^+)$ of the P-generic extension has a name \dot{x} in the $H(\kappa^+)$ of the ground model. This allows us to define $x \prec \ast y \iff \exists \dot{x} \forall \dot{y} [\dot{x}_G = x \land \dot{y}_G = y \rightarrow \dot{x} \prec \dot{y}]$, where G is the P-generic filter. Using Σ_1-definability of P and G over the new $H(\kappa^+)$, \prec is a Σ_2-definable wellordering of the new $H(\kappa^+)$. □
Observation

If \(\kappa \) is an uncountable cardinal with \(\kappa^{<\kappa} = \kappa \), then there is a \(<\kappa \)-closed, \(\kappa^+ \)-cc partial order \(P \subseteq H(\kappa^+) \) that introduces a \(\Sigma_2 \)-definable wellordering of \(H(\kappa^+) \).

Proof-Sketch: Pick any wellordering \(< \) of \(H(\kappa^+) \) and code it by \(A \subseteq \kappa^\kappa \). Apply the almost disjoint coding forcing (denote it by \(P \)) to make \(A \) (and thus \(< \)) \(\Delta_1 \)-definable over \(H(\kappa^+) \). \(P \) is \(\kappa^+ \)-cc and \(P \subseteq H(\kappa^+) \).
Observation

If κ is an uncountable cardinal with $\kappa^{<\kappa} = \kappa$, then there is a $<\kappa$-closed, κ^+-cc partial order $P \subseteq H(\kappa^+)$ that introduces a Σ_2-definable wellordering of $H(\kappa^+)$.

Proof-Sketch: Pick any wellordering $<$ of $H(\kappa^+)$ and code it by $A \subseteq {}^\kappa \kappa$. Apply the almost disjoint coding forcing (denote it by P) to make A (and thus $<$) Δ_1-definable over $H(\kappa^+)$. P is κ^+-cc and $P \subseteq H(\kappa^+)$. This implies that every element x of $H(\kappa^+)$ of the P-generic extension has a name \dot{x} in the $H(\kappa^+)$ of the ground model.
Observation

If \(\kappa \) is an uncountable cardinal with \(\kappa^{<\kappa} = \kappa \), then there is a \(<\kappa \)-closed, \(\kappa^+ \)-cc partial order \(P \subseteq H(\kappa^+) \) that introduces a \(\Sigma_2 \)-definable wellordering of \(H(\kappa^+) \).

Proof-Sketch: Pick any wellordering \(< \) of \(H(\kappa^+) \) and code it by \(A \subseteq \kappa^\kappa \). Apply the almost disjoint coding forcing (denote it by \(P \)) to make \(A \) (and thus \(< \)) \(\Delta_1 \)-definable over \(H(\kappa^+) \). \(P \) is \(\kappa^+ \)-cc and \(P \subseteq H(\kappa^+) \). This implies that every element \(x \) of \(H(\kappa^+) \) of the \(P \)-generic extension has a name \(\dot{x} \) in the \(H(\kappa^+) \) of the ground model. This allows us to define

\[
x <^* y \iff \exists \dot{x} \forall \dot{y} \left((\dot{x}^G = x \land \dot{y}^G = y) \rightarrow \dot{x} < \dot{y} \right),
\]

where \(G \) is the \(P \)-generic filter.
Observation

If κ is an uncountable cardinal with $\kappa^{<\kappa} = \kappa$, then there is a $<\kappa$-closed, κ^+-cc partial order $P \subseteq H(\kappa^+)$ that introduces a Σ_2-definable wellordering of $H(\kappa^+)$.

Proof-Sketch: Pick any wellordering $<$ of $H(\kappa^+)$ and code it by $A \subseteq ^\kappa \kappa$. Apply the almost disjoint coding forcing (denote it by P) to make A (and thus $<$) Δ_1-definable over $H(\kappa^+)$. P is κ^+-cc and $P \subseteq H(\kappa^+)$. This implies that every element x of $H(\kappa^+)$ of the P-generic extension has a name \dot{x} in the $H(\kappa^+)$ of the ground model. This allows us to define

$$x <^* y \iff \exists \dot{x} \forall \dot{y} \left[(\dot{x}^G = x \land \dot{y}^G = y) \rightarrow \dot{x} < \dot{y} \right],$$

where G is the P-generic filter. Using Σ_1-definability of P and G over the new $H(\kappa^+)$, $<^*$ is a Σ_2-definable wellordering of the new $H(\kappa^+)$.

\square
If $2^\kappa = \kappa^+$, it is possible to pull a small trick and spare one quantifier in the above (by coding all initial segments of $<$, which in that case have size at most κ and are thus elements of $H(\kappa^+)$). Otherwise however, the above suggests that one cannot hope for a wellordering of the $H(\kappa^+)$ of the ground model to *induce* a Σ_1-definable wellordering of the $H(\kappa^+)$ of some generic extension, at least not *directly* via names.
By different means, we obtained the following.

Theorem (Holy - Lücke, 2014)

If κ is an uncountable cardinal with $\kappa^{\lessdot \kappa} = \kappa$ and 2^κ regular then there is a partial order P which is $\lessdot \kappa$-closed and preserves cofinalities $\leq 2^\kappa$ and the value of 2^κ and introduces a Σ_1-definable wellordering of $H(\kappa^+)$. Moreover, P introduces a Δ_1 Bernstein subset of $\kappa \kappa$, i.e. a subset X of $\kappa \kappa$ such that neither X nor its complement contain a perfect subset of $\kappa \kappa$.

The basic idea of our solution is to build a forcing P that adds a wellordering of $H(\kappa^+)$ of the P-generic extension (using initial segments (represented in the ground model as sequences of P-names) as conditions) and simultaneously makes this wellordering definable.
By different means, we obtained the following.

Theorem (Holy - Lücke, 2014)

If \(\kappa \) is an uncountable cardinal with \(\kappa^\kappa = \kappa \) and \(2^\kappa \) regular then there is a partial order \(P \) which is \(\kappa \)-closed and preserves cofinalities \(\leq 2^\kappa \) and the value of \(2^\kappa \) and introduces a \(\Sigma_1 \)-definable wellordering of \(H(\kappa^+) \).

Moreover, \(P \) introduces a \(\Delta_1 \) Bernstein subset of \(\kappa^\kappa \), i.e. a subset \(X \) of \(\kappa^\kappa \) such that neither \(X \) nor its complement contain a perfect subset of \(\kappa^\kappa \).

The basic idea of our solution is to build a forcing \(P \) that adds a wellordering of \(H(\kappa^+) \) of the \(P \)-generic extension (using initial segments (represented in the ground model as sequences of \(P \)-names) as conditions) and simultaneously makes this wellordering definable.
Let $\lambda = 2^\kappa$. We inductively construct a sequence $\langle P_\gamma \mid \gamma \leq \lambda \rangle$ of partial orders with the property that P_δ is a complete subforcing of P_γ whenever $\delta \leq \gamma \leq \lambda$ (i.e. an iteration of length λ) and let $P = P_\lambda$.
Let $\lambda = 2^\kappa$. We inductively construct a sequence $\langle P_\gamma \mid \gamma \leq \lambda \rangle$ of partial orders with the property that P_δ is a complete subforcing of P_γ whenever $\delta \leq \gamma \leq \lambda$ (i.e. an iteration of length λ) and let $P = P_\lambda$. Assume we have constructed P_δ for every $\delta < \gamma$.
Let $\lambda = 2^\kappa$. We inductively construct a sequence $\langle P_\gamma \mid \gamma \leq \lambda \rangle$ of partial orders with the property that P_δ is a complete subforcing of P_γ whenever $\delta \leq \gamma \leq \lambda$ (i.e. an iteration of length λ) and let $P = P_\lambda$. Assume we have constructed P_δ for every $\delta < \gamma$.

A condition p in P_γ specifies a sequence \vec{A}_p of length at most γ where for every $\delta < \gamma$, $\vec{A}_p(\delta)$ is a nice P_δ-name for a subset of κ and whenever $\bar{\gamma} < \gamma$, $p \upharpoonright \bar{\gamma}$ forces that $\langle \vec{A}_p(\delta) \mid \delta \leq \bar{\gamma} \rangle$ is a sequence of codes for pairwise distinct elements of $H(\kappa^+)$.
Let $\lambda = 2^{\kappa}$. We inductively construct a sequence $\langle P_\gamma \mid \gamma \leq \lambda \rangle$ of partial orders with the property that P_δ is a complete subforcing of P_γ whenever $\delta \leq \gamma \leq \lambda$ (i.e. an iteration of length λ) and let $P = P_\lambda$. Assume we have constructed P_δ for every $\delta < \gamma$.

A condition p in P_γ specifies a sequence \vec{A}_p of length at most γ where for every $\delta < \gamma$, $\vec{A}_p(\delta)$ is a nice P_δ-name for a subset of κ and whenever $\bar{\gamma} < \gamma$, $p \upharpoonright \bar{\gamma}$ forces that $\langle \vec{A}_p(\delta) \mid \delta \leq \bar{\gamma} \rangle$ is a sequence of codes for pairwise distinct elements of $H(\kappa^+)$. p also specifies a_p, a subset of $\lambda \times \kappa$ of size less than κ and for p to be a condition in P_γ we in fact require that whenever $(\delta, \alpha) \in a_p$ then $p \upharpoonright \delta$ decides whether $\alpha \in A_p(\delta)$.

p also specifies coding components \vec{c}_p of size $< \kappa$ such that \vec{c}_p is a condition in $C(A_p)$ where A_p is \vec{A}_p "restricted" to a_p (which we require to be decided by p hence $A_p \in V$).
Let $\lambda = 2^\kappa$. We inductively construct a sequence $\langle P_\gamma \mid \gamma \leq \lambda \rangle$ of partial orders with the property that P_δ is a complete subforcing of P_γ whenever $\delta \leq \gamma \leq \lambda$ (i.e. an iteration of length λ) and let $P = P_\lambda$. Assume we have constructed P_δ for every $\delta < \gamma$.

A condition p in P_γ specifies a sequence \vec{A}_p of length at most γ where for every $\delta < \gamma$, $\vec{A}_p(\delta)$ is a nice P_δ-name for a subset of κ and whenever $\bar{\gamma} < \gamma$, $p \upharpoonright \bar{\gamma}$ forces that $\langle \vec{A}_p(\delta) \mid \delta \leq \bar{\gamma} \rangle$ is a sequence of codes for pairwise distinct elements of $H(\kappa^+)$. p also specifies a_p, a subset of $\lambda \times \kappa$ of size less than κ and for p to be a condition in P_γ we in fact require that whenever $(\delta, \alpha) \in a_p$ then $p \upharpoonright \delta$ decides whether $\alpha \in \vec{A}_p(\delta)$.

Moreover we will define a coding forcing $C(A)$ that is capable of coding a subset A of λ by a generically added subset of κ in a Σ_1-way over $H(\kappa^+)$ with the property that if $B \supseteq A$ then $C(A)$ is a complete subforcing of $C(B)$. The above p also specifies coding components \vec{c}_p of size $< \kappa$ such that \vec{c}_p is a condition in $C(A_p)$ where A_p is \vec{A}_p “restricted” to a_p (which we require to be decided by p hence $A_p \in V$).
Remember: $p \in P_\gamma$ for $\gamma \leq \lambda$ is of the form $p = (\vec{A}_p, a_p, \vec{c}_p)$. $q \in P_\gamma$ is stronger than p if \vec{A}_q end-extends \vec{A}_p, a_q is a superset of a_p and \vec{c}_q extends \vec{c}_p in the forcing $C(A_q)$.

Let G be P_λ-generic, let $\vec{A} = \bigcup_{p \in G} \vec{A}_p$. Density arguments show that \vec{A}^G is a λ-sequence of codes for elements of $H(\kappa^+)$ of $V[G]$ that gives rise to an injective enumeration of $H(\kappa^+)$ of $V[G]$, for it can be shown that every element of $H(\kappa^+)$ of $V[G]$ is added by P_γ for some $\gamma < \lambda$.
Remember: $p \in P_{\gamma}$ for $\gamma \leq \lambda$ is of the form $p = (\vec{A}_p, a_p, \vec{c}_p)$. $q \in P_{\gamma}$ is stronger than p if \vec{A}_q end-extends \vec{A}_p, a_q is a superset of a_p and \vec{c}_q extends \vec{c}_p in the forcing $C(A_q)$.

Let G be P_{λ}-generic, let $\vec{A} = \bigcup_{p \in G} \vec{A}_p$. Density arguments show that \vec{A}^G is a λ-sequence of codes for elements of $H(\kappa^+)$ of $V[G]$ that gives rise to an injective enumeration of $H(\kappa^+)$ of $V[G]$, for it can be shown that every element of $H(\kappa^+)$ of $V[G]$ is added by P_{γ} for some $\gamma < \lambda$. Moreover $\bigcup_{p \in G} a_p = \lambda \times \kappa$, i.e. there is a generic subset of κ that codes \vec{A}^G and we obtain that \vec{A}^G is Σ_1-definable over $H(\kappa^+)^V[G]$.
Remember: $p \in P_\gamma$ for $\gamma \leq \lambda$ is of the form $p = (\bar{A}_p, a_p, \bar{c}_p)$. $q \in P_\gamma$ is stronger than p if \bar{A}_q end-extends \bar{A}_p, a_q is a superset of a_p and \bar{c}_q extends \bar{c}_p in the forcing $C(A_q)$.

Let G be P_λ-generic, let $\bar{A} = \bigcup_{p \in G} \bar{A}_p$. Density arguments show that \bar{A}^G is a λ-sequence of codes for elements of $H(\kappa^+)$ of $V[G]$ that gives rise to an injective enumeration of $H(\kappa^+)$ of $V[G]$, for it can be shown that every element of $H(\kappa^+)$ of $V[G]$ is added by P_γ for some $\gamma < \lambda$. Moreover $\bigcup_{p \in G} a_p = \lambda \times \kappa$, i.e. there is a generic subset of κ that codes \bar{A}^G and we obtain that \bar{A}^G is Σ_1-definable over $H(\kappa^+)^{V[G]}$.

Since \bar{A}^G is an enumeration of $H(\kappa^+)^{V[G]}$ in order-type λ, we have produced a Σ_1-definable wellordering of $H(\kappa^+)^{V[G]}$. Of course the above doesn’t quite make sense, as we have not yet specified the coding forcing $C(A_q)$.

Peter Holy (Bristol)
Simplest Possible Wellorders
January 26, 2014 11 / 17
Remember: \(p \in P_\gamma \) for \(\gamma \leq \lambda \) is of the form \(p = (\vec{A}_p, a_p, \vec{c}_p) \). \(q \in P_\gamma \) is stronger than \(p \) if \(\vec{A}_q \) end-extends \(\vec{A}_p \), \(a_q \) is a superset of \(a_p \) and \(\vec{c}_q \) extends \(\vec{c}_p \) in the forcing \(C(A_q) \).

Let \(G \) be \(P_\lambda \)-generic, let \(\vec{A} = \bigcup_{p \in G} \vec{A}_p \). Density arguments show that \(\vec{A}^G \) is a \(\lambda \)-sequence of codes for elements of \(H(\kappa^+) \) of \(V[G] \) that gives rise to an injective enumeration of \(H(\kappa^+) \) of \(V[G] \), for it can be shown that every element of \(H(\kappa^+) \) of \(V[G] \) is added by \(P_\gamma \) for some \(\gamma < \lambda \). Moreover \(\bigcup_{p \in G} a_p = \lambda \times \kappa \), i.e. there is a generic subset of \(\kappa \) that codes \(\vec{A}^G \) and we obtain that \(\vec{A}^G \) is \(\Sigma_1 \)-definable over \(H(\kappa^+)^{V[G]} \).

Since \(\vec{A}^G \) is an enumeration of \(H(\kappa^+)^{V[G]} \) in order-type \(\lambda \), we have produced a \(\Sigma_1 \)-definable wellordering of \(H(\kappa^+)^{V[G]} \).

Of course the above doesn’t quite make sense, as we have not yet specified the coding forcing \(C(A) \).
Club Coding

joint work with David Asperó and Philipp Lücke
The Coding Forcing

We need a forcing that codes a given \(A \subseteq \lambda = 2^{\kappa} \) by a generically added subset of \(\kappa \). This could be achieved using the Almost Disjoint Coding forcing. However to obtain the desired property that \(P_{\gamma_0} \) is a complete subforcing of \(P_{\gamma_1} \) whenever \(\gamma_0 < \gamma_1 \), we need our coding forcing \(C \) to have the following property:

\[(*) \text{ If } A \subseteq B \subseteq \lambda, \text{ } C(A) \text{ is a complete subforcing of } C(B). \]
We need a forcing that codes a given $A \subseteq \lambda = 2^\kappa$ by a generically added subset of κ. This could be achieved using the Almost Disjoint Coding forcing. However to obtain the desired property that P_{γ_0} is a complete subforcing of P_{γ_1} whenever $\gamma_0 < \gamma_1$, we need our coding forcing C to have the following property:

\begin{equation}
(*) \text{ If } A \subseteq B \subseteq \lambda, \ C(A) \text{ is a complete subforcing of } C(B). \end{equation}

This requirement is not satisfied by the Almost Disjoint Coding forcing.
We need a forcing that codes a given $A \subseteq \lambda = 2^\kappa$ by a generically added subset of κ. This could be achieved using the Almost Disjoint Coding forcing. However to obtain the desired property that P_{γ_0} is a complete subforcing of P_{γ_1} whenever $\gamma_0 < \gamma_1$, we need our coding forcing C to have the following property:

\[(*)\text{ If } A \subseteq B \subseteq \lambda, \text{ then } C(A) \text{ is a complete subforcing of } C(B).\]

This requirement is not satisfied by the Almost Disjoint Coding forcing. We thus choose $C(A)$ to be a variation of the Almost Disjoint Coding forcing for A (that could in fact rather be seen as a variation of the Canonical Function Coding by Asperó and Friedman), that combines the classic forcing with iterated club shooting and has the desired property that $A \subseteq B$ implies that $C(A)$ is a complete subforcing of $C(B)$.
Definition (Asperó-Holy-Lücke, 2013)

Given $A \subseteq \kappa$, we let $C(A)$ be the partial order whose conditions are tuples

$$p = (s_p, t_p, \langle c^p_x | x \in a_p \rangle)$$

such that the following hold for some successor ordinal $\gamma_p < \kappa$.

1. $s_p : \gamma_p \to ^{<\kappa}\kappa$, $t_p : \gamma_p \to 2$ and $a_p \in [A]^{<\kappa}$.
2. If $x \in a_p$, then c^p_x is a closed subset of γ_p and

$$s_p(\alpha) \subseteq x \to t_p(\alpha) = 1$$

for all $\alpha \in c^p_x$.

We let $q \leq p$ if $s_p = s_q \upharpoonright \gamma_p$, $t_p = t_q \upharpoonright \gamma_p$, $a_p \subseteq a_q$ and $c^p_x = c^q_x \cap \gamma_p$ for every $x \in a_p$.

Lemma (Asperó-Holy-Lücke, 2013)

Assume G is $C(A)$-generic, $s = \bigcup_{p \in G} s_p$ and $t = \bigcup_{p \in G} t_p$. Then $s : \kappa \to ^\kappa \kappa$, $t : \kappa \to 2$ and A is equal to the set of all $x \in (\kappa \kappa)^{V[G]}$ such that

$$\forall \alpha \in C \ [s(\alpha) \subseteq x \to t(\alpha) = 1]$$

holds for some club subset C of κ in $V[G]$.

Moreover, $C(A)$ is $<\kappa$-closed, κ^+-cc, a subset of $H(\kappa^+)$ and whenever $A \subseteq B \subseteq ^\kappa \kappa$, then $C(A)$ is a complete subforcing of $C(B)$.
Theorem (Holy - Lücke, 2014)

If κ is an uncountable cardinal with $\kappa^{<\kappa} = \kappa$ and 2^κ regular then there is a partial order P which is $<\kappa$-closed and preserves cofinalities $\leq 2^\kappa$ and the value of 2^κ and introduces a Σ_1-definable wellordering of $H(\kappa^+)$.

Corollary (Holy - Lücke, 2014)

If κ is a regular uncountable L-cardinal, then there is a cofinality-preserving forcing extension of L with a $\Sigma_1(\kappa)$-definable wellorder of $H(\kappa^+)$ and $2^\kappa > \kappa^+$.

Peter Holy (Bristol)
Simplest Possible Wellorders
January 26, 2014 16 / 17
Theorem (Holy - Lücke, 2014)

If \(\kappa \) is an uncountable cardinal with \(\kappa^{<\kappa} = \kappa \) and \(2^\kappa \) regular then there is a partial order \(P \) which is \(<\kappa \)-closed and preserves cofinalities \(\leq 2^\kappa \) and the value of \(2^\kappa \) and introduces a \(\Sigma_1 \)-definable wellordering of \(H(\kappa^+) \).

If \(\kappa = \lambda^+ \) and \(\lambda^{<\lambda} = \lambda \), one can improve the above to a \(\Sigma_1 \)-definable wo that only uses a parameter from the ground model, basically by coding, during the above construction, the parameter into the stationarity pattern of a ground model \(\kappa \)-seq. of disjoint stationary subsets of \(\kappa \) on \(\text{cof}(\lambda) \).
Theorem (Holy - Lücke, 2014)

If κ is an uncountable cardinal with $\kappa^{<\kappa} = \kappa$ and 2^κ regular then there is a partial order P which is $<\kappa$-closed and preserves cofinalities $\leq 2^\kappa$ and the value of 2^κ and introduces a Σ_1-definable wellordering of $H(\kappa^+)$. If $\kappa = \lambda^+$ and $\lambda^{<\lambda} = \lambda$, one can improve the above to a Σ_1-definable wo that only uses a parameter from the ground model, basically by coding, during the above construction, the parameter into the stationarity pattern of a ground model κ-seq. of disjoint stationary subsets of κ on $\text{cof}(\lambda)$. If sufficiently close to L, one may choose a canonically $\Sigma_1(\kappa)$-definable such sequence of stationary subsets of κ and obtain a $\Sigma_1(\kappa)$-definable wellorder of $H(\kappa^+)$. Similar results are possible for inaccessible κ, but one needs to assume the existence of a κ-sequence of disjoint fat stationary subsets of κ.

Corollary (Holy - Lücke, 2014)

If κ is a regular uncountable L-cardinal, then there is a cofinality-preserving forcing extension of L with a $\Sigma_1(\kappa)$-definable wellorder of $H(\kappa^+)$ and $2^\kappa > \kappa^+$.

Peter Holy (Bristol)
Simplest Possible Wellorders
January 26, 2014 16 / 17
Theorem (Holy - Lücke, 2014)

If κ is an uncountable cardinal with $\kappa^{<\kappa} = \kappa$ and 2^κ regular then there is a partial order P which is $<\kappa$-closed and preserves cofinalities $\leq 2^\kappa$ and the value of 2^κ and introduces a Σ_1-definable wellordering of $H(\kappa^+)$.

If $\kappa = \lambda^+$ and $\lambda^{<\lambda} = \lambda$, one can improve the above to a Σ_1-definable wo that only uses a parameter from the ground model, basically by coding, during the above construction, the parameter into the stationarity pattern of a ground model κ-seq. of disjoint stationary subsets of κ on $\text{cof}(\lambda)$. If sufficiently close to L, one may choose a canonically $\Sigma_1(\kappa)$-definable such sequence of stationary subsets of κ and obtain a $\Sigma_1(\kappa)$-definable wellorder of $H(\kappa^+)$. Similar results are possible for inaccessible κ, but one needs to assume the existence of a κ-sequence of disjoint fat stationary subsets of κ.

Corollary (Holy - Lücke, 2014)

If κ is a regular uncountable L-cardinal, then there is a cofinality-preserving forcing extension of L with a $\Sigma_1(\kappa)$-definable wellorder of $H(\kappa^+)$ and $2^\kappa > \kappa^+$.
Thank you.