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Let {xn : n < ω} be a sequence of objects.

We can think that it is a sequence of points in a topological
space... or a sequence of vectors in a Banach space... or whatever.

We are going to look at different classes of subsequences of this
sequence.
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Example 1

Suppose {xn : n < ω} is a dense subset of R.

1 The class ΓQ are the subsequences converging to a rational.

2 The class Γ+ are the subsequences converging to a positive
irrational.

3 The class Γ− are the subsequences converging to a negative
irrational.

These classes are hereditary, and pairwise disjoint.

The classes Γ+ and Γ− can be separated through
{xn : xn ≥ 0}∪{xn : xn < 0}.

The classes ΓQ and Γ+ cannot be separated.
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Now {xn : n < ω} is a sequence of vectors in a Banach space

For every 1≤ p < ∞

1 The class Γp are the subsequences for which norms of linear
combinations are computed as∥∥∑aixi

∥∥=
(
∑ |ai |p

)1/p

These classes are hereditary, and pairwise disjoint.
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Gaps and separation

Fix a countable set N

Definition

An n-gap

is a tuple of hereditary families of infinite subsets of N

Γ = {Γ0, . . . ,Γn−1}

which are pairwise disjoint and not separated.

1 The families Γ0, . . . ,Γn−1 are separated if there exists a
decompostion N =

⋃
i<nNi such that Γi∩P(Ni ) = /0.

2 Here, disjoint is equivalent to orthogonal: A∩B is finite
whenever A ∈ Γi, B ∈ Γj for i 6= j .

3 The families Γi live in P(N) = 2N , so they might be Borel,
analytic, coanalytic, projective, etc.
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An example of a 3-gap

Consider N the set of successor ordinals below ω3

ω3
ω2ω · 2

. . .

ω

. . .

ω · 3
. . . . . . . . .

ω2 · 2
. . .. . . . . . . . . . . . . . . . . . . . .

∈ Γ0

1 Γ0 = {A⊂ N : A⊂ {ω2 ·n+ ω ·m : n < ω}}
2 Γ1 = {A⊂ N : A⊂ {ω2 ·n : n < ω}}
3 Γ2 = {A⊂ N : A⊂ {ω3}}

This is a Borel 3-gap which is not strong.

We can isolate Γ0 and Γ1 from Γ2 by restricting to M = N ∩ω2.

Meaning that {Γ0|M ,Γ1|M} form a 2-gap, but Γ2|M = /0.

Can we always isolate a part of a gap from the rest? No...
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A very exotic example

For each x ∈ R, fix a sequence a sequence of rationals which
converges to x , Sx −→ x

Given Z ⊂ R, let ΓZ = {A⊂Q : ∃x ∈ Z : A⊂ Sx}

Example

If the Zi are pairwise disjoint Bernstein sets, then

Γ = {ΓZ1
, . . . ,ΓZn−1

}

is an n-gap in which nothing can be isolated.

Formally, if {ΓZi
|M ,ΓZj

|M} is a 2-gap, then Γ|M is an n-gap.

Can we always isolate a part of a Borel gap from the rest? Some
parts, but not all...
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Theorem

If Γ0, . . . ,Γn−1 is an analytic n-gap, then ∃M ⊂ N and i < j < n :

Γi|M ,Γj|M form a 2-gap.

Γk|M = /0 for all other k
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Γ0|M ,Γ1|M ,Γ2|M form a 3-gap.

Γk|M = /0

for all but at most 58 many of the remaining k.

Theorem

If Γ0, . . . ,Γn−1 is a strong analytic n-gap, then ∃M ⊂ N :

Γ0|M ,Γ1|M ,Γ2|M form a strong 3-gap.

Γk|M = /0 for all but at most 6 many of the remaining k .
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Part II
The first-move structure of the n-adic tree and strong gaps



The n-adic tree

The n-adic tree is the set n<ω of finite sequences of 0,1, . . . ,n−1



The n-adic tree

The n-adic tree is the set n<ω of finite sequences of 0,1, . . . ,n−1

∅

0 1

00 01 10 11

001000 110010 011 100 101 111

The 2-adic tree



The n-adic tree

The n-adic tree is the set n<ω of finite sequences of 0,1, . . . ,n−1

1

∅
0

00 0201 1110 12

2

2120 22

The 3-adic tree



The first-move structure of n<ω

Relevant characteristics:

1 The lexicographical order ≺
2 The tree (partial) order <

3 The first move from t to s

4 The meet operation r ∧ s is the largest node t such that t < r
and t < s.

Definition

The meet-closure 〈〈A〉〉 of a set A⊂ n<ω is the smallest set which
contains A and is closed under the meet operation.
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First-move equivalence

Let A, B be subsets of n<ω .

A first-move isomorphism between A and B is a bijection
f : A−→ B which extends to a bijection f : 〈〈A〉〉 −→ 〈〈B〉〉 which
preserves all relevant characteristics of the first move structure.
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Ramsey theorem

Theorem

Fix a set A⊂ n<ω , and let A be the family of all subsets of n<ω

first-move isomorphic to A.

If c : A −→ {0, . . . ,m} is measurable,
then there exists T ⊂ n<ω such that

1 T is first-move isomorphic to n<ω

2 c is constant on the subsets of T .
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Combs

For i ,k < n, an (i ,k)-comb is a set that is first-move isomorphic to

{(k),(iik),(iiiik),(i6k),(i8k),(i10k), . . .}
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Combs

An (i , i)-comb is called an i-chain.
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i

x1 i
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Combs

Properties of combs

1 An (i ,k)-comb is first-move equivalent to all of its infinite
subsets.

2 Every infinite set contains an (i ,k)-comb for some i ,k .

3 Let S1, . . . ,Sn disjoint subsets of m×m.

Let Γi be the set of all (u,v)-combs, for (u,v) ∈ Si

Then {Γi : i < n} is a Borel strong n-gap

We call this a standard strong n-gap.
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Finding a standard gap inside

Theorem

Let {Γi : i < n} be a strong analytic gap on N. Then there exists a
one-to-one map u : n<ω −→ N such that

If A is an i-chain, then u(A) ∈ Γi.
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Finite basis for strong n-gaps

Theorem

Let {Γi : i < n} be a strong analytic gap on N. Then there exists

1 a one-to-one map u : n<ω −→ N
2 a standard strong n-gap {∆i : i < n}

such that u(A) contains an infinite set from Γi if and only if A
contains an infinite set from ∆i
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For every Γ there is a standard ∆ with ∆≤ Γ.
Inside the standard strong gaps, there are the minimal ones

∆ is minimal if E≤∆⇒∆≤ E.
Two minimal are equivalent if ∆′ ≤∆ and ∆≤∆′
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Theorem

Let {Γi : i < n} be a strong analytic gap on N. Then there exists

1 a one-to-one map u : n<ω −→ N
2 a standard strong n-gap {∆i : i < n}

such that u(A) contains an infinite set from Γi if and only if A
contains an infinite set from ∆i

For every Γ there is a standard ∆ with ∆≤ Γ.

Inside the standard strong gaps, there are the minimal ones

∆ is minimal if E≤∆⇒∆≤ E.
Two minimal are equivalent if ∆′ ≤∆ and ∆≤∆′
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Finite combinatorics behind

Problems about general analytic strong gaps are reduced to
problems about standard strong gaps,

which in turn reduce to
finite combinatorial problems.

Definition

A function f : n×n −→m×m is a morphism if there exists a
one-to-one u : n<ω −→m<ω which takes (i , j)-combs to
f (i , j)-combs.

The category formed by sets n×n and morphisms as above
governs the behavior of strong analytic n-gaps.

This allows to compute the minimal strong n-gaps: each of
them is given by seven parameters (A,B,C ,D,E ,ψ,γ)
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Part III
The record structure of the n-adice tree and general gaps



The set of records from t to s

Let t < s be in n<ω ,

s = (t0, . . . , tn, r0, . . . , rm)

Definition

A record node from t to s is a node (t0, . . . , tn, r0, . . . , rk−1) such
that rk > ri for all i < k .
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The record structure of n<ω

The relevant characteristics of the record-structure are the
same as for the first-move structure, with the addition of the
set of records record(t,s).

The record-closure 〈A〉 of a set A⊂ n<ω is the smallest set
which contains A and is closed under the meet operation t ∧ s
and under taking record(t,s).

A record isomorphism between A and B is a bijection
f : A−→ B which extends to a bijection f : 〈A〉 −→ 〈B〉 which
preserves all relevant characteristics of the record structure.
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Record equivalence

A set {t?,s?} record-isomorphic to {t,s} as before:
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Ramsey theorem

Theorem

Fix a set A⊂ n<ω , and let A be the family of all subsets of n<ω

record isomorphic to A. If c : A −→m is measurable, then there
exists T ⊂ n<ω such that

1 T is record isomorphic to n<ω

2 c is constant on the subsets of T .



Ramsey theorem

Theorem

Fix a set A⊂ n<ω , and let A be the family of all subsets of n<ω

record isomorphic to A. If c : A −→m is measurable, then there
exists T ⊂ n<ω such that

1 T is record isomorphic to n<ω

2 c is constant on the subsets of T .

This is stronger than the first-move Ramsey theorem
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Types

The role of (i , j)-combs is played now by types.

There are two kind of types in n<ω :

1 Chain-types are given by an increasing sequence of numbers
< n, like [1257], [0], [468], etc.

2 Comb-types are given by two increasing sequences of numbers
< n, that we write in two rows, with a global order, which is
read from left to right, like [3

03
5], [14

3
67], etc

(the rightmost number must always be in the lower row, and
the leftmost numbers of each row must be different)



Types

The role of (i , j)-combs is played now by types.

There are two kind of types in n<ω :

1 Chain-types are given by an increasing sequence of numbers
< n, like [1257], [0], [468], etc.

2 Comb-types are given by two increasing sequences of numbers
< n,

that we write in two rows, with a global order, which is
read from left to right, like [3

03
5], [14

3
67], etc

(the rightmost number must always be in the lower row, and
the leftmost numbers of each row must be different)



Types

The role of (i , j)-combs is played now by types.

There are two kind of types in n<ω :

1 Chain-types are given by an increasing sequence of numbers
< n, like [1257], [0], [468], etc.

2 Comb-types are given by two increasing sequences of numbers
< n,

that we write in two rows, with a global order, which is
read from left to right, like [3

03
5], [14

3
67], etc

(the rightmost number must always be in the lower row, and
the leftmost numbers of each row must be different)



Types

The role of (i , j)-combs is played now by types.

There are two kind of types in n<ω :

1 Chain-types are given by an increasing sequence of numbers
< n, like [1257], [0], [468], etc.

2 Comb-types are given by two increasing sequences of numbers
< n,

that we write in two rows, with a global order, which is
read from left to right, like [3

03
5], [14

3
67], etc

(the rightmost number must always be in the lower row, and
the leftmost numbers of each row must be different)



Types

The role of (i , j)-combs is played now by types.

There are two kind of types in n<ω :

1 Chain-types are given by an increasing sequence of numbers
< n, like [1257], [0], [468], etc.

2 Comb-types are given by two increasing sequences of numbers
< n, that we write in two rows,

with a global order, which is
read from left to right, like [3

03
5], [14

3
67], etc

(the rightmost number must always be in the lower row, and
the leftmost numbers of each row must be different)



Types

The role of (i , j)-combs is played now by types.

There are two kind of types in n<ω :

1 Chain-types are given by an increasing sequence of numbers
< n, like [1257], [0], [468], etc.

2 Comb-types are given by two increasing sequences of numbers
< n, that we write in two rows, with a global order, which is
read from left to right,

like [3
03

5], [14
3
67], etc

(the rightmost number must always be in the lower row, and
the leftmost numbers of each row must be different)



Types

The role of (i , j)-combs is played now by types.

There are two kind of types in n<ω :

1 Chain-types are given by an increasing sequence of numbers
< n, like [1257], [0], [468], etc.

2 Comb-types are given by two increasing sequences of numbers
< n, that we write in two rows, with a global order, which is
read from left to right, like [3

03
5], [14

3
67], etc

(the rightmost number must always be in the lower row, and
the leftmost numbers of each row must be different)



A set {x0,x1,x2, . . .} of type [468]

x0

x1

x2
x3



A set {x0,x1,x2, . . .} of type [468]

xn+1

xn

8

6

4

≤ 4

2
4

4
0

1
3

0

≤ 6

≤ 8

0

6
3

5

0
7

5

x0

x1

x2
x3



A set {x0,x1,x2, . . .} of type [4
1

6
7

8]

x0

x1

x2

≤ 7



A set {x0,x1,x2, . . .} of type [4
1

6
7

8]

xn+1

xn 8

6

4

≤ 4

2
4

4
0

1
3

0

≤ 6

≤ 8

0

6
3

5

0
7

5

x0

x1

x2

1
≤ 1

1

1
0
1
0

7
6≤ 7



A set {x0,x1,x2, . . .} of type [4
1

6
7

8]

xn+1

xn 8

6

4

≤ 4

2
4

4
0

1
3

0

≤ 6

≤ 8

0

6
3

5

0
7

5

x0

x1

x2

1
≤ 1

1

1
0
1
0

7
6≤ 7



A set {x0,x1,x2, . . .} of type [4
1

6
7

8]

xn+1

xn 8

6

4

≤ 4

2
4

4
0

1
3

0

≤ 6

≤ 8

0

6
3

5

0
7

5

x0

x1

x2

1
≤ 1

1

0
1
0

7
6≤ 7
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Types

There are eight types in 2<ω :

[0], [1], [01], [01], [10], [011], [101], [0
1
1].

There are 61 types in 3<ω ,

There are approximately ∼ 3·9n
8
√
2πn

types in n<ω
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Types

Properties of types

1 A set of type τ is record-equivalent to all of its infinite
subsets.

2 Every infinite set contains a set of type τ for some τ.

3 Let S1, . . . ,Sn disjoint sets of types in m<ω .

Let Γi be the family of all sets of type τ, for τ ∈ Si

Then {Γi : i < n} is a Borel n-gap

We call this a standard n-gap.
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Finding a standard gap inside

Theorem

Let {Γi : i < n} be an analytic gap on N. Then there exists a
one-to-one map u : n<ω −→ N and a permutation ε such that

If A is an [i ]-chain, then u(A) ∈ Γε(i).
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Finite basis for strong n-gaps

Theorem

Let {Γi : i < n} be an analytic gap on N. Then there exists

1 a one-to-one map u : n<ω −→ N
2 a standard n-gap {∆i : i < n}

such that u(A) contains an infinite set from Γi if and only if A
contains an infinite set from ∆i
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For every Γ there is a standard ∆ with ∆≤ Γ.
Inside the standard n-gaps, there are the minimal ones

∆ is minimal if E≤∆⇒∆≤ E.
Two minimal are equivalent if ∆′ ≤∆ and ∆≤∆′
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Finite combinatorics behind

Problems about general analytic gaps are reduced to problems
about standard gaps,

which in turn reduce to finite combinatorial
problems.
Let Tn be the set of types in n<ω .

Definition

A function f : Tn −→ Tm is a morphism if there exists a one-to-one
u : n<ω −→m<ω which sends sets of type τ to sets of type f τ.

The category formed by the sets Tn and morphisms as above
governs the behavior of analytic n-gaps.
This category is more complex than the one for strong gaps,
so we were not able to describe the minimal analytic n-gaps.
We studied some phenomena in this category, so as to find
the list of minimals for n = 2 and n = 3 and to be able to
solve the problem at the beginning.
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The minimal analytic 2-gaps

There are 9 minimal 2-gaps (5 up to permutation):

Γ0 Γ1

1∗∗ [0] all other types

2∗∗ [0] [1]

3∗∗ [0] [1], [01]

4∗ [0], [01] [1]

5∗∗ [0] [1], [01], [101]

∗∗: two permutations
∗: equivalent to its permutation



The max function

Definition

If τ is a type, max(τ) is the maximal integer appearing in the type.

For example, max[3
17

56] = 7.

Theorem

For τ0, . . . ,τn−1 ∈ Tm, TFAE:

1 max(τ0)≤max(τ1)≤ ·· · ≤max(τn−1),

2 There exists a morphism f : Tn −→ Tm such that f [i ] = τi .
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Domination

Definition

We say that the type τ dominates the type σ if

1 the second integer from the right in τ is in the upper row

2 and it is greater or equal than max(σ)

Theorem

For σ ,τ types in m<ω , TFAE

1 τ dominates σ ,
2 There exists a morphsim f : T2 −→ Tm such that

f [0] = σ ,
f υ = τ for all other υ ∈ T2.
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1 the second integer from the right in τ is in the upper row
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Examples:

[021
3
2] dominates [02]

[02312] does not dominate [02]

[15] does not dominate [02].
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1 τ dominates σ ,
2 There exists a morphsim f : T2 −→ Tm such that

f [0] = σ ,
f υ = τ for all other υ ∈ T2.



Proof of the domination theorem



Proof of the domination theorem



Proof of the domination theorem



Illustrative proof

We shall sketch the proof of the results announced at the
beginning:

Theorem 1

If Γ0, . . . ,Γn−1 is an analytic n-gap, then ∃M ⊂ N :

Γ0|M ,Γ1|M form a 2-gap.

Γk|M = /0 for all but at most 6 many of the remaining k

Theorem 2

If Γ0, . . . ,Γn−1 is an analytic n-gap, then ∃M ⊂ N and i < j < n :

Γi|M ,Γj|M form a 2-gap.

Γk|M = /0 for all other k



Sketch of some proofs

Step 1: We apply our general theorem to the gap {Γ0,Γ1}

n∅

n0 n1

n00 n01 n10 n11 [01]

[01]

[10]

[011]

[101]

[0
1
1]

[0]

[1] Γ1 or Γ0

Γ0 or Γ1
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Sketch of some proofs

Step 2: Apply the Ramsey theorem
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Sketch of some proofs

Step 2: Apply the Ramsey theorem and we have Theorem 1!
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Sketch of some proofs

Now we go for Theorem 2.

n∅

n0 n1

n00 n01 n10 n11 [01]
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Sketch of some proofs

Observe that [01] dominates [0],

n∅
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Sketch of some proofs

Observe that [01] dominates [0], so we have u : 2<ω −→ 2<ω

[01]
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[101]
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Sketch of some proofs

Observe that [01] dominates [0], So if b 6= 0 we are done.

[01]
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[011]
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[0
1
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[0] Γ0
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Γc or X

Γd or X

Γe or X

Γf or X

[01]

[01]

[10]

[011]

[101]

[0
1
1]

[0]

[1]



Sketch of some proofs

Observe that [01] dominates [0], So if b 6= 0 we are done.
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Sketch of some proofs

The same argument works for these other types.
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Sketch of some proofs

The same argument works for these other types.
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Sketch of some proofs

But these types also dominate [1].
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Sketch of some proofs

But these types also dominate [1]. So if they go to Γ0, we are
done.
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Sketch of some proofs

But these types also dominate [1]. So if they go to Γ0, we are
done.

[01]
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Sketch of some proofs

So far, we isolated at most four families.

[01]

[101]
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[0] Γ0

Γa or X
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X

X

Γe or X
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1
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Sketch of some proofs

Now look at the types [101] and [0].

[01]

[1] Γ1

[0] Γ0

Γa or X

[01] Γ0 or X

[10]

[011]

X

X

[101] Γe or X

[0
1
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Sketch of some proofs

max[101] = 1≥ 0 = max[0].

[01]

[01]

[10]

[011]

[101]

[0
1
1]

[0]

[1]

[01]

[1] Γ1

[0] Γ0

Γa or X

[01] Γ0 or X

[10]

[011]

X

X

[101] Γe or X

[0
1
1] X



Sketch of some proofs

After some painful computation...
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Sketch of some proofs

After some painful computation... So if e 6= 0 we are done
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[011]

[101]
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1
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[0]

[1]

[0]
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1
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X

X
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Sketch of some proofs

Now..

[01]

[101]

[1] Γ1

[0] Γ0

Γa or X

[01] Γ0 or X

[10]

[011]

X

X

Γ0 or X

[0
1
1] X



Sketch of some proofs

Looking similarly at [01], we have...

[01]

[01]

[10]

[011]

[101]

[0
1
1]

[0]

[1] [1] Γ1

[0] Γ0

[01] Γa or X

[01] Γ0 or X

[10]

[011]

X

X

[101] Γ0 or X

[0
1
1] X



Sketch of some proofs

So if a 6= 0 we are done,

[0]

[01]

[01]

[10]

[011]

[101]

[0
1
1]

[0]

[1]

[01]

[01]

[10]
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[0
1
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X
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Sketch of some proofs

So if a 6= 0 we are done, and otherwise as well.

[1] Γ1

[01]

[01]

[10]

[011]

[101]

[0
1
1]

[0]

[1]

[0]

[01]

[01]

[10]

[011]

[101]

[0
1
1]

Γ0

Γ0 or X

Γ0 or X

X

X

Γ0 or X

X



Another sample result

Theorem 2

If Γ0,Γ1,Γ2 is an analytic 3-gap, then at least two of the following
three hold: :

∃M ⊂ N : {Γ0|M ,Γ1|M} form a 2-gap but Γ2|M = /0.

∃M ⊂ N : {Γ0|M ,Γ2|M} form a 2-gap but Γ1|M = /0.

∃M ⊂ N : {Γ1|M ,Γ2|M} form a 2-gap but Γ0|M = /0.

Proof: Just check it for each the 933 minimal analytic 3-gaps.
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