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Building a completely separable family

Theorem (Mildenberger, R., and Steprans [1])
If s ≤ a, then there is a completely separable family.

The basic framework is contained in this proof. It is also the simplest.

Easy to see that a completely separable family exists if a = c.

(Balcar, Simon, Vojtas): They exist if any one of these holds:
s = ω1, b = d, or d ≤ a.

The hypothesis s ≤ a is weaker than all of the above.
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Building a completely separable family

F ⊂ P(ω) is said to be (ω,ω)-splitting if for each collection
{bn : n ∈ ω} ⊂ [ω]ω, there exists a ∈ F such that
∃∞n ∈ ω [|a ∩ bn| = ω] and ∃∞n ∈ ω [|(ω \ a) ∩ bn| = ω].

Definition
sω,ω = min{|F | : F ⊂ P(ω) ∧ F is (ω,ω) − splitting}.

Note that s ≤ sω,ω is clear.
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Building a completely separable family

Lemma
s = sω,ω.

Proof.
Case 1: s < b. Let 〈eα : α < κ〉 be a splitting family. Suppose it is not
(ω,ω)-splitting. Fix {bn : n ∈ ω} witnessing this. In other words, for each

α < κ there is iα ∈ 2 such that ∀∞n ∈ ω
[∣∣∣∣bn ∩ eiα

α

∣∣∣∣ < ω]
. WLOG, the bn are

pairwise disjoint. Now, for each α < s define fα ∈ ωω as follows:

fα(n) =

sup(bn ∩ eiα
α ) if

∣∣∣∣bn ∩ eiα
α

∣∣∣∣ < ω
0 otherwise

a
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Building a completely separable family

Proof.
By hypothesis the first case occurs for all but finitely many n. Since s < b,
find f ∈ ωω such that ∀α < s

[
fα ≤∗ f

]
. Choose kn ∈ bn such that kn > f (n).

Then {kn : n ∈ ω} is an infinite set not split by any eα.

Case 2: b ≤ s. Proof by picture on the board. a

Lemma
If 〈eα : α < s〉 is (ω,ω)-splitting, then for any infinite a.d. family A ⊂ [ω]ω

and for any b ∈ I+(A ), there is α < s such that b ∩ e0
α ∈ I

+(A ) and
b ∩ e1

α ∈ I
+(A ).
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Building a completely separable family

Lemma
Let 〈eα : α < κ〉 witness κ = sω,ω. Let A ⊂ [ω]ω be any a.d. family. Then for
each b ∈ I+(A ), there is an α < κ such that b ∩ e0

α ∈ I
+(A ) and

b ∩ e1
α ∈ I

+(A ).

Proof.
We may assume that there exist an infinite set {an : n ∈ ω} ⊂ A such that
∀n ∈ ω [|an ∩ b| = ω] (otherwise it is easy). Let α < κ be such that
∃∞n ∈ ω

[∣∣∣e0
α ∩ an ∩ b

∣∣∣ = ω]
and ∃∞n ∈ ω

[∣∣∣e1
α ∩ an ∩ b

∣∣∣ = ω]
. α is as

needed. a
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Building a completely separable family

Say κ = s = sω,ω and say 〈xα : α < κ〉 is an (ω,ω)-splitting family.

Construct 〈aα : α < c〉 and 〈σα : α < c〉 ⊂ 2<κ such that:
1 ∀α < c∀ξ < dom(σα)

[
aα ⊂∗ xσα(ξ)

ξ

]
;

2 ∀α < β < c
[
σα , σβ

]
.

Observe that if α , β, then by (2), aα and aβ are a.d. unless σα and
σβ are comparable.

Main point: At a stage δ < c Aδ = {aα : α < δ} is “nowhere MAD” – i.e.
if b ∈ I+({aα : α < δ}), then there is a ∈ [b]ω such that
∀α < δ [|a ∩ aα| < ω] (and also a node σ associated with a).
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Building a completely separable family

If b ∈ I+(Aδ), then look for least α0 < κ such that b ∩ x0
α0
∈ I+(Aδ)

and b ∩ x1
α0
∈ I+(Aδ).

There is a unique τ0 ∈ 2α0 such that

∀ξ < α0∀i ∈ 2
[
τ0(ξ) = i↔ b ∩ xi

ξ ∈ I
+(Aδ)

]
.

Proceeding in the same way one can build two sequences
〈αs : s ∈ 2<ω〉 ⊂ κ and 〈τs : s ∈ 2<ω〉 ⊂ 2<κ such that:
(3) ∀s ∈ 2<ω∀i ∈ 2

[
αs = dom(τs) ∧ αs_〈i〉 > αs ∧ τs_〈i〉 ⊃ τs

_〈i〉
]
;

(4) for each s ∈ 2<ω and for each ξ < αs, x1−τs(ξ)
ξ ∩ b ∩

(⋂
t(sx

τs(αt)
αt

)
∈ I(Aδ);

(5) for each s ∈ 2<ω, both x0
αs
∩ b ∩

(⋂
t(sx

τs(αt)
αt

)
∈ I+(Aδ) and

x1
αs
∩ b ∩

(⋂
t(sx

τs(αt)
αt

)
∈ I+(Aδ).
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Building a completely separable family

For each f ∈ 2ω, put αf = sup
{
α(f�n) : n ∈ ω

}
and τf =

⋃
n∈ωτ(f�n).

Note αf < κ.

Find f ∈ 2ω such that τf < {σ ∈ 2<κ : ∃α < δ [σ ⊂ σα]}.

e ∈ [b]ω ∩ I+(Aδ) such that ∀n ∈ ω [e ⊂∗ en], where

en = b ∩
(⋂

m<nxτf (α(f�m))
α(f�m)

)
.
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Building a completely separable family

For any ξ < αf , there is Fξ ∈ [δ]<ω such that(
x1−τf (ξ)
ξ ∩ e

)
⊂∗

(⋃
α∈Fξ

aα
)
.

Consider F =
⋃
ξ<αf Fξ and G = {α < δ : σα ⊂ τf }.

|F ∪ G| < κ ≤ a.

So there is a ∈ [e]ω such that ∀α ∈ F ∪ G [|a ∩ aα| < ω].
Now a and σf are as needed:

1 If α ∈ G, then a and aα are a.d. by choice.
2 If α < G, then aα and a are a.d. because ∀ξ < αf

[
a ⊂∗ xσf (ξ)

ξ

]
.
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The case a < s

When a is small, b is also small.

Key point: there is a small collection of sets that splits any set of a
specific form (even though there are no small splitting families).

Lemma
Let 〈cn : n ∈ ω〉 be pairwise disjoint elements of [ω]ω. Then there is a
collection 〈xα : α < b〉 ⊂ P(ω) such that for any b ∈ [ω]ω and any infinite
a.d. family A ⊂ [ω]ω, if for all n ∈ ω and for all f ∈ ωω,⋃

m≥n{k ∈ b ∩ cm : k > f (m)} ∈ I+(A ), then there is α < b such that
x0
α ∩ b ∈ I+(A ) and x1

α ∩ b ∈ I+(A ).

Dilip Raghavan Constructing special almost disjoint families



A completely separable family from s ≤ a
A completely separable family from c < ℵω

Bibliography

The case a < s

When a is small, b is also small.

Key point: there is a small collection of sets that splits any set of a
specific form (even though there are no small splitting families).

Lemma
Let 〈cn : n ∈ ω〉 be pairwise disjoint elements of [ω]ω. Then there is a
collection 〈xα : α < b〉 ⊂ P(ω) such that for any b ∈ [ω]ω and any infinite
a.d. family A ⊂ [ω]ω, if for all n ∈ ω and for all f ∈ ωω,⋃

m≥n{k ∈ b ∩ cm : k > f (m)} ∈ I+(A ), then there is α < b such that
x0
α ∩ b ∈ I+(A ) and x1

α ∩ b ∈ I+(A ).

Dilip Raghavan Constructing special almost disjoint families



A completely separable family from s ≤ a
A completely separable family from c < ℵω

Bibliography

The case a < s

Proof.
Fix a <∗-increasing everywhere unbounded family 〈fα : α < b〉 ⊂ ωω. For
each α < b and n ∈ ω, let xα,n = {k ∈ cn : k ≤ fα(n)}. Let xα =

⋃
n∈ωxα,n. Why

does this work?

Take any b ∈ [ω]ω and any infinite a.d. family A ⊂ [ω]ω.
Assume that b satisfies the hypothesis. In particular, for each n ∈ ω,⋃

m≥n(b ∩ cm) is I(A )-positive. So we can find
d ∈

[⋃
n∈ω(b ∩ cn)

]ω
∩ I+(A ) such that ∀n ∈ ω [|d ∩ cn| < ω]. Now there

are formally 2 cases:
Case I: there is e ∈ [d]ω which is a.d. from every a ∈ A . Let
X = {m ∈ ω : e ∩ cm , 0}. Define f : X → ω by f (m) = min(e ∩ cm). There is
α < b such that ∃∞m ∈ X

[
f (m) ≤ fα(m)

]
. For any such m ∈ X, xα,m ∩ e , 0.

So
∣∣∣x0
α ∩ e

∣∣∣ = ω. This implies x0
α ∩ d, and hence x0

α ∩ b are in I+(A ). On
the other hand, x1

α ∩ b ∈ I+(A ) by hypothesis. a
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The case a < s

Proof.
Case II: there are infinitely many a ∈ A such that |a ∩ d| = ω. Fix such a
family {an : n ∈ ω} ⊂ A . For each n ∈ ω, let Xn = {m ∈ ω : an ∩ d ∩ cm , 0}.
There is α < b such that for each n ∈ ω,
∃∞m ∈ Xn

[
cm ∩ d ∩ an ∩ (fα(m) + 1) , 0

]
. Then for each n ∈ ω,∣∣∣an ∩ d ∩ x0

α

∣∣∣ = ω. So d ∩ x0
α and hence b ∩ x0

α are in I+(A ). x1
α ∩ b is in

I+(A ) by hypothesis. a

Dilip Raghavan Constructing special almost disjoint families



A completely separable family from s ≤ a
A completely separable family from c < ℵω

Bibliography

The case a < s

In a sense we only care about splitting things that hit infinitely many
cn, for some collection 〈cn : n ∈ ω〉.

There is a problem: the collection 〈cn : n ∈ ω〉 that we care about will
keep changing at every stage of the construction.

Solution: make the tree more complicated.

Main difference: instead of using a sequence of sets 〈eα : α < κ〉, use
a tree of sets 〈eη : η ∈ 2<κ〉.

The pair e0, e1 used at a node of the tree now depends not just on the
height of that node, but also on all the pairs of sets that occur below
that node.
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The case a < s

Along each (long enough) branch ψ of the tree, each countable
subset of ψ can be “captured” at some node η that lies on ψ.

This “captured” countable set determines a collection 〈cn : n ∈ ω〉.

The sets that hit infinitely many of the cn will be split using a small
family before ψ is reached.

The assumption that s < ℵω becomes relevant for capturing the
countable sets.
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The case a < s

Definition
Let κ be any cardinal. A set X ⊂ [κ]≤ω is called cofinal if
∀a ∈ [κ]≤ω∃b ∈ X [a ⊂ b].

cf(〈[κ]≤ω,⊂〉) = min
{
|X| : X ⊂ [κ]≤ω is cofinal

}
.

For any n < ω, cf(〈[ℵ]≤ω,⊂〉) = ℵn (obvious for ℵ1; by induction for
larger n).
So for any n < ω, there is a sequence 〈uα : ω ≤ α < ℵn〉 such that

1 uα ⊂ α and |uα| = ω;
2 if X ⊂ ℵn is any uncountable set, then there exists α < sup(X) such that

[|uα ∩ X| = ω].
If in addition you know that b ≤ ℵn, then you can strengthen 1 to say
that otp(uα) = ω; but 2 will only apply to sets order type at least b.
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The case a < s

Definition
For cardinals κ > λ > ω, P(κ, λ) says that there is a sequence
〈uα : ω ≤ α < κ〉 such that

1 uα ⊂ α and |uα| = ω
2 for each X ⊂ κ, if X is bounded in κ and otp (X) = λ, then
∃ω ≤ α < sup (X) [|uα ∩ X| = ω].

If b ≤ λ < κ < ℵω, then P(κ, λ) is true.

Theorem (Shelah, 2010 [2])
If a < s and P(s, a) holds, then there is a completely separable family.

Forcing the failure of the hypothesis needs large cardinals (and
unknown if a > ω1).
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The case a < s

At a stage δ < c we have Aδ = 〈aα : α < δ〉, a subtree Tδ ⊂ 2<s, a
labeling 〈eη : η ∈ Tδ〉, and a sequence of nodes 〈ηα : α < δ〉 ⊂ Tδ
such that for each α < δ:

1 ∀ξ ∈ dom(ηα)
[
aα ⊂∗ eηα(ξ)

ηα�ξ

]
;

2 if σ ∈ 2s and if σ � ξ ∈ Tδ for all ξ < s, then {eσ�ξ : ξ < s} is an
(ω,ω)-splitting family;

3 |Tδ| < c (more precisely Tδ is the union of < c chains) and eηα = aα;
4 For ξ < s, η ∈ 2ξ ∩ Tδ, a set a ⊂ ξ of order type ω, and n ∈ ω, we use

the notation cη,a,n =
(⋂

m<neη(a(m))
η�a(m)

)
∩ e1−η(a(n))

η�a(n) , where a(m) denotes the
mth element of a;

5 If ξ < s and if X ⊂ ξ has order type a and sup(X) = ξ, then for any
η ∈ 2ξ ∩ Tδ, there is a ⊂ ξ with otp(a) = ω such that |a ∩ X| = ω and for
every b ∈ [ω]ω and any infinite a.d. family A ⊂ [ω]ω, if for all n ∈ ω and
for all f ∈ ωω,

⋃
m≥n{k ∈ b ∩ cm : k > f (m)} ∈ I+(A ), then there is ζ < ξ

such that b ∩ e0
η�ζ ∈ I

+(A ) and b ∩ e1
η�ζ ∈ I

+(A ).
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The case a < s

Given 〈uα : α < s〉 witnessing P(s, a), a family 〈fα : α < b〉 witnessing
b < s, and an (ω,ω)-splitting family 〈xα : α < s〉, arranging (1)-(5) is
just a matter of bookkeeping.

Details of the bookkeeping are not deep (just messy).

the idea is that along a branch η, any subset X of order type a will be
“trapped” by some uα.

This uα determines a collection {cη,uα,n : n ∈ ω}.

Together with 〈fβ : β < b〉 this gives a family {yβ : β < b} such that any b
that behaves like in the lemma w.r.t. the cη,uα,n is split by one of the yβ.

There is enough space to enumerate the {yβ : β < b} (note: this set
does not depend on X) along η; so every b that intersects infinitely
many of the cη,uα,n will be split before η is reached.
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The case a < s

At a stage δ < c, fix some b ∈ I+(Aδ)

By clause (2), we can once again build sequences 〈αs : s ∈ 2<ω〉 ⊂ s
and 〈τs : s ∈ 2<ω〉 ⊂ Tδ+1 as before.

As before, for any f ∈ 2ω, if τf =
⋃

n∈ωτ(f�n) and if
αf = sup

{
α(f�n) : n ∈ ω

}
, then αf < s, and

b ∩ eτf (α(f�0))
τ(f�0) ⊃ b ∩ eτf (α(f�0))

τ(f�0) ∩ eτf (α(f�1))
τ(f�1) ⊃ · · · is a decreasing sequence

of sets in I+(Aδ).

Choose f ∈ 2ω such that τf < Tδ and choose e ∈ [b]ω ∩ I+(Aδ) that is
almost included in this decreasing sequence.
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The case a < s

As before, for any ξ < αf , there is a minimal Fξ ∈ [δ]<ω such that
e ∩ e1−τf (ξ)

(τf )�ξ ⊂
∗
⋃
α∈Fξaα.

Recall clause (3) which says that for any α < δ, eηα = aα.

For any α < δ, if ηα ⊂ τf , then dom(ηα) < αf and τf (dom(ηα)) = 1
because of this clause.

Conclusion: It is enough to find a ∈ [e]ω such that

∀ξ < αf

[
a ⊂∗ eτf (ξ)

(τf )�ξ

]
.
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The case a < s

Consider the collection G of all ζ < αf for which there is x ∈ [e]ω such
that:

1 ∀ξ < ζ
[
x ⊂∗ eτf (ξ)

(τf )�ξ

]
;

2 x ∩ e1−τf (ζ)

(τf )�ζ is infinite.

If |G| < a, then we can find a ∈ [e]ω as needed.

Why?
∣∣∣⋃ζ∈GFζ

∣∣∣ < a. Take a ∈ [e]ω which is a.d. from everything in⋃
ζ∈GFζ .

Suppose there exists ζ < αf such that
∣∣∣∣∣a ∩ e1−τf (ζ)

(τf )�ζ

∣∣∣∣∣ = ω. Take the least

such ζ. Then a witnesses that ζ ∈ G, which is a contradiction.
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The case a < s

So assume that |G| ≥ a.

Let ξ ≤ αf be minimal such that otp(G ∩ ξ) = a.

Apply clause (5) to ξ with η = τf � ξ, X = G ∩ ξ, to get a ⊂ ξ of order
type ω with the property given in the clause.

We wish to use this property of the set a with b = e and A = Aδ.

If we succeed, then we will get a ζ < ξ ≤ αf such that both e0
(τf )�ζ ∩ e

and e1
(τf )�ζ ∩ e.

It suffices to produce a sequence 〈an :∈ ω〉 of distinct elements of Aδ

and an increasing sequence 〈kn : n ∈ ω〉 of elements of ω such that∣∣∣e ∩ an ∩ cη,a,kn

∣∣∣ < ω.
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The case a < s

Note that if a(k) ∈ X, then there is a ∈ Fa(k) such that e ∩ a ∩ cη,a,k is
infinite.

By the minimality of Fa(k), if k < l and a(k) ∈ X and a(l) ∈ X, then
Fa(k) ∩ Fa(l) = 0.

Since a ∩ X is infinite, we are done!

So this contradiction shows that |G| < a. So we can find aδ and ηδ as
needed (ηδ = τf ).
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