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Strong measure zero sets

Strong measure zero sets (in R

For an interval | C R, let A\(/) denote its length.

Definition (well-known)

A set X C R is (Lebesgue) measure zero (X € N) iff

for each positive real number ¢ > 0

there is a sequence of intervals (/)< of total length >~ _ "A(/,) <¢
such that X C (J,, In
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Definition (Borel; 1919)

A set X C R is strong measure zero (X € SN) iff

for each sequence of positive real numbers (z,,) ;<.

there is a sequence of intervals (/p)n<, With Vn € w A(1,) < &,
such that X C {J,.,, In-
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Strong measure zero sets in Polish groups

Let (G,+) be a (abelian?) Polish group.
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Officially, the following property is called “Rothberger bounded”:

Definition

X C G is strong measure zero (X € SN(G)) if for every sequence
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Strong measure zero sets in Polish groups

Let (G,+) be a (abelian?) Polish group.
Let 2/(0) denote the system of neighborhoods of the neutral element 0.

(Slightly?) abusing notation, | use the expression “strong measure zero”
for subsets of a topological group.
Officially, the following property is called “Rothberger bounded”:

Definition

X C G is strong measure zero (X € SN(G)) if for every sequence
(Un)n<w of neighborhoods in /(0), there exists a sequence (x,)n<, in G
such that X C (U, ., (xa + Un).

But note that this is the same as the official notion of “strong measure
zero in metric spaces” for the metric space (G, d), where d is any
(left-)invariant metric yielding the topology of G.
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Let M(G) be the (translation-invariant) o-ideal of meager subsets of G.

For X, MC G, let X+ M={x+m:xe X,me M}.
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Let M(G) be the (translation-invariant) o-ideal of meager subsets of G.

For X, MC G, let X+ M={x+m:xe X,me M}.

Definition

X C G meager-shiftable (X € M*(G)) if for every meager set
M e M(G), we have X + M # G.

Equivalently: VM € M(G) 3te€ Gst. (t+M)NnX = 0.

Theorem (Galvin,Mycielski,Solovay; 1973)

A set X C R is strong measure zero if and only if
for every meager set M € M(R), X + M #R, i.e,
M*(R) = SN (R).
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Definition

X C G meager-shiftable (X € M*(G)) if for every meager set
M e M(G), we have X + M # G.

Equivalently: VM € M(G) 3te€ Gst. (t+M)NnX = 0.

Theorem (Galvin,Mycielski,Solovay; 1973)

A set X C R is strong measure zero if and only if

for every meager set M € M(R), X + M #R, i.e,
M*(R) = SN (R).

The same holds for (2%, +), the 1-dimensial torus (S, +) = (R/Z, +), ...
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Generalizing Galvin Mycielski Solovay Theorem?

The “easy direction” of the GMS theorem only uses separability:

Proposition
Let (G, +) be a separable group. Then M*(G) C SN(G).
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Generalizing Galvin Mycielski Solovay Theorem?

The “easy direction” of the GMS theorem only uses separability:

Proposition
Let (G, +) be a separable group. Then M*(G) C SN(G).

The "difficult direction” of the usual GMS theorem (for R, ...) makes
essential use of the fact that the torus R/Z is compact (and then
“transfers” the result to R).

Actually, compactness is already sufficient:

Let (G,+) be a compact group. Then M*(G) 2 SN(G).

Definition

A Polish group (G, +) is a Galvin Mycielski Solovay group (GMS group) if
the GMS theorem still holds, i.e., if ZFC proves that M*(G) = SN(G).
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Let's say a Polish group (G, +) is nicely o-compact (different versions) if

@ there exists a countable subgroup U C G s.t. (G/U,+) is compact
@ there exists a selector T C G for G/U s.t. either

@ OT(NT) is nowhere dense (meager?) in G
@ h[OT N T] is nowhere dense (meager?) as a subset of (G/U,+),
where h: G — G /U is the canonical mapping.
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Each compact Polish group (G, +) is GMS, i.e., M*(G) = SN(G).

Let's say a Polish group (G, +) is nicely o-compact (different versions) if

@ there exists a countable subgroup U C G s.t. (G/U,+) is compact
@ there exists a selector T C G for G/U s.t. either

@ OT(NT) is nowhere dense (meager?) in G
@ h[OT N T] is nowhere dense (meager?) as a subset of (G/U,+),
where h: G — G /U is the canonical mapping.

Each nicely o-compact Polish group (G, +) is GMS (M*(G) = SN (G)).
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Marcin Kysiak asked me at the Winterschool 2011 here in Hejnice. . .

Question (Marcin Kysiak)
Is (Z¥,+) a GMS group, i.e., does M*(Z*) = SN(Z*) hold in general?

Wolfgang Wohofsky (TU Wien & KGRC) Characterizing Strong Measure Zero Sets Hejnice, 2013 12 /17



Marcin Kysiak's question

Z¥ is not a GMS group

Answer: No! (In other words: consistently, M*(Z“) # SN(Z*).)
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Proposition

ZFC proves that [Z*]=®0 C M*(Z¥) C SN(Z¥).

It is quite easy to see that the usual BC (i.e., SN(2¢) = [2¥]=Y0) is
equivalent to the “Borel Conjecture on Z*" (i.e., SN(Z¥) = [Z¥]=M0).

Proposition

Assume BC. Then [Z¥]=N0 = M*(Z¥) = SN(Z¥).
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It is quite easy to see that the usual BC (i.e., SN(2¢) = [2¥]=Y0) is
equivalent to the “Borel Conjecture on Z*" (i.e., SN(Z¥) = [Z¥]=M0).

Proposition
Assume BC. Then [Z¥]=N0 = M*(Z¥) = SN(Z¥).

Assume CH. Then [Z¥]<% C M*(Z¥) S SN(Z*).
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Marcin Kysiak's question

Is [Z2]=%0 = M*(Z*) S SN(Z*) consistent?

Thanks to Thilo Weinert for a lot of interesting discussions . ..
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Thank you

Thank you for your attention and enjoy the Winter School. . .

Hejnice 2011
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