A new space $C(K)$ with few operators

Antonio Avilés (joint work with P. Koszmider)

Universidad de Murcia, Author supported by MEyC and FEDER under project MTM2011- 25377

Hejnice 2013
The problem

Proposition
Every injective linear operator $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is surjective.
The problem

Proposition
Every injective linear operator $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is surjective.

Question (Haïly, Kaidi, Rodríguez-Palacios)
Is there an infinite dimensional Banach space X such that every injective operator $T : X \rightarrow X$ is surjective?
Spaces with few operators, like Gowers-Maurey, satisfy:

1. Every surjective operator $T: X \to X$ is injective.
2. Every injective operator $T: X \to X$ with closed range is surjective.

However, if $\{e_n\}$ is a basis of subspace of X, $\|e_n\| = 2^{-n}$.

$\{f^*_n\} \subset X^*$ is weak* dense of norm-one operators.

Then $T(x) = \sum_n f^*_n(x) e_n$ defines an injective operator which is not surjective.

Theorem

There exists a compact space K such that every injective operator $T: C(K) \to C(K)$ is surjective.
Spaces with few operators, like Gowers-Maurey, satisfy:

1. Every surjective operator $T : X \rightarrow X$ is injective.

2. Every injective operator $T : X \rightarrow X$ with closed range is surjective.

However, if $\{e_n\}$ is a basis of subspace of X, $\|e_n\| = 2^{-n}$.

$\{f^*_n\} \subset X^*$ is weak* dense of norm-one operators, then $T(x) = \sum_n f^*_n(x)e_n$ defines an injective operator which is not surjective.

Theorem

There exists a compact space K such that every injective operator $T : C(K) \rightarrow C(K)$ is surjective.
The problem

Spaces with few operators, like Gowers-Maurey, satisfy:

1. Every surjective operator $T : X \rightarrow X$ is injective.
2. Every injective operator $T : X \rightarrow X$ with closed range is surjective.
Spaces with few operators, like Gowers-Maurey, satisfy:

1. Every surjective operator $T : X \rightarrow X$ is injective.
2. Every injective operator $T : X \rightarrow X$ with closed range is surjective.

However, if
Spaces with few operators, like Gowers-Maurey, satisfy:

1. Every surjective operator $T : X \rightarrow X$ is injective.
2. Every injective operator $T : X \rightarrow X$ with closed range is surjective.

However, if

- $\{e_n\}$ is a basis of subspace of X, $\|e_n\| = 2^{-n}$.

Theorem

There exists a compact space K such that every injective operator $T : C(K) \rightarrow C(K)$ is surjective.
Spaces with few operators, like Gowers-Maurey, satisfy:

1. Every surjective operator \(T : X \rightarrow X \) is injective.
2. Every injective operator \(T : X \rightarrow X \) with closed range is surjective.

However, if

- \(\{e_n\} \) is a basis of subspace of \(X \), \(\|e_n\| = 2^{-n} \).
- \(\{f_n^*\} \subset X^* \) is weak* dense of norm-one operators,
Spaces with few operators, like Gowers-Maurey, satisfy:

1. Every surjective operator $T : X \to X$ is injective.
2. Every injective operator $T : X \to X$ with closed range is surjective.

However, if

- $\{e_n\}$ is a basis of subspace of X, $\|e_n\| = 2^{-n}$.
- $\{f_n^*\} \subset X^*$ is weak* dense of norm-one operators,

Then $T(x) = \sum_n f_n^*(x)e_n$
Spaces with few operators, like Gowers-Maurey, satisfy:

1. Every surjective operator $T : X \to X$ is injective.
2. Every injective operator $T : X \to X$ with closed range is surjective.

However, if

- $\{e_n\}$ is a basis of subspace of X, $\|e_n\| = 2^{-n}$.
- $\{f_n^*\} \subset X^*$ is weak* dense of norm-one operators,

Then $T(x) = \sum_n f_n^*(x)e_n$ defines an injective operator which is not surjective.
Spaces with few operators, like Gowers-Maurey, satisfy:

1. Every surjective operator $T : X \to X$ is injective.
2. Every injective operator $T : X \to X$ with closed range is surjective.

However, if

- $\{e_n\}$ is a basis of subspace of X, $\|e_n\| = 2^{-n}$.
- $\{f^*_n\} \subset X^*$ is weak* dense of norm-one operators,

Then $T(x) = \sum_n f^*_n(x)e_n$ defines an injective operator which is not surjective.

Theorem

There exists a compact space K such that every injective operator $T : C(K) \to C(K)$ is surjective.
In every space $C(K)$, for every $f \in C(K)$, we have the multiplication operator $T_f(g) = f \cdot g$.
In every space $C(K)$, for every $f \in C(K)$, we have the multiplication operator $T_f(g) = f \cdot g$.

1. T_f is injective iff $f^{-1}(0)$ has empty interior.
In every space $C(K)$, for every $f \in C(K)$, we have the multiplication operator $T_f(g) = f \cdot g$.

1. T_f is injective iff $f^{-1}(0)$ has empty interior.
2. T_f is bijective iff $f^{-1}(0) = \emptyset$.

Therefore, our space K must be an almost P-space: every nonempty zero set has nonempty interior.

If $K = \text{Stone}(B)$, this means that every decreasing sequence $a_1 > a_2 > \cdots$ in B fails to have an infimum.
In every space $C(K)$, for every $f \in C(K)$, we have the multiplication operator $T_f(g) = f \cdot g$.

1. T_f is injective iff $f^{-1}(0)$ has empty interior.
2. T_f is bijective iff $f^{-1}(0) = \emptyset$.

Therefore,
Our space K must be an almost P-space.
In every space $C(K)$, for every $f \in C(K)$, we have the multiplication operator $T_f(g) = f \cdot g$.

1. T_f is injective iff $f^{-1}(0)$ has empty interior.
2. T_f is bijective iff $f^{-1}(0) = \emptyset$.

Therefore,

Our space K must be an almost P-space: every nonempty zero set has nonempty interior.
In every space $C(K)$, for every $f \in C(K)$, we have the multiplication operator $T_f(g) = f \cdot g$.

1. T_f is injective iff $f^{-1}(0)$ has empty interior.
2. T_f is bijective iff $f^{-1}(0) = \emptyset$.

Therefore,

Our space K must be an almost P-space: every nonempty zero set has nonempty interior.

If $K = \text{Stone}(B)$, this means that every decreasing sequence $a_1 > a_2 > \cdots$ in B fails to have an infimum.
Looking for a compact space K

In every space $C(K)$, for every continuous $h : K \rightarrow K$ we have the composition operator $S_h(f) = f \circ h$.

S_h is injective iff h is surjective.

S_h is bijective iff h is bijective.

So, we need that every surjective $h : K \rightarrow K$ is bijective.

However, killing all non-constant $h : K \rightarrow K$ is not enough to control all operators $C(K) \rightarrow C(K)$. For this, we need K to be a Koszmider space.
In every space $C(K)$, for every continuous $h : K \to K$ we have the composition operator $S_h(f) = f \circ h$.

1. S_h is injective iff h is surjective.
In every space $C(K)$, for every continuous $h : K \to K$ we have the composition operator $S_h(f) = f \circ h$.

1. S_h is injective iff h is surjective
2. S_h is bijective iff h is bijective
Looking for a compact space K

In every space $C(K)$, for every continuous $h : K \to K$ we have the composition operator $S_h(f) = f \circ h$.

1. S_h is injective iff h is surjective
2. S_h is bijective iff h is bijective

So, we need that every surjective $h : K \to K$ is bijective.
In every space $C(K)$, for every continuous $h : K \to K$ we have the composition operator $S_h(f) = f \circ h$.

1. S_h is injective iff h is surjective
2. S_h is bijective iff h is bijective

So, we need that every surjective $h : K \to K$ is bijective. However, killing all non-constant $h : K \to K$ is not enough to control all operators $C(K) \to C(K)$. For this, we need K to be a Koszmider space.
A Koszmider space is a space K such that every operator $C(K) \rightarrow C(K)$ is a weak multiplier.
K is a Koszmider space if every operator $C(K) \rightarrow C(K)$ is a weak multiplier.

Weak multipliers

An operator $T : C(K) \rightarrow C(K)$ is a weak multiplier if
K is a Koszmider space if every operator $C(K) \rightarrow C(K)$ is a weak multiplier.

Weak multipliers

An operator $T : C(K) \rightarrow C(K)$ is a weak multiplier if for every disjoint sequence of functions $\{e_n\} \subset C(K)$ and
K is a Koszmider space if every operator $C(K) \to C(K)$ is a weak multiplier.

Weak multipliers

An operator $T : C(K) \to C(K)$ is a weak multiplier if for every disjoint sequence of functions $\{e_n\} \subset C(K)$ and points $x_n \in K$ with $e_n(x_n) = 0$,
K is a Koszmider space if every operator $C(K) \to C(K)$ is a weak multiplier.

Weak multipliers

An operator $T : C(K) \to C(K)$ is a weak multiplier if for every disjoint sequence of functions $\{e_n\} \subset C(K)$ and points $x_n \in K$ with $e_n(x_n) = 0$, then $T(e_n)(x_n) \to 0$.
K is a Koszmider space if every operator $C(K) \rightarrow C(K)$ is a weak multiplier.

Weak multipliers

An operator $T : C(K) \rightarrow C(K)$ is a weak multiplier if for every disjoint sequence of functions $\{e_n\} \subset C(K)$ and points $x_n \in K$ with $e_n(x_n) = 0$, then $T(e_n)(x_n) \rightarrow 0$.

Weak multiplications (stronger notion)

An operator $T : C(K) \rightarrow C(K)$ is a weak multiplication if $T = Tg + S$ where $g \in C(K)$, S is weakly compact.
Schlackow’s approach to Koszmider spaces

Let B be a Boolean algebra such that

1. for every pairwise disjoint family $\{a_n\} \cup \{b_n\}$,
Koszmider spaces

Schlackow’s approach to Koszmider spaces

Let B be a Boolean algebra such that

- for every pairwise disjoint family $\{a_n\} \cup \{b_n\}$, there exists infinite $\tau \subset \omega$ such that

Then $\text{Stone}(B)$ is a Koszmider space.

The almost P-space condition is incompatible with countable suprema to exist in B.
Schlackow’s approach to Koszmider spaces

Let B be a Boolean algebra such that

- for every pairwise disjoint family $\{a_n\} \cup \{b_n\}$, there exists infinite $\tau \subset \omega$ such that
 - $\sup_{n \in \tau} a_n$ exists,
Schlackow’s approach to Koszmider spaces

Let B be a Boolean algebra such that

- for every pairwise disjoint family $\{a_n\} \cup \{b_n\}$, there exists infinite $\tau \subset \omega$ such that
 - $\sup_{n \in \tau} a_n$ exists,
 - $\{b_n : n \in \tau\}$ and $\{b_n : n \notin \tau\}$ are not separated.

Then $\text{Stone}(B)$ is a Koszmider space.
Koszmider spaces

Schlackow’s approach to Koszmider spaces

Let B be a Boolean algebra such that

- for every pairwise disjoint family $\{a_n\} \cup \{b_n\}$, there exists infinite $\tau \subset \omega$ such that
 - $\sup_{n \in \tau} a_n$ exists,
 - $\{b_n : n \in \tau\}$ and $\{b_n : n \notin \tau\}$ are not separated.

Then $\text{Stone}(B)$ is a Koszmider space.
Let B be a Boolean algebra such that for every pairwise disjoint family $\{a_n\} \cup \{b_n\}$, there exists infinite $\tau \subset \omega$ such that:

- $\sup_{n \in \tau} a_n$ exists,
- $\{b_n : n \in \tau\}$ and $\{b_n : n \notin \tau\}$ are not separated.

Then $\text{Stone}(B)$ is a Koszmider space.

The almost P-space condition is incompatible with countable suprema to exist in B.

Schlackow’s approach to Koszmider spaces
More general approach

Let B be a Boolean algebra such that for every $\{a_n\}$ there exists a morphism $\phi: A \subset P(\omega) \to B$ such that $\phi(\{n\}) = a_n$, for every $\{b_n\}$, there exists infinite $\tau \subset \omega$ such that $\{b_n: n \in \tau\}$ and $\{b_n: n \notin \tau\}$ are not separated. Then $Stone(B)$ is a Koszmider space.
More general approach

Let B be a Boolean algebra such that for every $\{a_n\}$ there exists a morphism $\phi: \mathcal{P}(\omega) \rightarrow B$ such that $\phi(\{n\}) = a_n$. For every $\{b_n\}$, there exists infinite $\tau \subset \omega$ such that $\tau \in \mathcal{A}$, $\{b_n : n \in \tau\}$ and $\{b_n : n \notin \tau\}$ are not separated. Then $\text{Stone}(B)$ is a Koszmider space.
Koszmider spaces

More general approach

Let B be a Boolean algebra such that for every $\{a_n\}$ there exists a morphism $\varphi : A \subset \mathcal{P}(\omega) \longrightarrow B$ such that

- $\varphi(\{n\}) = a_n$,
More general approach

Let B be a Boolean algebra such that
for every $\{a_n\}$ there exists a morphism $\varphi : A \subset P(\omega) \rightarrow B$ such that

- $\varphi(\{n\}) = a_n$,
- For every $\{b_n\}$,
More general approach

Let B be a Boolean algebra such that for every $\{a_n\}$ there exists a morphism $\varphi : A \subset \mathcal{P}(\omega) \to B$ such that

- $\varphi(\{n\}) = a_n$,
- For every $\{b_n\}$, there exists infinite $\tau \subset \omega$ such that

Then $\text{Stone}(B)$ is a Koszmider space.
More general approach

Let B be a Boolean algebra such that for every $\{a_n\}$ there exists a morphism $\varphi : A \subset P(\omega) \to B$ such that

- $\varphi(\{n\}) = a_n$,
- For every $\{b_n\}$, there exists infinite $\tau \subset \omega$ such that $\tau \in A$,
More general approach

Let B be a Boolean algebra such that for every $\{a_n\}$ there exists a morphism $\varphi : A \subset \mathcal{P}(\omega) \rightarrow B$ such that

- $\varphi(\{n\}) = a_n$,
- For every $\{b_n\}$, there exists infinite $\tau \subset \omega$ such that
 - $\tau \in A$,
 - $\{b_n : n \in \tau\}$ and $\{b_n : n \notin \tau\}$ are not separated.

Then $\text{Stone}(B)$ is a Koszmider space.
More general approach

Let B be a Boolean algebra such that for every $\{a_n\}$ there exists a morphism $\varphi : A \subset \mathcal{P}(\omega) \longrightarrow B$ such that

- $\varphi(\{n\}) = a_n$,
- For every $\{b_n\}$, there exists infinite $\tau \subset \omega$ such that
 - $\tau \in A$,
 - $\{b_n : n \in \tau\}$ and $\{b_n : n \notin \tau\}$ are not separated.

Then $\text{Stone}(B)$ is a Koszmider space.
Our space

Theorem

There exists $K = \text{Stone}(B)$ that is a Koszmider space and an almost P-space. Every injective $T : C(K) \to C(K)$ is surjective.