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Question (Haily, Kaidi, Rodriguez-Palacios)

Is there an infinite dimensional Banach space X such that every
injective operator T : X — X is surjective?
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Spaces with few operators, like Gowers-Maurey, satisfy:
© Every surjective operator T : X — X is injective.

@ Every injective operator T : X — X with closed range is
surjective.

However, if
e {e,} is a basis of subspace of X, ||e,||=2"".
e {f} C X* is weak™ dense of norm-one operators,

Then T(x) =Y, (x)e, defines an injective operator which is not
surjective.

There exists a compact space K such that every injective operator
T : C(K) — C(K) is surjective.
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In every space C(K), for every f € C(K), we have the
multiplication operator T¢(g)="1-g.

@ Tr is injective iff f~1(0) has empty interior.
@ Ty is bijective iff f71(0) = 0.

Therefore,

Our space K must be an almost P-space: every nonempty zero set
has nonempty interior.

If K = Stone(B), this means that every decreasing sequence
ai > a» > --- in B fails to have an infimum.
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Looking for a compact space K

In every space C(K), for every continuous h: K — K we have the
composition operator Sp(f) = foh.

Q Sy is injective iff h is surjective

@ S is bijective iff h is bijective
So, we need that every surjective h: K — K is bijective.
However, killing all non-constant h: K — K is not enough to

control all operators C(K) — C(K). For this, we need K to be a
Koszmider space.
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weak multiplier.

Weak multipliers

An operator T : C(K) — C(K) is a weak multiplier if for every
disjoint sequence of functions {e,} C C(K) and points x, € K with
en(xn) =0, then T(e,)(x,) — 0.

4

Weak multiplications (stronger notion)

An operator T : C(K) — C(K) is a weak multiplication if
T =Tg+S where g € C(K), S is weakly compact.

A\
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Let B be a Boolean algebra such that
e for every pairwise disjoint family {a,}U{b,}, there exists
infinite T C @ such that
® SUp,c;dn exists,
o {b,:net}and {b,: n¢t} are not separated.

Then Stone(B) is a Koszmider space.

The almost P-space condition is incompatible with countable
suprema to exist in B.
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Our space

There exists K = Stone(B) that is a Koszmider space and an
almost P-space. Every injective T : C(K) — C(K) is surjective.




