Representing ideals on Polish spaces

Adam Kwela

Polish Academy of Sciences

February 1, 2013

Joint work with Marcin Sabok
Definition

Suppose that X is a Polish space and I is a σ-ideal on X containing all singletons. Given a dense countable set $D \subset X$ we define the ideal

$$J_I = \{ a \subset D : cl(a) \in I \}.$$
Definition

Suppose that X is a Polish space and I is a σ-ideal on X containing all singletons. Given a dense countable set $D \subset X$ we define the ideal

$$J_I = \{ a \subset D : \text{cl}(a) \in I \}.$$

Given an ideal J on a countable set E we say that J is represented on a Polish space if there are X, I, D as above and a bijection $\rho : E \to D$ such that $J = \{ a \subset E : \rho[a] \in J_I \}$.

Examples

$NWD(Q) = \{ a \subset Q \cap [0,1] : a \text{ is nowhere dense} \}$

$\text{NULL}(Q) = \{ a \subset Q \cap [0,1] : \text{cl}(a) \text{ is of Lebesgue measure zero} \}$

Adam Kwela

Representing ideals on Polish spaces
Definition

Suppose that X is a Polish space and I is a σ-ideal on X containing all singletons. Given a dense countable set $D \subset X$ we define the ideal

$$J_I = \{ a \subset D : \text{cl}(a) \in I \} .$$

Given an ideal J on a countable set E we say that J is represented on a Polish space if there are X, I, D as above and a bijection $\rho : E \rightarrow D$ such that $J = \{ a \subset E : \rho[a] \in J_I \}$. If X is compact, then we say that J is represented on a compact space.
Ideals represented on Polish spaces

Definition

Suppose that X is a Polish space and I is a σ-ideal on X containing all singletons. Given a dense countable set $D \subset X$ we define the ideal

$$J_I = \{ a \subset D : \text{cl}(a) \in I \}.$$

Given an ideal J on a countable set E we say that J is represented on a Polish space if there are X, I, D as above and a bijection $\rho : E \to D$ such that $J = \{ a \subset E : \rho[a] \in J_I \}$. If X is compact, then we say that J is represented on a compact space.

Examples

$\text{NWD}(\mathbb{Q}) = \{ a \subset \mathbb{Q} \cap [0, 1] : a \text{ is nowhere dense} \}$

$\text{NULL}(\mathbb{Q}) = \{ a \subset \mathbb{Q} \cap [0, 1] : \text{cl}(a) \text{ is of Lebesgue measure zero} \}$
For an ideal J on ω the equivalence relation E_J on 2^ω is given by

$$x E_J y \iff x \triangle y \in J.$$
Motivation

Definition

For an ideal J on ω the equivalence relation E_J on 2^ω is given by $x E_J y \iff x \triangle y \in J$.

Theorem (Zapletal, 2012)

Let J be an ideal represented on a compact space.

(a) Suppose that E is an equivalence relation of a turbulent action. Every Borel homomorphism from E to E_J maps a comeager set to a single E_J-equivalence class.

(b) Suppose that J is represented by a Π^0_2-ideal of compact sets. Every Borel homomorphism from E_J to countable structures maps a comeager set to a single equivalence class.
Definition

For an ideal \(J \) on \(\omega \) the equivalence relation \(E_J \) on \(2^\omega \) is given by
\[
x E_J y \iff x \Delta y \in J.
\]

Theorem (Zapletal, 2012)

Let \(J \) be an ideal represented on a compact space.
(a) Suppose that \(E \) is an equivalence relation of a turbulent action. Every Borel homomorphism from \(E \) to \(E_J \) maps a comeager set to a single \(E_J \)-equivalence class.

(b) Suppose that \(J \) is represented by a \(\Pi_0^2 \) ideal of compact sets. Every Borel homomorphism from \(E_J \) to countable structures maps a comeager set to a single equivalence class.
Motivation

Definition

For an ideal \(J \) on \(\omega \) the equivalence relation \(E_J \) on \(2^\omega \) is given by
\[
x E_J y \iff x \triangle y \in J.
\]

Theorem (Zapletal, 2012)

Let \(J \) be an ideal represented on a compact space.
(a) Suppose that \(E \) is an equivalence relation of a turbulent action. Every Borel homomorphism from \(E \) to \(E_J \) maps a comeager set to a single \(E_J \)-equivalence class.
(b) Suppose that \(J \) is represented by a \(\Pi^0_2 \sigma \)-ideal of compact sets. Every Borel homomorphism from \(E_J \) to countable structures maps a comeager set to a single equivalence class.
Conjecture (Sabok-Zapletal)

For any ideal J on a countable set the following are equivalent:
(a) J is represented on a compact space;
(b) J is dense Π^0_3 and weakly selective.
Conjecture (Sabok-Zapletal)

For any ideal J on a countable set the following are equivalent:
(a) J is represented on a compact space;
(b) J is dense Π^0_3 and weakly selective.

Definition

We say that an ideal J on a countable set D is weakly selective if for any $a \notin J$ and any $f : a \to \omega$ there is $b \subset a$ with $b \notin J$ such that f restricted to b is either one-to-one or constant.
Characterization of ideals represented on Polish spaces

Definition

An ideal J on a countable set is dense if any infinite set contains an infinite subset belonging to the ideal.
Definition

An ideal J on a countable set is dense if any infinite set contains an infinite subset belonging to the ideal.

The following definition is a variation of Todorčević’s notion of countably separated gaps.

Definition
Definition

An ideal J on a countable set is dense if any infinite set contains an infinite subset belonging to the ideal.

The following definition is a variation of Todorčević’s notion of countably separated gaps.

Definition

We say that an ideal J on a countable set D is countably separated if there is a countable family $\{x_n : n \in \omega\}$ of subsets of D such that for any $a, b \subset D$ with $a \notin J$ and $b \in J$ there is $n \in \omega$ with $a \cap x_n \notin J$ and $b \cap x_n = \emptyset$.
Main Theorem (K.-Sabok)

For any ideal J on a countable set the following are equivalent:
(a) J is represented on a Polish space;
(b) J is dense and countably separated;
Main Theorem (K.-Sabok)

For any ideal J on a countable set the following are equivalent:
(a) J is represented on a Polish space;
(b) J is dense and countably separated;
(c) J is represented on a compact space.
Definition

Given two ideals J, K on ω we write $J \leq_{RB} K$ and say that J is Rudin-Blass below K if there is a finite-to-one $f : \omega \to \omega$ such that

$$a \in K \iff f^{-1}[a] \in J,$$

for every $a \subset \omega$.

A. Kwela

Representing ideals on Polish spaces
The Rudin-Blass reduction

Definition

Given two ideals J, K on ω we write $J \leq_{RB} K$ and say that J is Rudin-Blass below K if there is a finite-to-one $f : \omega \to \omega$ such that

$$a \in K \iff f^{-1}[a] \in J,$$

for every $a \subset \omega$.

J and K are Rudin-Blass equivalent if $J \leq_{RB} K$ and $K \leq_{RB} J$.

Corollary (K.-Sabok)

The class of ideals represented on Polish spaces is invariant under Rudin-Blass equivalence.
The Rudin-Blass reduction

Definition

Given two ideals J, K on ω we write $J \leq_{RB} K$ and say that J is Rudin-Blass below K if there is a finite-to-one $f : \omega \to \omega$ such that

$$a \in K \iff f^{-1}[a] \in J,$$

for every $a \subseteq \omega$.

J and K are Rudin-Blass equivalent if $J \leq_{RB} K$ and $K \leq_{RB} J$.

Corollary (K.-Sabok)

The class of ideals represented on Polish spaces is invariant under Rudin-Blass equivalence.
Descriptive complexity of ideals represented on Polish spaces

Theorem (K.-Sabok)

If J is an analytic ideal represented on a Polish space, then it is Π^0_3-complete.

Corollary (K.-Sabok)

If J is a coanalytic ideal represented on a Polish space, then it is either Π^0_3-complete or Π^1_1-complete.
Theorem (K.-Sabok)

If J is an analytic ideal represented on a Polish space, then it is Π_3^0-complete.

Corollary (K.-Sabok)

If J is a coanalytic ideal represented on a Polish space, then it is either Π_3^0-complete or Π_1^1-complete.
Thank you!