Cardinal Invariants of porous spaces

Arturo Martínez

CCM - UNAM
Hejnice 2013
Definition

Let $\langle X, d \rangle$ be a metric space. A subset $A \subseteq X$ is **strongly porous** if there exist a $p > 0$ such that for every $x \in X$ and every $r \in (0, \text{diam}X)$, there is $y \in X$ such that $B_{pr}(y) \subseteq B_r(x) \setminus A$.

Let's call $\text{SP}(X)$ the σ-ideal generated by strongly porous sets of X.

There are many concepts regarding porosity. One of them caught the attention of J. Brendle and R. Repický.
Let $\langle X, d \rangle$ be a metric space. A subset $A \subseteq X$ is strongly porous if there exist a $p > 0$ such that for every $x \in X$ and every $r \in (0, \text{diam} X)$, there is $y \in X$ such that $B_{pr}(y) \subseteq B_r(x) \setminus A$.

Let's call $\mathbf{SP}(X)$ the σ-ideal generated by strongly porous sets of X.

There are many concepts regarding porosity. One of them caught the attention of J. Brendle and R. Repický.
Motivation
Strongly porous sets
non(SP) vs add(N)
non(SP) sub n

Definition

Let \(\langle X, d \rangle \) be a metric space. A subset \(A \subseteq X \) is strongly porous if there exist a \(p > 0 \) such that for every \(x \in X \) and every \(r \in (0, \text{diam}X) \), there is \(y \in X \) such that \(B_{pr}(y) \subseteq B_r(x) \setminus A \).

Let's call \(SP(X) \) the \(\sigma \)-ideal generated by strongly porous sets of \(X \).

There are many concepts regarding porosity. One of them caught the attention of J. Brendle and R. Repický.
Theorem (J. Brendle, R. Repický)
\[
\text{add}(\text{UP}) = \omega_1, \quad \text{cof}(\text{UP}) = \mathfrak{c}, \quad \text{cov}(\text{UP}) \leq \text{cov}(\mathcal{N}), \quad \text{non}(\text{UP}) \geq \mathfrak{p}, \quad \text{non}(\text{UP}) \geq \text{add}(\mathcal{N})
\]

Theorem (M. Hrušák, O. Zindulka)

It is consistent with ZFC that \(\text{cov}(\text{SP}) > \text{cof}(\mathcal{N})\) *and that* \(\text{non}(\text{SP}) < \mathfrak{p}\)*

Our goal is to prove the consistency of \(\text{non}(\text{SP}) > \text{add}(\mathcal{N})\)*
Theorem (J. Brendle, R. Repický)

\[
\begin{align*}
\text{add}(\text{UP}) &= \omega_1, \\
\text{cof}(\text{UP}) &= c, \\
\text{cov}(\text{UP}) &\leq \text{cov}(\mathcal{N}), \\
\text{non}(\text{UP}) &\geq p, \\
\text{non}(\text{UP}) &\geq \text{add}(\mathcal{N})
\end{align*}
\]

Theorem (M. Hrušák, O. Zindulka)

It is consistent with ZFC that \(\text{cov}(\text{SP}) > \text{cof}(\mathcal{N})\) *and that* \(\text{non}(\text{SP}) < p\)*

Our goal is to prove the consistency of \(\text{non}(\text{SP}) > \text{add}(\mathcal{N})\)
Motivation

Strongly porous sets
non(SP) vs add(N)

non(SP) sub n

Theorem (J. Brendle, R. Repický)

\[
\text{add}(\text{UP}) = \omega_1, \text{cof}(\text{UP}) = \mathfrak{c}, \text{cov}(\text{UP}) \leq \text{cov}(\mathcal{N}), \text{non}(\text{UP}) \geq p, \\
\text{non}(\text{UP}) \geq \text{add}(\mathcal{N})
\]

Theorem (M. Hrušák, O. Zindulka)

It is consistent with ZFC that cov(SP) > cof(\mathcal{N}) and that non(SP) < p

Our goal is to prove the consistency of non(SP) > add(\mathcal{N})
¿What can we say about the cardinal invariants of $\text{SP} (\mathbb{R})$?

Theorem

- $\text{add} (\text{SP} (\mathbb{R})) = \text{add} (\text{SP} (2^\omega))$.
- $\text{cov} (\text{SP} (\mathbb{R})) = \text{cov} (\text{SP} (2^\omega))$.
- $\text{non} (\text{SP} (\mathbb{R})) = \text{non} (\text{SP} (2^\omega))$.
- $\text{cof} (\text{SP} (\mathbb{R})) = \text{cof} (\text{SP} (2^\omega))$.
¿What can we say about the cardinal invariants of $\text{SP}(\mathbb{R})$?

Theorem

- $\text{add}(\text{SP}(\mathbb{R})) = \text{add}(\text{SP}(2^{\omega}))$.
- $\text{cov}(\text{SP}(\mathbb{R})) = \text{cov}(\text{SP}(2^{\omega}))$.
- $\text{non}(\text{SP}(\mathbb{R})) = \text{non}(\text{SP}(2^{\omega}))$.
- $\text{cof}(\text{SP}(\mathbb{R})) = \text{cof}(\text{SP}(2^{\omega}))$.
Lemma

A subset $A \subseteq 2^\omega$ is strongly porous iff there is a $n \in \omega$ such that for every $p \in 2^{<\omega}$ there is $q \in 2^{<\omega}$ such that $p \subseteq q$, $|q| = |p| + n$ and $A \cap \langle q \rangle = \emptyset$.

Definition

Let $A \subseteq 2^\omega$. Let's say that A is a strongly porous set of n degree if for every $p \in 2^{<\omega}$ there is $q \in 2^{<\omega}$ such that $p \subseteq q$, $|q| = |p| + n$ and $A \cap \langle q \rangle = \emptyset$.

Therefore $A \subseteq 2^\omega$ is strongly porous iff there exists n such that A is strongly porous of n degree. Let's call SP_n the σ-ideal generated by strongly porous subsets of n degree.
Lemma

A subset $A \subseteq 2^\omega$ is strongly porous iff there is a $n \in \omega$ such that for every $p \in 2^{<\omega}$ there is $q \in 2^{<\omega}$ such that $p \subseteq q$, $|q| = |p| + n$ and $A \cap \langle q \rangle = \emptyset$.

Definition

Let $A \subseteq 2^\omega$. Lets say that A is a strongly porous set of n degree if for every $p \in 2^{<\omega}$ there is $q \in 2^{<\omega}$ such that $p \subseteq q$, $|q| = |p| + n$ and $A \cap \langle q \rangle = \emptyset$.

Therefore $A \subseteq 2^\omega$ is strongly porous iff there exists n such that A is strongly porous of n degree.

Lets call SP_n the σ-ideal generated by strongly porous subsets of n degree.
Lemma

A subset $A \subseteq 2^{\omega}$ is strongly porous iff there is a $n \in \omega$ such that for every $p \in 2^{<\omega}$ there is $q \in 2^{<\omega}$ such that $p \subseteq q$, $|q| = |p| + n$ and $A \cap \langle q \rangle = \emptyset$.

Definition

Let $A \subseteq 2^{\omega}$. Lets say that A is a strongly porous set of n degree if for every $p \in 2^{<\omega}$ there is $q \in 2^{<\omega}$ such that $p \subseteq q$, $|q| = |p| + n$ and $A \cap \langle q \rangle = \emptyset$.

Therefore $A \subseteq 2^{\omega}$ is strongly porous iff there exists n such that A is strongly porous of n degree. Lets call SP_n the σ-ideal generated by strongly porous subsets of n degree.
Definition

A forcing \(\mathbb{P} \) strongly preserves non(\(\text{SP}_n \)) if for every \(\dot{X} \), a \(\mathbb{P} \) name for a porous set of \(n \) degree, there is \(Y \in \text{SP}_n \) such that for every \(x \in 2^\omega \), if \(x \notin Y \), then \(\Vdash_\mathbb{P} \text{"} x \notin \dot{X} \" \).

Lemma

If \(\mathbb{P} \) strongly preserves non(\(\text{SP}_n \)), then \(V[G] \models 2^\omega \cap V \notin \text{SP}_n \).
Definition

A forcing \mathbb{P} strongly preserves non(SP_n) if for every \dot{X}, a \mathbb{P} name for a porous set of n degree, there is $Y \in \text{SP}_n$ such that for every $x \in 2^\omega$, if $x \notin Y$, then $\Vdash_{\mathbb{P}} "x \notin \dot{X}"$.

Lemma

If \mathbb{P} strongly preserves non(SP_n), then $V[G] \models 2^\omega \cap V \notin \text{SP}_n$.
Motivation
Strongly porous sets
non(SP) vs add(N)
non(SP) sub n

Lemma
Let \mathbb{P} be a $\sigma\left(2^n\right)$-linked forcing, then \mathbb{P} strongly preserves non(SP$_n$).

Lemma
Finite iteration of c.c.c. forcings which strongly preserves non(SP$_n$), strongly preserves non(SP$_n$).
Lemma

Let \mathbb{P} be a $\sigma (2^n)$-linked forcing, then \mathbb{P} strongly preserves $\text{non}(\text{SP}_n)$.

Lemma

Finite iteration of c.c.c. forcings which strongly preserves $\text{non}(\text{SP}_n)$, strongly preserves $\text{non}(\text{SP}_n)$.
Let
\[\mathbb{A} = \{B \in \text{Borel}(2^\omega) : \mu(B) > \frac{1}{2}\} \]
and lets say that $A \leq B$ iff $A \subseteq B$. This is called the amoeba forcing.

Lemma

For every $n \in \omega$, \mathbb{A} is a σ n-linked forcing.

Therefore \mathbb{A} preserves non(SP_n) for every $n \in \omega$.

Lemma

If G is a generic filter over \mathbb{A}, then $V[G] \models \mu(\bigcup(\mathcal{N} \cap V)) = 0$.
Let

$$A = \{ B \in \text{Borel}(2^\omega) : \mu(B) > \frac{1}{2} \}$$

and lets say that $A \leq B$ iff $A \subseteq B$. This is called the amoeba forcing.

Lemma

For every $n \in \omega$, A is a σ-n-linked forcing.

Therefore A preserves non(SP$_n$) for every $n \in \omega$.

Lemma

If G is a generic filter over A, then $V[G] \models \mu(\bigcup (\mathcal{N} \cap V)) = 0.$
Let

\[\mathbb{A} = \{ B \in \text{Borel}(2^\omega) : \mu(B) > \frac{1}{2} \} \]

and let's say that \(A \leq B \) iff \(A \subseteq B \). This is called the amoeba forcing.

Lemma

For every \(n \in \omega \), \(\mathbb{A} \) is a \(\sigma \ n \)-linked forcing.

Therefore \(\mathbb{A} \) preserves non(\(\text{SP}_n \)) for every \(n \in \omega \).

Lemma

If \(G \) is a generic filter over \(\mathbb{A} \), then \(V[G] \models \mu(\bigcup(N \cap V)) = 0 \).
Let

\[\mathbb{A} = \{ B \in \text{Borel}(2^\omega) : \mu(B) > \frac{1}{2} \} \]

and lets say that \(A \leq B \) iff \(A \subseteq B \). This is called the amoeba forcing.

Lemma

For every \(n \in \omega \), \(\mathbb{A} \) is a \(\sigma \) \(n \)-linked forcing.

Therefore \(\mathbb{A} \) preserves \(\text{non}(\text{SP}_n) \) for every \(n \in \omega \).

Lemma

If \(G \) is a generic filter over \(\mathbb{A} \), then \(V[G] \models \mu(\bigcup(\mathcal{N} \cap V)) = 0 \).
Theorem

*It is consistent with ZFC that $\text{non}(\text{SP}) < \text{add}(\mathcal{N})$.***

Start with a model of CH and consider a finite support iteration of length ω_2 of amoeba forcing. If we have an uncountable family \mathcal{N} of null sets, then this family is encoded in a middle step of the iteration. Then, by the previous lemma, the union of this family is a null set in the next step of the iteration. On the other hand, as this forcing strongly preserves $\text{non}(\text{SP})$, $\text{non}(\text{SP}) = \omega_1$. Wait! there’s more.
Theorem

It is consistent with ZFC that \(\text{non}(\text{SP}) < \text{add}(\mathcal{N}) \).

Start with a model of CH and consider a finite support iteration of length \(\omega_2 \) of amoeba forcing. If we have an uncountable family \(\mathcal{N} \) of null sets, then this family is encoded in a middle step of the iteration. Then, by the previous lemma, the union of this family is a null set in the next step of the iteration. On the other hand, as this forcing strongly preserves \(\text{non}(\text{SP}) \), \(\text{non}(\text{SP}) = \omega_1 \).

Wait! there’s more.
Theorem

It is consistent with ZFC that \(\text{non}(\text{SP}) < \text{add}(\mathcal{N}) \).

Start with a model of CH and consider a finite support iteration of length \(\omega_2 \) of amoeba forcing. If we have an uncountable family \(\mathcal{N} \) of null sets, then this family is encoded in a middle step of the iteration. Then, by the previous lemma, the union of this family is a null set in the next step of the iteration. On the other hand, as this forcing strongly preserves \(\text{non}(\text{SP}) \), \(\text{non}(\text{SP}) = \omega_1 \).

Wait! there’s more.
What can we say about the cardinal non(\(\text{SP}_n\))? Let \(\mathbb{P}\) be the following forcing

\[
\mathbb{P}_n = \{ \langle s, F \rangle : \quad \begin{align*}
 (a) & \quad s; 2^{<\omega} \to 2^n, \\
 (b) & \quad |s| < \omega, \\
 (c) & \quad F \in [2^\omega]^{<\omega}, \\
 (d) & \quad \text{for every } \sigma \in \text{dom}(s), \quad F \cap \langle \sigma \smallfrown s(\sigma) \rangle = \emptyset,
\end{align*}
\]

we say that \(\langle s, F \rangle \leq \langle s', F' \rangle\) iff \(s' \subseteq s\) and \(F' \subseteq F\).
Lemma

\(\mathbb{P}_n \) is a \(\sigma (2^n - 1) \)-linked forcing.

Lemma

Let \(G \) be a \(\mathbb{P}_n \) generic filter over a ground model \(M \). Then
\[V[G] \models 2^\omega \cap V \in \text{SP}_n. \]

(\(\mathbb{P}_n \) can’t be a \(\sigma (2^n) \)-linked forcing.)

Theorem

For every \(n \in \omega \) and for every \(k < 2^n \), \(m_{\sigma k} \)-linked \(\leq \) \(\text{non}(\text{SP}_n) \).
Lemma

\mathbb{P}_n is a $\sigma\,(2^n - 1)$-linked forcing.

Lemma

*Let G be a \mathbb{P}_n generic filter over a ground model M. Then $V[G] \models 2^\omega \cap V \in \mathbf{SP}_n$.

(\mathbb{P}_n can’t be a $\sigma\,(2^n)$-linked forcing.)

Theorem

*For every $n \in \omega$ and for every $k < 2^n$, $m_{\sigma\,k}$-linked \leq non(\mathbf{SP}_n).***
Lemma

\mathbb{P}_n is a $\sigma (2^n - 1)$-linked forcing.

Lemma

Let G be a \mathbb{P}_n generic filter over a ground model M. Then $V[G] \models 2^\omega \cap V \in \text{SP}_n$.

(\mathbb{P}_n can’t be a $\sigma (2^n)$-linked forcing.)

Theorem

For every $n \in \omega$ and for every $k < 2^n$, $m_{\sigma k}$-linked \leq non(SP_n).
Lemma

\(\mathbb{P}_n \) is a \(\sigma (2^n - 1) \)-linked forcing.

Lemma

Let \(G \) be a \(\mathbb{P}_n \) generic filter over a ground model \(M \). Then \(V[G] \models 2^\omega \cap V \in \text{SP}_n \).

(\(\mathbb{P}_n \) can’t be a \(\sigma (2^n) \)-linked forcing.)

Theorem

For every \(n \in \omega \) and for every \(k < 2^n \), \(m_\sigma k \text{-linked} \leq \text{non(}\text{SP}_n\text{)} \).
Theorem

It is consistent with ZFC that \(\text{non}(\text{SP}_n) < \text{non}(\text{SP}_{n+1}) \).

Start with a ground model of ZFC + CH. Consider a finite support iteration of length \(\omega_2 \) of the forcing \(P_{n+1} \). As all of these forcings strongly preserve \(\text{non}(\text{SP}_1) \), then \(\text{non}(\text{SP}_n) = \omega_1 \). On the other hand, a reflection argument shows that \(\text{non}(\text{SP}_{n+1}) \geq \omega_2 \).
Theorem

It is consistent with ZFC that \(\text{non}(\text{SP}_n) < \text{non}(\text{SP}_{n+1}) \).

Start with a ground model of ZFC + CH. Consider a finite support iteration of length \(\omega_2 \) of the forcing \(\mathbb{P}_{n+1} \). As all of these forcings strongly preserve \(\text{non}(\text{SP}_1) \), then \(\text{non}(\text{SP}_n) = \omega_1 \). On the other hand, a reflection argument shows that \(\text{non}(\text{SP}_{n+1}) \geq \omega_2 \).
Here are some questions for you.
What can we say about $\text{add}(\text{SP})$ and $\text{cof}(\text{SP})$?
Can we separate more than 2 non-SP_n?
Here are some questions for you.
What can we say about $\text{add}(\text{SP})$ and $\text{cof}(\text{SP})$?
Can we separate more than 2 $\text{non}(\text{SP}_n)$?
Here are some questions for you.
What can we say about $\text{add}(\mathbf{SP})$ and $\text{cof}(\mathbf{SP})$? Can we separate more than 2 $\text{non}(\mathbf{SP}_n)$?