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Outline

All the unattributed results are due to Todorcevic and myself.
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Tukey reduction and basic orders

A directed order (D,≤) is a partial order such that for each x , y ∈ D
there is z ∈ D with x , y ≤ z .

A set A ⊆ D is called bounded if there is x ∈ D such that y ≤ x for each
y ∈ A.

A set A ⊆ D is cofinal if for each x ∈ D there y ∈ A with x ≤ y .
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Tukey reduction and basic orders

D and E directed orders.

A function f : D → E is called Tukey if preimages under f of sets
bounded in E are bounded in D.
We write

D ≤T E

if there is a Tukey function from D to E .
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Tukey reduction and basic orders

If D and E are Tukey reducible to each other, we say that they are Tukey
equivalent, and we write

D ≡T E .

Theorem (Tukey)

Let D and E be directed order. Then D ≡T E if and only if D and E can
be embedded as cofinal subsets of a directed order.
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Tukey reduction and basic orders

Dual point of view: A function g : E → D is convergent if images under
g of sets cofinal in E are cofinal in D.

For two directed orders D and E , there is a Tukey function from D to E if
and only if there is a convergent function from E to D.
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Tukey reduction and basic orders

Examples.

N <T NN

N 6≤T ω1, ω1 6≤T N
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Tukey reduction and basic orders

Connection with cardinal invariants.

add(D) = minimal cardinality of an unbounded subset of D

cof(D) = minimal cardinality of a cofinal subset of D.

D ≤T E =⇒ add(E ) ≤ add(D) and cof(D) ≤ cof(E ).
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Tukey reduction and basic orders

Basic orders
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Tukey reduction and basic orders

A directed order D is called basic if

— D is a separable metric space;

— each two elements of D have the least upper bound and the operation
of taking the least upper bound is a continuous function from D × D
to D;

— each bounded sequence has a convergent subsequence;

— each convergent sequence has a bounded subsequence.
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Tukey reduction and basic orders

Examples of basic orders.

1. N and NN

2. NWD all closed nowhere dense subsets of 2N taken with inclusion as
the directed order relation
View NWD as a subset of the compact space K(2N) with the Vietoris
topology.

3. `1 all subsets x of N with ∑
n∈x

1

n + 1
<∞

taken with inclusion as the directed order relation
View `1 with the topology given by the following metric

d(x , y) =
∑

n∈x4y

1

n + 1
.
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Tukey reduction and basic orders

A separable metric is called analytic if it is a continuous image of a Polish
space. For example, all Borel subsets of Polish spaces are analytic.

Basic orders whose underlying topology is analytic are called analytic
basic orders.

All the examples above are analytic basic orders.
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Tukey reduction and basic orders

Analytic basic orders form an initial class of basic orders.

Theorem

Let D and E be basic orders. If E is analytic and D ≤T E , then D is
analytic.
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Tukey reduction and basic orders

Theorem

Let D be a basic order. If the topology on D is analytic, then it is Polish.

Theorem

Let D and E be analytic basic orders. If D ≤T E , then there exist a Tukey
function from D to E that is measurable with respect to the σ-algebra
generated by analytic sets.
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Tukey reduction and basic orders

The interesting analytic basic orders are the non-locally compact ones:
NN, NWD, `1; not N.

Proposition

Let D be an analytic non-locally compact basic order. Then NN ≤T D.
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Tukey reduction and basic orders

Back to cardinal invariants.

MGR = all meager subsets of 2N taken with inclusion

NULL = all Lebesgue measure zero subsets of [0, 1] taken with inclusion

These are directed orders that are not basic orders. Cardinal invariants

add/cof(MGR) and add/cof(NULL)

are of interest.
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Tukey reduction and basic orders

A set is σ-bounded if it is a countable union of bounded sets.

D, E directed orders

D ≤ωT E

if there is a function D → E such that preimages of σ-bounded sets are
σ-bounded.

D ≡ωT E

if both D ≤ωT E and E ≤ωT D.

Note: D ≤T E implies D ≤ωT E .
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Tukey reduction and basic orders

addω(D) = minimal cardinality of a non-σ-bounded subset of D.

D ≤ωT E =⇒ addω(E ) ≤ addω(D), cof(D) ≤ max(ω, cof(E )).
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Tukey reduction and basic orders

Theorem (Bartoszyński, Raissonier–Stern, Fremlin)

MGR ≡ωT NWD and NULL ≡ωT `1.

So
add(MGR) = addω(NWD), cof(MGR) = cof(NWD)

add(NULL) = addω(`1), cof(NULL) = cof(`1).

So NWD ≤T `1 would give

add(NULL) ≤ add(MGR) and cof(MGR) ≤ cof(NULL).
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Ideals

Ideals
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Ideals

The main class of examples of basic orders are ideals taken with inclusion.

The world is divided into a compact part (σ-ideals, category leaf) and a
discrete part (P-ideals, measure leaf).
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Ideals

σ-ideals
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Ideals

X a compact metric space

K(X ) = all compact subsets of X with the Vietoris topology

K(X ) is a compact metric space.

A set I ⊆ K(X ) is a σ-ideal of compact sets if it is closed under taking
compact subsets and countable compact unions.

A σ-ideal of compact sets with inclusion and the topology inherited from
K(X ) is a basic order.
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Ideals

Kechris–Louveau–Woodin: a σ-ideal I of compact sets is locally compact
if and only if I = K(U) for some open set U ⊆ X .

Convention: a σ-ideal is an analytic, non-locally compact σ-ideal of
compact subsets of a compact metric space.

S lawomir Solecki (University of Illinois) Tukey reduction January 2013 27 / 57



Ideals

A σ-ideal I has property (∗) if for each sequence (Kn) of sets in I there
is a Gδ subset G of X such that

⋃
n Kn ⊆ G and all compact subsets of G

are in I.

Fact of nature: all naturally occurring σ-ideals have (∗).
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Ideals

Examples.

1. NN is Tukey equivalent to the σ-ideal with (∗) K([0, 1] \Q).

2. NWD is a σ-ideal with (∗).

3. Mátrai: there is a σ-ideal without (∗).

I found the following example I0.
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Ideals

Consider s̄ = (s0, s1, . . . ) infinite or finite with an even number of entries,
each si is a function from a non-empty finite subset of N to 2,
for each i , dom(si ) < dom(si+1).

Let R be the set of all such sequences.

For s̄ ∈ R, define

[s̄] = {x ∈ 2N : s2i ⊆ x or s2i+1 ⊆ x for each i}.

Define

I0 = {K ∈ K(2N) : K ∩ [s̄] is nowhere dense in [s̄] for each s̄ ∈ R }.

I0 is a σ-ideal without (∗).
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Ideals

P-ideals
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Ideals

A set I ⊆ P(N) is a P-ideal of subsets of N if it is closed under taking
finite unions and subsets and for each sequence xn ∈ I , n ∈ N, there is
x ∈ I such that xn \ x is finite for each n.

View I as a subspace of the compact metric space P(N) = 2N
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Ideals

S.: I is an analytic P-ideal of subsets of N if and only if there exists a
lower semicontinuous submeasure φ : P(N)→ [0,∞] such that

I = Exh(φ) = {x ∈ P(N) : lim
n
φ(x \ n) = 0}.

Such an I becomes a Polish space with the submeasure topology given
by the metric

dφ(x , y) = φ(x4y).
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Ideals

An analytic P-ideal of subsets of N taken with inclusion and with its
submeasure topology is an analytic basic order.

S.–Todorcevic: if an ideal I ⊆ P(N) taken with inclusion and with a
topology τ containing the topology inherited from P(N) is an analytic
basic order, then I is an analytic P-ideal and τ is the submeasure topology.
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Ideals

S.: an analytic P-ideal I of subsets of N is locally compact with its
submeasure topology if and only if I = {x ∈ P(N) : x ∩ a is finite} for
some a ⊆ N.

Convention: a P-ideal is an analytic, non-locally compact P-ideal of
subsets of N.
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Ideals

I = Exh(φ) a P-ideal for a lower semicontinuous submeasure φ.

I density-like if for each ε > 0 there is δ > 0 such that for each sequence
(xn) of sets in I with φ(xn) < δ there are n0 < n1 < n2 < · · · with

φ(
⋃
k

xnk ) < ε.
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Ideals

Examples.

1. NN is Tukey equivalent to the density-like P-ideal

∅ × Fin = {x ∈ P(N× N) : ∀m {n : (m, n) ∈ x} is finite}.

2. The ideal

Z0 = {x ∈ P(N) : lim
n

|x ∩ (n + 1)|
n + 1

= 0}

is a density-like P-ideal.
A lower semicontinuous submeasure for Z0:

φ0(x) = sup
n

|x ∩ (n + 1)|
n + 1

.
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Ideals

3. `1 is a P-ideal that is not density-like.
A lower semicontinuous submeasure for `1:

φ1(x) =
∑
n∈x

1

n + 1
.
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Structure of Tukey reduction among ideals

Structure of Tukey reduction among
ideals
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Structure of Tukey reduction among ideals

Within classes
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Structure of Tukey reduction among ideals

Theorem (Louveau–Veličković, Todorcevic)

`1 is Tukey largest among P-ideals.

Is there a Tukey largest σ-ideal?
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Structure of Tukey reduction among ideals

Theorem (Louveau–Veličković)

There is an embedding of the partial order P(N)/Fin with almost
inclusion into the class of P-ideals with with Tukey reduction.

Is the analogous result true for σ-ideals?
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Structure of Tukey reduction among ideals

Theorem (S.)

NWD is Tukey largest among σ-ideals with (∗).

Is there a Tukey largest density-like P-ideal?
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Structure of Tukey reduction among ideals

Across classes
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Structure of Tukey reduction among ideals

There are essentially no Tukey reduction from the P-ideals to σ-ideals.

Theorem

If I is a P-ideal, I a σ-ideal, and I ≤T I, then I is isomorphic to ∅ × Fin,
so I ≡T NN.

So if a P-ideal is Tukey equivalent to a σ-ideal, then they are both Tukey
equivalent to the smallest analytic non-locally compact basic order NN.
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Structure of Tukey reduction among ideals

Among examples
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Structure of Tukey reduction among ideals

Among the concrete examples defined above,

NN, NWD, I0, Z0, `1,

the structure of Tukey reduction is completely known.
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Structure of Tukey reduction among ideals

Theorem

(i) (Isbell, Fremlin, Louveau–Veličković)

NN <T Z0 <T `1

(ii) (Fremlin, Moore–Solecki)

NN <T NWD <T I0
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Structure of Tukey reduction among ideals

Theorem

(i) (Bartoszyński, Raissonier–Stern, Fremlin) NWD <T `1

(ii) (Mátrai, Solecki–Todorcevic) NWD 6≤T Z0

(iii) (Mátrai) I0 6≤T `1

From (i) we get

add(NULL) ≤ add(MGR) and cof(MGR) ≤ cof(NULL).
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Structure of Tukey reduction among ideals

Shadow of NWD
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Structure of Tukey reduction among ideals

Recall: NWD ≤T `1 and NWD 6≤T Z0.

Theorem

Let I be a density-like P-ideal. Then NWD 6≤T I .

Characterize those P-ideals I for which NWD ≤T I .
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Structure of Tukey reduction among ideals

Extracting an ordinal out of a P-ideal

I a P-ideal

I = Exh(φ), for a lower semicontinuous submeasure φ

Given a sequence (xn) of sets in I and ε > 0, the set

{b ⊆ N : φ(
⋃
n∈b

xn) ≤ ε} ⊆ 2N

is compact.

Let height of this set be ω1 if it contains an infinite set.

If it consists of finite sets only, let its height be α, where α is such that its
Cantor–Bendixson rank is α + 1.
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Structure of Tukey reduction among ideals

Let ε, δ > 0 and α ∈ ω1 be given.

Pε,δ(α) holds if for every sequence (xn) of sets in I with φ(xn) < δ

height({b : φ(
⋃
n∈b

xn) ≤ ε}) ≥ α.
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Structure of Tukey reduction among ideals

Let
ht(I ) = min{α ∈ ω1 : ∃ε > 0 ∀δ > 0 Pε,δ(α) fails}

if the set on the right hand side is non-empty, and let

ht(I ) = ω1

otherwise.
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Structure of Tukey reduction among ideals

Proposition

Let I be a P-ideal. Then

(i) ht(I ) does not depend on the choice of submeasure φ with
I = Exh(φ);

(ii)
ht(I ) = ω1 or ht(I ) = ωω

α
for some α < ω1.
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Structure of Tukey reduction among ideals

A characterization of P-ideals with the largest and smallest values of height

Theorem

Let I be a P-ideal. Then

(i) ht(I ) = ω1 if and only if I is density-like;

(ii) ht(I ) = ω if and only if I ≡T `1.

Height is an invariant of Tukey reduction.

Theorem

Let I , J be P-ideals. If I ≤T J, then ht(J) ≤ ht(I ).
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Structure of Tukey reduction among ideals

Is there an ordinal α such that

NWD ≤T I if and only if ht(I ) ≤ α ?
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