Tukey reduction

Sławomir Solecki

University of Illinois at Urbana-Champaign

January 2013

Outline of Topics

Tukey reduction and basic orders

Ideals

3 Structure of Tukey reduction among ideals

All the unattributed results are due to Todorcevic and myself.

Tukey reduction and basic orders

Tukey reduction

A **directed order** (D, \leq) is a partial order such that for each $x, y \in D$ there is $z \in D$ with $x, y \leq z$.

A set $A \subseteq D$ is called **bounded** if there is $x \in D$ such that $y \le x$ for each $y \in A$.

A set $A \subseteq D$ is **cofinal** if for each $x \in D$ there $y \in A$ with $x \le y$.

D and E directed orders.

A function $f: D \to E$ is called **Tukey** if preimages under f of sets bounded in E are bounded in D.

We write

$$D \leq_T E$$

if there is a Tukey function from D to E.

If D and E are Tukey reducible to each other, we say that they are **Tukey** equivalent, and we write

$$D \equiv_T E$$
.

Theorem (Tukey)

Let D and E be directed order. Then $D \equiv_T E$ if and only if D and E can be embedded as cofinal subsets of a directed order.

Dual point of view: A function $g: E \to D$ is **convergent** if images under g of sets cofinal in E are cofinal in D.

For two directed orders D and E, there is a Tukey function from D to E if and only if there is a convergent function from E to D.

Examples.

$$\mathbb{N} <_{\mathcal{T}} \mathbb{N}^{\mathbb{N}}$$

$$\mathbb{N} \not\leq_{\mathcal{T}} \omega_1, \ \omega_1 \not\leq_{\mathcal{T}} \mathbb{N}$$

Connection with cardinal invariants.

add(D) = minimal cardinality of an unbounded subset of D

cof(D) = minimal cardinality of a cofinal subset of D.

$$D \leq_{\mathcal{T}} E \Longrightarrow \operatorname{add}(E) \leq \operatorname{add}(D) \text{ and } \operatorname{cof}(D) \leq \operatorname{cof}(E).$$

Basic orders

A directed order *D* is called **basic** if

- D is a separable metric space;
- each two elements of D have the least upper bound and the operation of taking the least upper bound is a continuous function from $D \times D$ to D;
- each bounded sequence has a convergent subsequence;
- each convergent sequence has a bounded subsequence.

Examples of basic orders.

- **1.** \mathbb{N} and $\mathbb{N}^{\mathbb{N}}$
- **2.** NWD all *closed nowhere dense* subsets of $2^{\mathbb{N}}$ taken with inclusion as the directed order relation View NWD as a subset of the compact space $\mathcal{K}(2^{\mathbb{N}})$ with the Vietoris topology.
- **3.** ℓ_1 all subsets x of \mathbb{N} with

$$\sum_{n \in x} \frac{1}{n+1} < \infty$$

taken with inclusion as the directed order relation View ℓ_1 with the topology given by the following metric

$$d(x,y) = \sum_{n \in x \wedge y} \frac{1}{n+1}.$$

A separable metric is called **analytic** if it is a continuous image of a Polish space. For example, all Borel subsets of Polish spaces are analytic.

Basic orders whose underlying topology is analytic are called **analytic** basic orders.

All the examples above are analytic basic orders.

Analytic basic orders form an initial class of basic orders.

Theorem

Let D and E be basic orders. If E is analytic and $D \leq_T E$, then D is analytic.

Theorem

Let D be a basic order. If the topology on D is analytic, then it is Polish.

Theorem

Let D and E be analytic basic orders. If $D \leq_T E$, then there exist a Tukey function from D to E that is measurable with respect to the σ -algebra generated by analytic sets.

The interesting analytic basic orders are the non-locally compact ones: $\mathbb{N}^{\mathbb{N}}$, NWD, ℓ_1 ; not \mathbb{N} .

Proposition

Let D be an analytic non-locally compact basic order. Then $\mathbb{N}^{\mathbb{N}} \leq_{\mathcal{T}} D$.

Back to cardinal invariants.

 $\mathrm{MGR} = \mathsf{all}$ meager subsets of $2^\mathbb{N}$ taken with inclusion

 $\mathrm{NULL} = \mathsf{all}\ \mathsf{Lebesgue}\ \mathsf{measure}\ \mathsf{zero}\ \mathsf{subsets}\ \mathsf{of}\ [0,1]\ \mathsf{taken}\ \mathsf{with}\ \mathsf{inclusion}$

These are directed orders that are not basic orders. Cardinal invariants

add/cof(MGR) and add/cof(NULL)

are of interest.

A set is σ -bounded if it is a countable union of bounded sets.

D, E directed orders

$$D \leq_T^\omega E$$

if there is a function $D \to E$ such that preimages of σ -bounded sets are σ -bounded.

$$D \equiv^\omega_T E$$

if both $D \leq_T^{\omega} E$ and $E \leq_T^{\omega} D$.

Note: $D \leq_T E$ implies $D \leq_T^{\omega} E$.

 $\operatorname{add}^{\omega}(D) = \text{ minimal cardinality of a non-}\sigma\text{-bounded subset of }D.$

$$D \leq_T^{\omega} E \Longrightarrow \operatorname{add}^{\omega}(E) \leq \operatorname{add}^{\omega}(D), \operatorname{cof}(D) \leq \operatorname{max}(\omega, \operatorname{cof}(E)).$$

Theorem (Bartoszyński, Raissonier-Stern, Fremlin)

 $\mathrm{MGR} \equiv_T^{\omega} \mathrm{NWD}$ and $\mathrm{NULL} \equiv_T^{\omega} \ell_1$.

So

$$\operatorname{add}(\operatorname{MGR}) = \operatorname{add}^{\omega}(\operatorname{NWD}), \ \operatorname{cof}(\operatorname{MGR}) = \operatorname{cof}(\operatorname{NWD})$$

$$add(NULL) = add^{\omega}(\ell_1), cof(NULL) = cof(\ell_1).$$

So NWD $\leq_{\mathcal{T}} \ell_1$ would give

$$add(NULL) \le add(MGR)$$
 and $cof(MGR) \le cof(NULL)$.

Ideals

The main class of examples of basic orders are ideals taken with inclusion.

The world is divided into a **compact part** (σ -ideals, category leaf) and a **discrete part** (P-ideals, measure leaf).

 σ -ideals

X a compact metric space

 $\mathcal{K}(X) = \text{all compact subsets of } X \text{ with the Vietoris topology}$

 $\mathcal{K}(X)$ is a compact metric space.

A set $\mathcal{I} \subseteq \mathcal{K}(X)$ is a σ -ideal of compact sets if it is closed under taking compact subsets and countable compact unions.

A σ -ideal of compact sets with inclusion and the topology inherited from $\mathcal{K}(X)$ is a basic order.

Kechris–Louveau–Woodin: a σ -ideal \mathcal{I} of compact sets is locally compact if and only if $\mathcal{I} = \mathcal{K}(U)$ for some open set $U \subseteq X$.

Convention: a σ -ideal is an analytic, non-locally compact σ -ideal of compact subsets of a compact metric space.

A σ -ideal \mathcal{I} has **property** (*) if for each sequence (K_n) of sets in \mathcal{I} there is a G_δ subset G of X such that $\bigcup_n K_n \subseteq G$ and all compact subsets of G are in \mathcal{I} .

Fact of nature: all naturally occurring σ -ideals have (*).

Examples.

- **1.** $\mathbb{N}^{\mathbb{N}}$ is Tukey equivalent to the σ -ideal with (*) $\mathcal{K}([0,1] \setminus \mathbb{Q})$.
- **2.** NWD is a σ -ideal with (*).
- **3.** Mátrai: there is a σ -ideal without (*).

I found the following example \mathcal{I}_0 .

Consider $\bar{s} = (s_0, s_1, \dots)$ infinite or finite with an even number of entries, each s_i is a function from a non-empty finite subset of \mathbb{N} to 2, for each i, $\mathrm{dom}(s_i) < \mathrm{dom}(s_{i+1})$.

Let \mathcal{R} be the set of all such sequences.

For $\bar{s} \in \mathcal{R}$, define

$$[\overline{s}] = \{x \in 2^{\mathbb{N}} \colon s_{2i} \subseteq x \text{ or } s_{2i+1} \subseteq x \text{ for each } i\}.$$

Define

$$\mathcal{I}_0 = \{ K \in \mathcal{K}(2^{\mathbb{N}}) \colon K \cap [\overline{s}] \text{ is nowhere dense in } [\overline{s}] \text{ for each } \overline{s} \in \mathcal{R} \ \}.$$

 \mathcal{I}_0 is a σ -ideal without (*).

P-ideals

A set $I \subseteq \mathcal{P}(\mathbb{N})$ is a **P-ideal of subsets of** \mathbb{N} if it is closed under taking finite unions and subsets and for each sequence $x_n \in I$, $n \in \mathbb{N}$, there is $x \in I$ such that $x_n \setminus x$ is finite for each n.

View I as a subspace of the compact metric space $\mathcal{P}(\mathbb{N})=2^{\mathbb{N}}$

S.: I is an analytic P-ideal of subsets of $\mathbb N$ if and only if there exists a lower semicontinuous submeasure $\phi\colon \mathcal P(\mathbb N)\to [0,\infty]$ such that

$$I = \operatorname{Exh}(\phi) = \{ x \in \mathcal{P}(\mathbb{N}) \colon \lim_{n} \phi(x \setminus n) = 0 \}.$$

Such an *I* becomes a Polish space with the **submeasure topology** given by the metric

$$d_{\phi}(x,y) = \phi(x \triangle y).$$

An analytic P-ideal of subsets of $\mathbb N$ taken with inclusion and with its submeasure topology is an analytic basic order.

S.–Todorcevic: if an ideal $I\subseteq \mathcal{P}(\mathbb{N})$ taken with inclusion and with a topology τ containing the topology inherited from $\mathcal{P}(\mathbb{N})$ is an analytic basic order, then I is an analytic P-ideal and τ is the submeasure topology.

S.: an analytic P-ideal I of subsets of $\mathbb N$ is locally compact with its submeasure topology if and only if $I = \{x \in \mathcal P(\mathbb N) : x \cap a \text{ is finite}\}$ for some $a \subseteq \mathbb N$.

Convention: a **P-ideal** is an analytic, non-locally compact P-ideal of subsets of \mathbb{N} .

 $I = \operatorname{Exh}(\phi)$ a P-ideal for a lower semicontinuous submeasure ϕ .

I density-like if for each $\epsilon > 0$ there is $\delta > 0$ such that for each sequence (x_n) of sets in *I* with $\phi(x_n) < \delta$ there are $n_0 < n_1 < n_2 < \cdots$ with

$$\phi(\bigcup_{k} x_{n_k}) < \epsilon$$

Examples.

1. $\mathbb{N}^{\mathbb{N}}$ is Tukey equivalent to the density-like P-ideal

$$\emptyset \times \text{Fin} = \{x \in \mathcal{P}(\mathbb{N} \times \mathbb{N}) \colon \forall m \ \{n \colon (m, n) \in x\} \text{ is finite}\}.$$

2. The ideal

$$\mathcal{Z}_0 = \{x \in \mathcal{P}(\mathbb{N}) \colon \lim_n \frac{|x \cap (n+1)|}{n+1} = 0\}$$

is a density-like P-ideal.

A lower semicontinuous submeasure for \mathcal{Z}_0 :

$$\phi_0(x) = \sup_n \frac{|x \cap (n+1)|}{n+1}.$$

3. ℓ_1 is a P-ideal that is not density-like. A lower semicontinuous submeasure for ℓ_1 :

$$\phi_1(x) = \sum_{n \in x} \frac{1}{n+1}.$$

Structure of Tukey reduction among ideals

Within classes

Theorem (Louveau-Veličković, Todorcevic)

 ℓ_1 is Tukey largest among P-ideals.

Is there a Tukey largest σ -ideal?

Theorem (Louveau-Veličković)

There is an embedding of the partial order $\mathcal{P}(\mathbb{N})/\mathrm{Fin}$ with almost inclusion into the class of P-ideals with with Tukey reduction.

Is the analogous result true for σ -ideals?

Theorem (S.)

NWD is Tukey largest among σ -ideals with (*).

Is there a Tukey largest density-like P-ideal?

Across classes

There are essentially no Tukey reduction from the P-ideals to σ -ideals.

Theorem

If I is a P-ideal, \mathcal{I} a σ -ideal, and I $\leq_T \mathcal{I}$, then I is isomorphic to $\emptyset \times \mathrm{Fin}$, so I $\equiv_T \mathbb{N}^{\mathbb{N}}$.

So if a P-ideal is Tukey equivalent to a σ -ideal, then they are both Tukey equivalent to the smallest analytic non-locally compact basic order $\mathbb{N}^{\mathbb{N}}$.

Among examples

Among the concrete examples defined above,

$$\mathbb{N}^\mathbb{N}, \; \mathrm{NWD}, \; \mathcal{I}_0, \; \mathcal{Z}_0, \; \ell_1,$$

the structure of Tukey reduction is completely known.

Theorem

(i) (Isbell, Fremlin, Louveau–Veličković)

$$\mathbb{N}^{\mathbb{N}} <_{\mathcal{T}} \mathcal{Z}_0 <_{\mathcal{T}} \ell_1$$

(ii) (Fremlin, Moore–Solecki)

$$\mathbb{N}^{\mathbb{N}} <_{\mathcal{T}} \mathbb{NWD} <_{\mathcal{T}} \mathcal{I}_0$$

Theorem

- (i) (Bartoszyński, Raissonier–Stern, Fremlin) NWD $<_{\mathcal{T}} \ell_1$
- (ii) (Mátrai, Solecki–Todorcevic) NWD $\not\leq_{\mathcal{T}} \mathcal{Z}_0$
- (iii) (Mátrai) $\mathcal{I}_0 \not\leq_{\mathcal{T}} \ell_1$

From (i) we get

 $add(NULL) \le add(MGR)$ and $cof(MGR) \le cof(NULL)$.

Shadow of NWD

Recall: NWD $\leq_{\mathcal{T}} \ell_1$ and NWD $\not\leq_{\mathcal{T}} \mathcal{Z}_0$.

Theorem

Let I be a density-like P-ideal. Then NWD $\not\leq_T$ I.

Characterize those P-ideals I for which $NWD \leq_T I$.

Extracting an ordinal out of a P-ideal

I a P-ideal

 $I=\mathrm{Exh}(\phi)$, for a lower semicontinuous submeasure ϕ

Given a sequence (x_n) of sets in I and $\epsilon > 0$, the set

$$\{b\subseteq\mathbb{N}\colon\phi(\bigcup_{n\in b}x_n)\leq\epsilon\}\subseteq2^{\mathbb{N}}$$

is compact.

Let **height** of this set be ω_1 if it contains an infinite set.

If it consists of finite sets only, let its **height** be α , where α is such that its Cantor–Bendixson rank is $\alpha + 1$.

Let ϵ , $\delta > 0$ and $\alpha \in \omega_1$ be given.

 $P_{\epsilon,\delta}(\alpha)$ holds if for every sequence (x_n) of sets in I with $\phi(x_n) < \delta$

$$\operatorname{height}(\{b: \phi(\bigcup_{n \in h} x_n) \leq \epsilon\}) \geq \alpha.$$

Let

$$ht(I) = min\{\alpha \in \omega_1 : \exists \epsilon > 0 \,\forall \delta > 0 \,P_{\epsilon,\delta}(\alpha) \text{ fails}\}$$

if the set on the right hand side is non-empty, and let

$$\operatorname{ht}(I) = \omega_1$$

otherwise.

Proposition

Let I be a P-ideal. Then

(i) ht(I) does not depend on the choice of submeasure ϕ with $I = Exh(\phi)$;

(ii)

$$\operatorname{ht}(I) = \omega_1 \text{ or } \operatorname{ht}(I) = \omega^{\omega^{\alpha}} \text{ for some } \alpha < \omega_1.$$

A characterization of P-ideals with the largest and smallest values of height

Theorem

Let I be a P-ideal. Then

- (i) $ht(I) = \omega_1$ if and only if I is density-like;
- (ii) $ht(I) = \omega$ if and only if $I \equiv_T \ell_1$.

Height is an invariant of Tukey reduction.

Theorem

Let I, J be P-ideals. If $I \leq_T J$, then $ht(J) \leq ht(I)$.

Is there an ordinal α such that

NWD $\leq_T I$ if and only if $ht(I) \leq \alpha$?