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A. NOTIONS OF DESCRIPTIVE SET
THEORY IN GENERIC EXTENSIONS.

Let X be a Polish space, let A C X be an an-
alytic set, and let V[G] be a generic extension
of V.

Question. How do we interpret X and A in
the extension?

Expected features. Interpretation of w% is
(w?)VIG] interpretations of sets preserve usual
set theoretic operations such as projection and
countable union/intersection.



Interpretation of a complete metric space.

Definition. If (X, d) is a complete metric space
in V, then its interpretation in V[G] is a com-
plete metric space (Y,e) in V[G] together with
a map ¢ : X — Y which is an isometry of (X, d)
with (rng(¢),e) and rng(¢) C Y is dense.

Fact. An interpretation exists, as a comple-
tion of (X,d) and is unique up to a commuting
diagram. The unique connecting map is an
iIsometry.

Example. id : RV — RVYIG] is an interpretation
of complete metric spaces.



Interpretation of a Polish space.

Definition. If (X,7) is a Polish space in V,
then its interpretation in V[G] is a map ¢ :
X — Y such that for some choices of complete
metricdon X andeonY, ¢ is an interpretation
of (X,d) in (Y,e).

Fact. An interpretation exists, and is unique
up to a commuting diagram. The uniqgue map
connecting two interpretations is a homeomor-
phism.

Example. id : (w¥)Y — (w¥)VIC] is an inter-
pretation of Polish spaces.



Interpretation of analytic sets.

Definition. If ¢ : X — Y is an interpretation
of a Polish space and C' C X is a closed set in
V', then its interpretation Ce IS just the closure
of ¢"C inY.

Definition. If ¢ : X — Y is an interpretation
and A C X is an analytic set in V, then its
interpretation A? C Y is p(C?*¥), where C C
X x X' is a closed set in V such that A = p(C)
and ¢ : X’ — Y’ is an interpretation.

Fact. The interpretation of an analytic set is
well-defined and it preserves usual operations
such as projection or countable union or in-
tersection. There is an obvious commutative
diagram.



B. THE QUOTIENT FORCINGS.

Definition. Let I be a o-ideal on a Polish
space X. The symbol P; denotes the poset of
Borel I-positive sets ordered by inclusion.

e Which forcings belong to this class?

e Study them using the methods of descrip-
tive set theory.

e Applications.



Combinatorial forcings and PF;.

Fact. (Sikorski) Every o-algebra with count-
ably many generators is of the form P;.

Corollary. Every tree forcing is of the form P;.

Counterexamples. Certain creature forcings
are not of the form P; even though the exten-
sion is given by a single real.



Pr adds a single real.

Theorem. If G C Py is a generic filter then
there is a unique point xzgen € xVIG] such that
for Borel B € Py, B € G if xgen € BYIG]. Thus,
V[G] = V]zgen].

Proof. Let G be the collection of all closed
sets in G. G has the FIP and contains sets of
arbitrarily small diameter, so NG is a singleton
{xgen}. Now induct on Borel complexity of B.

Note. Thus, for every B € P;, Bl £gen € B.



Properness.

Definition. A poset P is proper if for every
countable elementary submodel M of a large
structure with p € M, for every p € PN M
there is ¢ < p, a master condition, gl GN M is
generic over M.

Theorem. Py is proper if and only if for every
M and every Be PiNM, thesetC={zx€ X !z
is Pr-generic over M} is I-positive.

Proof. The set C is Borel; C = Npep UD N
M). If C € I, then C is the master condition.
If C ¢ 1 then there is no master condition.



C. EXAMPLES.

e For large classes of o-ideals, the poset Py
IS proper;

e there are natural improper examples as well
as unresolved cases;

e NO purely descriptive characterization of proper-
ness.
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Theorem. 1If I is a o-ideal o-generated by
closed sets then Py is proper.

Proof. Let M be a countable model, {F, :
n € w} closed sets in I. To construct a point
x generic over M, not in U, Fn, by induction
build B, € PN M such that Bo D By D ..., Bp
in n-th dense set in M, and B, N F, = 0. Let
x be the single point in N,, Bn.

11



Example. The Miller forcing.

Theorem. Let I be the o-ideal on w“ o-
generated by compact sets. Then, the quo-
tient Py has a dense subset naturally isomor-
phic to Miller forcing.

Proof. Hurewicz theorem shows that every
analytic set is either in I or it contains all
branches of a superperfect tree. The map
T +— [T1] is then the isomorphism of Miller forc-
ing with a dense subset of Frj.
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Definition. Let X be Polish, P a countable
collection of Borel sets, w : P — RT a weight
function. The pavement submeasure on X is
defined by u(B) = inf{Z,w(Pn) : B C U, Pn}.

Theorem. Let p be a pavement submeasure
on X, let I ={BC X : u(B)=0}. The poset
Py is proper.

Proof. Let B € P;, let M be a countable
model with B € M, let {P, : n € w} be pavers
with Z,w(Py) < u(B). To find a point x generic
over M, x ¢ U,, Pn, by induction on m € w build
conditions By, such that B D Bg D B; D ...,
By, in m-th dense set in M, and for some num-
ber nm, BmNUp<p,, Pn =0 and X5, w(Fp) <
uw(Bm). Let x be the unique point in N,,, Bm.
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D. DESCRIPTIVE SET THEORY AND
THE FORCING RELATION.

e Main goal: remove the forcing relation from
arguments;

e USse existing descriptive knowledge to iden-
tify new forcing properties;

e link combinatorial forcing proofs with de-
scriptive ones.

14



Borel reading of names.

Theorem. If P; is proper and BlFy €Y then
there is a condition C' C B and a Borel function
f:C —Y such that C -y = f(2gen).

Proof. Let M be a countable submodel with
B,ye M, let C ={x € B:x is Pr-generic over
M}. For x € C let f(x) =y/x. The function f
WOrKS.

Theorem. If P; is proper and BIFD CY is a
Borel set then there is a condition C C B and a
Borel set E C C xY suchthat CIv D = E.

Lgen*
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The bounding property.

Definition. A forcing P is bounding if for ev-
ery x € w* in the extension there is y € w¥ in
the ground model such that =z < y.

Theorem. Suppose that Py is proper. Then
Py is bounding iff both of the following hold:

e every [-positive Borel set has a compact
I-positive subset;

e the continuous reading of names:. every
Borel function on I-positive Borel domain
IS continuous on a Borel I-positive subset.

Note. If Py is proper then any two Polish
topologies on X giving the same Borel struc-
ture coincide on a Borel I-positive set.
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Fubini properties.

Definition. Let I,J be o-ideals on X,Y. I,J
have the Fubini property if there are no Borel
sets BC X, CCY, and D C B x C such that
B &1, C ¢ J, vertical sections of D are in J
and horizontal sections of =D are in 1.
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Definition. A o-ideal I on a Polish space X
is II1 on X7 (or A} on X1, etc.) If for every
analyticset A C 2¥x X theset {y e 2% : Ay, € I}
is II; (or A} etc.)

Heuristic. Many ZFC theorems about quo-
tient forcings of I} on X1 o-ideals. More com-
plicated ideals often need large cardinals.

Fact. A quotient poset P; of a II1 on X7 o-
ideal I, if proper, adds no dominating reals.
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E. DETERMINED GAMES ON
BOOLEAN ALGEBRAS.

e for a given forcing property of a poset P,
find a two player game characterizing it;

o if P = P; for a II] on X1 o-ideal I(or more
complicated with large cardinals), prove de-
terminacy of the game via an unraveling
argument;

e Use the winning strategy to make strong
conclusions.
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Bounding game.

Definition. Let P be a poset. In game G,
Player I plays maximal antichains A, C P and
Player II plays finite subsets B,, C A,,. Player II

wins if A,V Bn #= 0.

Theorem. The poset P is bounding iff Player
I has no winning strategy. If P = Py for H% on
2% o-ideal I then the game is determined.

Application. (Fremlin) If P is c.c.c. and
Player II has a winning strategy then the com-
pletion of P is a Maharam algebra. Thus, if I
is II} on X1, c.c.c. and bounding, P; must be
a Maharam algebra.
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Baire category preservation.

Definition. Let P be a poset. In game G,
Player I plays pn, Player II responds with ¢, <

pn. Player I wins if A, V,u>ngm # 0.

Theorem. The poset P preserves Baire cate-
gory iff Player II has no winning strategy. If I
is II1 on £1 and Pj is proper then the game is
determined.

Application. If P is c.c.c. and Player I has a
winning strategy, then every real added by P
is a Cohen real. Thus, if I is II on X}, c.c.c.
and preserves Baire category, then Py must be
the Cohen forcing.
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F. THE COUNTABLE SUPPORT
ITERATION.

Let I be an iterable o-ideal on a Polish space:

e it must have suitable interpretations in generic
extensions;

e ecvery [I-positive analytic set must have an
I-positive Borel subset;

e the quotient poset Py must be proper;

e the latter two must hold in every forcing
extension.

Then we can evaluate the o-ideals associated
with the countable support iteration of P;.
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Iterated Fubini power.

Definition. If I is a o-ideal on a Polish space
X and a € w1 is an ordinal, let I“ be the o-ideal
generated by sets Af, where f: X<® ] is an
arbitrary function and Ay = {¥ € X% : 38 €

o Z(B) € f(Z]B)}.

Theorem. If [ is a II] on X1 iterable o-ideal
and a € wq then (P;)® = Pja. Moreover, I% is
1} on X1

Fact. A similar theorem for the Laver forcing
requires large cardinals or similar assumptions
already for iteration of length 2.
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G. THE COUNTABLE SUPPORT
PRODUCT.

Let (I, : n € w) be o-ideals on Polish spaces
(Xn in € w).

e Is the poset [],, P, proper?

e \What is the associated o-ideal?

e \What forcing properties are preserved un-
der the product?
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The rectangular Ramsey property.

Definition. The o-ideals I,J have the rectan-
gular Ramsey property if for Borel sets B C X,
CCY,and Do,CBxCsuchthat B¢I, C¢J
and Bx C = {,, Dp, there are Borel sets B’ C B
and C’ C C such that B’ x ¢! ¢ D,, for some
fixed n.

Note. If I,J have the rectangular Ramsey
property, then the collection of Borel subset
of X x Y containing no rectangle B x C' for
Borel sets B¢ I and C' ¢ J, is a o-ideal, called
the box product of I,J, denoted by I x J.

Note. If this is the case then P; x Pj is natu-
rally isomorphic to a dense subset of Py ;.
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A product preservation theorem.

Theorem. If each I, : n € w is a II] on
>1 o-ideal such that the quotient poset Pj is
proper and bounding and preserves Baire cat-
egory, then [],, In has these properties again.

Proof. The argument depends on a deter-
mined Boolean game.
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H. OPTIMALITY OF ITERATED
MODELS.

Given an inequality r <1y, we will prove

e If it holds in some forcing extension then it
holds in a fixed c.s.i. extension;

e in this case, it also must hold in every
extension satisfying a certain variation of
Ciesielski-Pawlikowski Axiom.

T he verification reduces to a statement about
Borel sets.
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Tame cardinal invariants.

Definition. r is a tame cardinal invariant if it
is defined as the minimal size of a set A C 2%
such that ¢(A) Ay (A), where

e universal quantifiers of ¢ range over 2%¥ or
A, existential quantifiers range over ele-
ments of 2%

o Y(A) =Vx e 2¥Idy € A 6(x,y) where 0 does
not mention A at all.

Example. non(J) is tame, if J is a II] on X1
o-ideal. a is tame.

Example. § is not a tame invariant.
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Theorem. (LC) Whenever ¢ is a tame cardinal
invariant and ¢ < ¢ can be forced, then ¢ < ¢
holds in the iterated Sacks model.

r =smallest number of sets in an ideal neces-
sary to cover the real line etc.

e All inequalities of the type r < ¢ are mutu-
ally consistent.

e All inequalities ¢ < ¢ can be realized with
Ny =1 <c¢=No.

e Elimination of forcing.

e Needs large cardinals for Woodin's ¥% ab-
soluteness.
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I. DUALITY THEOREMS

Theorem. If J is a I on ¥{ o-ideal and ZFC
proves cov(J) = ¢ then non(J) < N».

Notation. cov(J) is the smallest size of a
family of J-sets that covers the whole space;
non(.J) is the smallest size of a non-J set.

Other dualities possible. Exchanging cov,non
with add,cof. Exchanging ¢, No with bm and

Rp+1-
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The main point. non(ctble®) < N, for every
countable ordinal «.

Proof. Use ZFC club guessing on X,. Pcf
theory gives the bound of N 4.

Generalizations. Other dualities require a sig-
nificantly sharper argument.
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J. PRESERVATION THEOREMS.

Theorem. If I is an iterable II} on X1 o-ideal
and J is a o-ideal o-generated by a coanalytic
collection of closed sets, then Fubini property
of I,J implies the Fubini property of I¢,J for
every countable ordinal o.

Corollary. In this case, the countable support
iteration of P; preserves J-positive sets.

Example. Preservation of Baire category is

preserved under the countable support itera-
tion of Frj.
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Definition. A o-ideal I on Polish X has the
overspill property if the closed countable sets
cannot be separated from the I-positive closed
sets by a Borel set.

Example. Countable sets, H-sets, ... vsS. mea-
ger sets, null sets, sets of extended uniqueness
etc.

Theorem. If I is iterable and II} on X1 with
the overspill property then even I? has the
overspill property for all countable o.

Corollary. The countable support of P; forces
that the relevant space is covered by the ground
model coded closed J-small sets, for every o-
ideal J without the overspill property.
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Definition. A o-ideal J on Polish X is ergodic
if there is a countable Borel equivalence rela-
tion E such that every Borel J-invariant set is
either J-small or its complement is J-small.

T heorem. If
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