CONVERGENCE AND CHARACTER SPECTRA
OF COMPACT SPACES

István Juhász
juhasz@renyi.hu

Alfréd Rényi Institute of Mathematics

Hejnice,
February, 2010
Overview

- Basic definitions
- Hušek’s problem
- Inclusion in spectra
- Omission by spectra
- A problem on the G_δ-topology
Overview

- Basic definitions
 - Hušek’s problem
 - Inclusion in spectra
 - Omission by spectra
 - A problem on the G_δ-topology
Overview

- Basic definitions
- Hušek’s problem
 - Inclusion in spectra
 - Omission by spectra
- A problem on the G_δ-topology
Overview

- Basic definitions
- Hušek’s problem
- Inclusion in spectra
- Omission by spectra
- A problem on the G_δ-topology
Overview

- Basic definitions
- Hušek’s problem
- Inclusion in spectra
- Omission by spectra
- A problem on the \(G_\delta \)-topology
Overview

- Basic definitions
- Hušek’s problem
- Inclusion in spectra
- Omission by spectra
- A problem on the G_δ-topology
convergence spectrum

$A \to p$ if, for every neighbourhood U of p, $|A \setminus U| < |A|$

$$cS(p, X) = \{ |A| : A \subset X \text{ and } A \to p \}$$

is the convergence spectrum of p in X

$$cS(X) = \bigcup \{ cS(x, X) : x \in X \}$$

is the convergence spectrum of X

$$\chi(p, X) = \psi(p, X) = \kappa \geq \omega \Rightarrow \text{there is a 1-1 sequence } \langle x_\alpha : \alpha < \kappa \rangle \text{ with } x_\alpha \to p; \text{ hence } \kappa, \text{cf}(\kappa) \in cS(p, X)$$

In a compact T_2 space X, $\chi(p, X) = \psi(p, X)$ for all points $p \in X$
A → p if, for every neighbourhood U of p, |A \ U| < |A|

\[cS(p, X) = \{ |A| : A \subset X \text{ and } A \rightarrow p \} \]

is the convergence spectrum of p in X

\[cS(X) = \bigcup \{ cS(x, X) : x \in X \} \]

is the convergence spectrum of X

\[\chi(p, X) = \psi(p, X) = \kappa \geq \omega \Rightarrow \text{there is a 1-1 sequence } \langle x_\alpha : \alpha < \kappa \rangle \text{ with } x_\alpha \rightarrow p; \text{ hence } \kappa, \text{cf}(\kappa) \in cS(p, X) \]

In a compact T_2 space X, \[\chi(p, X) = \psi(p, X) \] for all points p ∈ X
A → p if, for every neighbourhood \(U \) of \(p \), \(|A\setminus U| < |A|

\[
cS(p, X) = \{ |A| : A \subset X \text{ and } A \to p \}
\]
is the convergence spectrum of \(p \) in \(X \)

\[
cS(X) = \bigcup \{ cS(x, X) : x \in X \}
\]
is the convergence spectrum of \(X \)

\[
\chi(p, X) = \psi(p, X) = \kappa \geq \omega \Rightarrow \text{there is a 1-1 sequence } \langle x_\alpha : \alpha < \kappa \rangle \text{ with } x_\alpha \to p; \text{ hence } \kappa, \text{cf}(\kappa) \in cS(p, X)
\]

In a compact \(T_2 \) space \(X \), \(\chi(p, X) = \psi(p, X) \) for all points \(p \in X \)
A → p if, for every neighbourhood \(U \) of \(p \), \(|A \setminus U| < |A|\)

\[cS(p, X) = \{ |A| : A \subset X \text{ and } A \rightarrow p \} \]

is the convergence spectrum of \(p \) in \(X \)

\[cS(X) = \bigcup \{ cS(x, X) : x \in X \} \]

is the convergence spectrum of \(X \)

\[\chi(p, X) = \psi(p, X) = \kappa \geq \omega \Rightarrow \text{there is a 1-1 sequence } \langle x_\alpha : \alpha < \kappa \rangle \]

with \(x_\alpha \rightarrow p \); hence \(\kappa, \text{cf}(\kappa) \in cS(p, X) \)

In a compact \(T_2 \) space \(X \), \(\chi(p, X) = \psi(p, X) \) for all points \(p \in X \)
convergence spectrum

$A \rightarrow p$ if, for every neighbourhood U of p, $|A \setminus U| < |A|$

$$cS(p, X) = \{ |A| : A \subset X \text{ and } A \rightarrow p \}$$

is the convergence spectrum of p in X

$$cS(X) = \bigcup \{ cS(x, X) : x \in X \}$$

is the convergence spectrum of X

$$\chi(p, X) = \psi(p, X) = \kappa \geq \omega \Rightarrow \text{there is a 1-1 sequence } \langle x_\alpha : \alpha < \kappa \rangle$$

with $x_\alpha \rightarrow p$; hence $\kappa, cf(\kappa) \in cS(p, X)$

In a compact T_2 space X, $\chi(p, X) = \psi(p, X)$ for all points $p \in X$
convergence spectrum

\[A \rightarrow p \] if, for every neighbourhood \(U \) of \(p \), \(|A \setminus U| < |A| \)

\[cS(p, X) = \{ |A| : A \subset X \text{ and } A \rightarrow p \} \]

is the convergence spectrum of \(p \) in \(X \)

\[cS(X) = \bigcup \{cS(x, X) : x \in X\} \]

is the convergence spectrum of \(X \)

\[\chi(p, X) = \psi(p, X) = \kappa \geq \omega \Rightarrow \text{there is a 1-1 sequence } \langle x_\alpha : \alpha < \kappa \rangle \]

with \(x_\alpha \rightarrow p \); hence \(\kappa, \text{cf}(\kappa) \in cS(p, X) \)

In a compact \(T_2 \) space \(X \), \(\chi(p, X) = \psi(p, X) \) for all points \(p \in X \)
\(\chi S(p, X) = \{ \chi(p, Y) : p \text{ is non-isolated in } Y \subset X \} \)

is the character spectrum of \(p \) in \(X \).

\[\chi S(X) = \bigcup \{ \chi S(x, X) : x \in X \} \]

is the character spectrum of \(X \).

If \(X \) is compact \(T_2 \) then

\[\chi(p, Y) = \chi(p, \overline{Y}) \]

for any \(p \in Y \subset X \), so we may restrict to closed (i.e. compact) subspaces. This also implies:

For \(X \) compact \(T_2 \),

\[\chi S(p, X) \subset cS(p, X) \text{ and } \kappa \in \chi S(p, X) \Rightarrow cf(\kappa) \in cS(p, X) \]
character spectrum

\[\chi S(p, X) = \{ \chi(p, Y) : p \text{ is non-isolated in } Y \subset X \} \]

is the character spectrum of \(p \) in \(X \).

\[\chi S(X) = \bigcup \{ \chi S(x, X) : x \in X \} \]

is the character spectrum of \(X \).

If \(X \) is compact \(T_2 \) then

\[\chi(p, Y) = \chi(p, \overline{Y}) \]

for any \(p \in Y \subset X \), so we may restrict to closed (i.e. compact) subspaces. This also implies:

For \(X \) compact \(T_2 \),

\[\chi S(p, X) \subset cS(p, X) \text{ and } \kappa \in \chi S(p, X) \Rightarrow cf(\kappa) \in cS(p, X) \]
\[\chi S(p, X) = \{ \chi(p, Y) : p \text{ is non-isolated in } Y \subset X \} \]
is the character spectrum of \(p \) in \(X \)

\[\chi S(X) = \bigcup \{ \chi S(x, X) : x \in X \} \]
is the character spectrum of \(X \).

If \(X \) is compact \(T_2 \) then

\[\chi(p, Y) = \chi(p, \overline{Y}) \]

for any \(p \in Y \subset X \), so we may restrict to closed (i.e. compact) subspaces. This also implies:

For \(X \) compact \(T_2 \),

\[\chi S(p, X) \subset cS(p, X) \] and \(\kappa \in \chi S(p, X) \Rightarrow cf(\kappa) \in cS(p, X) \)
$\chi S(p, X) = \{\chi(p, Y) : p \text{ is non-isolated in } Y \subset X\}$
is the character spectrum of p in X

$\chi S(X) = \bigcup \{\chi S(x, X) : x \in X\}$
is the character spectrum of X.

If X is compact T_2 then

$\chi(p, Y) = \chi(p, \overline{Y})$

for any $p \in Y \subset X$, so we may restrict to closed (i.e. compact) subspaces. This also implies:

For X compact T_2,

$\chi S(p, X) \subset cS(p, X)$ and $\kappa \in \chi S(p, X) \Rightarrow \text{cf}(\kappa) \in cS(p, X)$
\[\chi S(p, X) = \{ \chi(p, Y) : p \text{ is non-isolated in } Y \subset X \} \]

is the character spectrum of \(p \) in \(X \).

\[\chi S(X) = \bigcup \{ \chi S(x, X) : x \in X \} \]

is the character spectrum of \(X \).

If \(X \) is compact \(T_2 \) then

\[\chi(p, Y) = \chi(p, \overline{Y}) \]

for any \(p \in Y \subset X \), so we may restrict to closed (i.e. compact) subspaces. This also implies:

For \(X \) compact \(T_2 \),

\[\chi S(p, X) \subset cS(p, X) \] and \(\kappa \in \chi S(p, X) \Rightarrow \text{cf}(\kappa) \in cS(p, X) \)
Hušek’s Problem

From here on, unless otherwise stated, space (usually denoted X) is compactum \equiv infinite compact T_2 space

Note: $\omega \in cS(X) \iff \omega \in \chi S(X)$ and $\min cS(X) \leq \min \chi S(X) \leq 2^\omega$

Alexandrov-Urysohn (1920’s) : Is $\omega \in cS(X)$?

NO! Tychonov (1935), Čech, (1937) : $\omega \notin cS(\beta \omega)$

M. Hušek (1970’s) : Is $\min cS(X) \leq \omega_1$?

A. Dow (1989) : $V^{\mathbb{C}_\kappa} \models$ YES , if $V \models$ CH

I. J. (1993) : $V^{\mathbb{C}_{\omega_1}} \models \min \chi S(X) \leq \omega_1$, for any V

I conjecture that $ZFC \vdash \min \chi S(X) \leq \omega_1$, but don’t even know if

$ZFC \vdash \chi S(X) \cap \text{REG} \neq \emptyset$?
Hušek’s Problem

From here on, unless otherwise stated, space \(\text{space} \) (usually denoted \(X \)) is compactum \(\equiv \) infinite compact \(T_2 \) space

Note: \(\omega \in cS(X) \iff \omega \in \chi S(X) \) and \(\min cS(X) \leq \min \chi S(X) \leq 2^\omega \)

Alexandrov-Urysohn (1920’s) : Is \(\omega \in cS(X) \) ?

NO! Tychonov (1935), Čech, (1937) : \(\omega \notin cS(\beta \omega) \)

M. Hušek (1970’s) : Is \(\min cS(X) \leq \omega_1 \) ?

A. Dow (1989) : \(V^{C_\kappa} \models \text{YES} \), if \(V \models \text{CH} \)

I. J. (1993) : \(V^{C_{\omega_1}} \models \min \chi S(X) \leq \omega_1 \), for any \(V \)

I conjecture that \(\text{ZFC} \vdash \min \chi S(X) \leq \omega_1 \), but don’t even know if

\[
\text{ZFC} \vdash \chi S(X) \cap \text{REG} \neq \emptyset ?
\]
Hušek’s Problem

From here on, unless otherwise stated, space (usually denoted X) is compactum \equiv infinite compact T_2 space

Note: $\omega \in cS(X) \iff \omega \in \chi S(X)$ and $\min cS(X) \leq \min \chi S(X) \leq 2^\omega$

Alexandrov-Urysohn (1920’s): Is $\omega \in cS(X)$?

NO! Tychonov (1935), Čech, (1937): $\omega \notin cS(\beta \omega)$

M. Hušek (1970’s): Is $\min cS(X) \leq \omega_1$?

A. Dow (1989): $V^{C\kappa} \models$ YES , if $V \models$ CH

I. J. (1993): $V^{C\omega_1} \models \min \chi S(X) \leq \omega_1$, for any V

I conjecture that ZFC $\vdash \min \chi S(X) \leq \omega_1$, but don’t even know if

$$ZFC \vdash \chi S(X) \cap \text{REG} \neq \emptyset$$
Hušek’s Problem

From here on, unless otherwise stated, space (usually denoted X) is compactum \equiv infinite compact T_2 space

Note: $\omega \in cS(X) \iff \omega \in \chi S(X)$ and $\min cS(X) \leq \min \chi S(X) \leq 2^\omega$

Alexandrov-Urysohn (1920’s) : Is $\omega \in cS(X)$?

NO! Tychonov (1935), Čech, (1937) : $\omega \notin cS(\beta \omega)$

M. Hušek (1970’s) : Is $\min cS(X) \leq \omega_1$?

A. Dow (1989) : $V^{\mathcal{C}_\kappa} \models$ YES , if $V \models$ CH

I. J. (1993) : $V^{\mathcal{C}_{\omega_1}} \models \min \chi S(X) \leq \omega_1$, for any V

I conjecture that ZFC $\vdash \min \chi S(X) \leq \omega_1$, but don’t even know if

$$ZFC \vdash \chi S(X) \cap \text{REG} \neq \emptyset$$
Hušek’s Problem

From here on, unless otherwise stated, space (usually denoted X) is compactum \equiv infinite compact T_2 space

Note: $\omega \in cS(X) \iff \omega \in \chi S(X)$ and $\min cS(X) \leq \min \chi S(X) \leq 2^\omega$

Alexandrov-Urysohn (1920’s) : Is $\omega \in cS(X)$?

NO! Tychonov (1935), Čech, (1937) : $\omega \notin cS(\beta \omega)$

M. Hušek (1970’s) : Is $\min cS(X) \leq \omega_1$?

A. Dow (1989) : $V^{C\kappa} \models$ YES , if $V \models$ CH

I. J. (1993) : $V^{C\omega_1} \models$ $\min \chi S(X) \leq \omega_1$, for any V

I conjecture that $ZFC \vdash \min \chi S(X) \leq \omega_1$, but don’t even know if

$ZFC \vdash \chi S(X) \cap \text{REG} \neq \emptyset$?
Hušek’s Problem

From here on, unless otherwise stated, space (usually denoted X) is compactum \equiv infinite compact T_2 space

Note: $\omega \in cS(X) \iff \omega \in \chi S(X)$ and $\min cS(X) \leq \min \chi S(X) \leq 2^\omega$

Alexandrov-Urysohn (1920’s) : Is $\omega \in cS(X)$?

NO! Tychonov (1935), Čech, (1937) : $\omega \notin cS(\beta \omega)$

M. Hušek (1970’s) : Is $\min cS(X) \leq \omega_1$?

A. Dow (1989) : $V^{C_\kappa} \models$ YES , if $V \models$ CH

I. J. (1993) : $V^{C_{\omega_1}} \models$ $\min \chi S(X) \leq \omega_1$, for any V

I conjecture that ZFC $\vdash \min \chi S(X) \leq \omega_1$, but don’t even know if $ZFC \vdash \chi S(X) \cap \text{REG} \neq \emptyset$?
Hušek’s Problem

From here on, unless otherwise stated, space (usually denoted X) is compactum \equiv infinite compact T_2 space

Note: $\omega \in cS(X) \iff \omega \in \chi S(X)$ and $\min cS(X) \leq \min \chi S(X) \leq 2^{\omega}$

Alexandrov-Urysohn (1920’s): Is $\omega \in cS(X)$?

NO! Tychonov (1935), Čech, (1937): $\omega \notin cS(\beta \omega)$

M. Hušek (1970’s): Is $\min cS(X) \leq \omega_1$?

A. Dow (1989): $V^{\mathcal{C}_\kappa} \models$ YES, if $V \models \text{CH}$

I. J. (1993): $V^{\mathcal{C}_{\omega_1}} \models \min \chi S(X) \leq \omega_1$, for any V

I conjecture that $\text{ZFC} \vdash \min \chi S(X) \leq \omega_1$, but don’t even know if

$$\text{ZFC} \vdash \chi S(X) \cap \text{REG} \neq \emptyset$$
Hušek’s Problem

From here on, unless otherwise stated, space (usually denoted X) is compactum \equiv infinite compact T_2 space

Note: $\omega \in cS(X) \iff \omega \in \chi S(X)$ and $\min cS(X) \leq \min \chi S(X) \leq 2^\omega$

Alexandrov-Urysohn (1920’s) : Is $\omega \in cS(X)$?

NO! Tychonov (1935), Čech, (1937) : $\omega \notin cS(\beta \omega)$

M. Hušek (1970’s) : Is $\min cS(X) \leq \omega_1$?

A. Dow (1989) : $V^{\mathbb{C}_\kappa} \models$ YES , if $V \models$ CH

I. J. (1993) : $V^{\mathbb{C}_{\omega_1}} \models \min \chi S(X) \leq \omega_1$, for any V

I conjecture that $\text{ZFC} \vdash \min \chi S(X) \leq \omega_1$, but don’t even know if $\text{ZFC} \vdash \chi S(X) \cap \text{REG} \neq \emptyset$!?
Hušek’s Problem

From here on, unless otherwise stated, space (usually denoted X) is compactum \equiv infinite compact T_2 space

Note: $\omega \in cS(X) \iff \omega \in \chi S(X)$ and $\min cS(X) \leq \min \chi S(X) \leq 2^\omega$

Alexandroff-Urysohn (1920’s) : Is $\omega \in cS(X)$?

NO! Tychonov (1935), Čech, (1937) : $\omega \notin cS(\beta \omega)$

M. Hušek (1970’s) : Is $\min cS(X) \leq \omega_1$?

A. Dow (1989) : $V^{\mathbb{C}_\kappa} \models \text{YES}$, if $V \models \text{CH}$

I. J. (1993) : $V^{\mathbb{C}_{\omega_1}} \models \min \chi S(X) \leq \omega_1$, for any V

I conjecture that ZFC $\vdash \min \chi S(X) \leq \omega_1$, but don’t even know if $\chi S(X) \cap \text{REG} \neq \emptyset$?

István Juhaszjuhasz@renyi.hu (Rényi Institute)
Hušek’s Problem

From here on, unless otherwise stated, space (usually denoted \(X \)) is compactum \(\equiv \) infinite compact \(T_2 \) space

Note: \(\omega \in cS(X) \iff \omega \in \chi S(X) \) and \(\min cS(X) \leq \min \chi S(X) \leq 2^\omega \)

Alexandrov-Urysohn (1920’s) : Is \(\omega \in cS(X) \)?

NO! Tychonov (1935), Čech, (1937) : \(\omega \notin cS(\beta \omega) \)

M. Hušek (1970’s) : Is \(\min cS(X) \leq \omega_1 \)?

A. Dow (1989) : \(V^{\mathbb{C}_\kappa} \models \text{YES} \), if \(V \models \text{CH} \)

I. J. (1993) : \(V^{\mathbb{C}_{\omega_1}} \models \min \chi S(X) \leq \omega_1 \), for any \(V \)

I conjecture that ZFC \(\vdash \min \chi S(X) \leq \omega_1 \), but don’t even know if

\[\text{ZFC} \vdash \chi S(X) \cap \text{REG} \neq \emptyset ? \]
free sequences

DEFINITION.

\(\{x_\alpha : \alpha < \varrho\} \) is free in \(X \) if, for all \(\alpha < \varrho \),

\[\{x_\beta : \beta < \alpha\} \cap \{x_\beta : \beta \geq \alpha\} = \emptyset \]

THEOREM. (J – Szentmiklóssy, 1991)

If there is a free sequence of length \(\varrho = \text{cf}(\varrho) > \omega \) in \(X \) then there is one converging to some \(p \in X \). Moreover, then

\[\chi(p, \{x_\alpha : \alpha < \varrho\}) = \varrho. \]

Arhangel’skii : \(X \) is countably tight iff it has no uncountable free sequences. Hence Hušek’s problem is about countably tight compacta.

My original conjecture (true in \(V^{\mathbb{C}\omega_1} \)) : Any countably tight compactum has a point of character \(\leq \omega_1 \) (maybe isolated!).
DEFINITION.

\(\{ x_\alpha : \alpha < \varrho \} \) is free in \(X \) if, for all \(\alpha < \varrho \),

\[
\{ x_\beta : \beta < \alpha \} \cap \{ x_\beta : \beta \geq \alpha \} = \emptyset
\]

THEOREM. (J – Szentmiklóssy, 1991)

If there is a free sequence of length \(\varrho = \text{cf}(\varrho) > \omega \) in \(X \) then there is one converging to some \(p \in X \). Moreover, then

\[
\chi(p, \{ x_\alpha : \alpha < \varrho \}) = \varrho.
\]

Arhangel’skii: \(X \) is countably tight iff it has no uncountable free sequences. Hence Hušek’s problem is about countably tight compacta.

My original conjecture (true in \(V^{\mathcal{C}\omega_1} \)): Any countably tight compactum has a point of character \(\leq \omega_1 \) (maybe isolated!).
DEFINITION.

\(\{x_\alpha : \alpha < \varrho \} \) is free in \(X \) if, for all \(\alpha < \varrho \),

\[
\{x_\beta : \beta < \alpha \} \cap \{x_\beta : \beta \geq \alpha \} = \emptyset
\]

THEOREM. (J – Szentmiklóssy, 1991)

If there is a free sequence of length \(\varrho = \text{cf}(\varrho) > \omega \) in \(X \) then there is one converging to some \(p \in X \). Moreover, then

\[
\chi(p, \{x_\alpha : \alpha < \varrho \}) = \varrho.
\]

Arhangel’skii: \(X \) is countably tight iff it has no uncountable free sequences. Hence Hušek’s problem is about countably tight compacta.

My original conjecture (true in \(V^{\mathbb{C}\omega_1} \)): Any countably tight compactum has a point of character \(\leq \omega_1 \) (maybe isolated!).
free sequences

DEFINITION.

\(\{x_\alpha : \alpha < \varrho \} \) is free in \(X \) if, for all \(\alpha < \varrho \),

\[
\{x_\beta : \beta < \alpha \} \cap \{x_\beta : \beta \geq \alpha \} = \emptyset
\]

THEOREM. (J – Szentmiklóssy, 1991)

If there is a free sequence of length \(\varrho = \text{cf}(\varrho) > \omega \) in \(X \) then there is one converging to some \(p \in X \). Moreover, then

\[
\chi(p, \{x_\alpha : \alpha < \varrho \}) = \varrho.
\]

Arhangel’スキ： \(X \) is countably tight iff it has no uncountable free sequences. Hence Hušek’s problem is about countably tight compacta.

My original conjecture (true in \(V^{\mathbb{C}_{\omega_1}} \)) : Any countably tight compactum has a point of character \(\leq \omega_1 \) (maybe isolated!).

István Juhászjuhasz@renyi.hu (Rényi Institute)
DEFINITION.

\{x_\alpha : \alpha < \omega \} is free in X if, for all \alpha < \omega,

\{x_\beta : \beta < \alpha \} \cap \{x_\beta : \beta \geq \alpha \} = \emptyset

THEOREM. (J – Szentmiklóssy, 1991)

If there is a free sequence of length \omega = \text{cf}(\omega) > \omega in X then there is one converging to some \(p \in X \). Moreover, then

\chi(p, \{x_\alpha : \alpha < \omega \} = \omega.

Arhangel’skii: X is countably tight iff it has no uncountable free sequences. Hence Hušek’s problem is about countably tight compacta.

My original conjecture (true in \(V^{\mathbb{C} \omega_1} \)): Any countably tight compactum has a point of character \(\leq \omega_1 \) (maybe isolated!).
main lemma for inclusion

Non-attributed results below are joint with W. Weiss

\[\hat{F}(X) = \min\{\kappa : \not\exists \text{ free sequence of length } \kappa \text{ in } X\} \]

MAIN LEMMA.

Let \(X \) be a \(T_3 \) space with \(\hat{F}(X) \leq \varrho \leq \text{cf}(\mu) \), moreover \(p \in X \) with \(\psi(p, X) \geq \mu \). Then either

(i) there is a discrete \(D \in [X]^\varrho \) with \(p \in \overline{D} \) and \(\psi(p, \overline{D}) \geq \mu \), or

(ii) there is a discrete \(D \in [X]^\varrho \) such that \(D \rightarrow p \).

\[\hat{t}(X) = \min \{\kappa : \forall A \subset X \ (\overline{A} = \bigcup \{\overline{B} : B \in [A]^{<\kappa}\})\} \]

Arhangel’skii: \(\hat{t}(X) \leq \hat{F}(X) \leq \hat{t}(X)^+ \) and if \(\hat{t}(X) \) is regular then \(\hat{t}(X) = \hat{F}(X) \). In particular, \(X \) is countably tight iff

\[\hat{t}(X) = \hat{F}(X) = \omega_1 \]
main lemma for inclusion

Non-attributed results below are joint with W. Weiss

\[\hat{F}(X) = \min\{\kappa : \neg \exists \text{ free sequence of length } \kappa \text{ in } X\} \]

MAIN LEMMA.

Let \(X \) be a \(T_3 \) space with \(\hat{F}(X) \leq \varrho \leq \text{cf}(\mu) \), moreover \(p \in X \) with \(\psi(p, X) \geq \mu \). Then either

(i) there is a discrete \(D \in [X]^{<\varrho} \) with \(p \in \overline{D} \) and \(\psi(p, \overline{D}) \geq \mu \), or

(ii) there is a discrete \(D \in [X]^{\varrho} \) such that \(D \rightarrow p \).

\[\hat{t}(X) = \min \{ \kappa : \forall A \subset X (\overline{A} = \bigcup \{ \overline{B} : B \in [A]^{<\kappa}\}) \} \]

Arhangel’skii: \(\hat{t}(X) \leq \hat{F}(X) \leq \hat{t}(X)^+ \) and if \(\hat{t}(X) \) is regular then \(\hat{t}(X) = \hat{F}(X) \). In particular, \(X \) is countably tight iff \[\hat{t}(X) = \hat{F}(X) = \omega_1 \]
main lemma for inclusion

Non-attributed results below are joint with W. Weiss

\[\hat{F}(X) = \min \{ \kappa : \neg \exists \text{ free sequence of length } \kappa \text{ in } X \} \]

MAIN LEMMA.

Let \(X \) be a \(T_3 \) space with \(\hat{F}(X) \leq \rho \leq \text{cf}(\mu) \), moreover \(p \in X \) with \(\psi(p, X) \geq \mu \). Then either

(i) there is a discrete \(D \in [X]^{<\rho} \) with \(p \in \overline{D} \) and \(\psi(p, \overline{D}) \geq \mu \), or

(ii) there is a discrete \(D \in [X]^{\rho} \) such that \(D \rightarrow p \).

\[\hat{t}(X) = \min \{ \kappa : \forall A \subset X (\overline{A} = \bigcup \{ \overline{B} : B \in [A]^{<\kappa} \}) \} \]

Arhangel’skii: \(\hat{t}(X) \leq \hat{F}(X) \leq \hat{t}(X)^+ \) and if \(\hat{t}(X) \) is regular then \(\hat{t}(X) = \hat{F}(X) \). In particular, \(X \) is countably tight iff

\[\hat{t}(X) = \hat{F}(X) = \omega_1 \]
main lemma for inclusion

Non-attributed results below are joint with W. Weiss

$$\hat{F}(X) = \min\{\kappa : \exists \text{ free sequence of length } \kappa \text{ in } X\}$$

MAINTLEMMA.

Let X be a T_3 space with $\hat{F}(X) \leq \rho \leq \text{cf}(\mu)$, moreover $p \in X$ with $\psi(p, X) \geq \mu$. Then either

(i) there is a discrete $D \in [X]^{<\rho}$ with $p \in \overline{D}$ and $\psi(p, \overline{D}) \geq \mu$, or

(ii) there is a discrete $D \in [X]^\rho$ such that $D \rightarrow p$.

$$\hat{t}(X) = \min \{\kappa : \forall A \subset X \ (\overline{A} = \bigcup \{\overline{B} : B \in [A]^{<\kappa}\})\}$$

Arhangel’skii: $\hat{t}(X) \leq \hat{F}(X) \leq \hat{t}(X)^+$ and if $\hat{t}(X)$ is regular then $\hat{t}(X) = \hat{F}(X)$. In particular, X is countably tight iff

$$\hat{t}(X) = \hat{F}(X) = \omega_1$$
main lemma for inclusion

Non-attributed results below are joint with W. Weiss

\[\hat{F}(X) = \min\{\kappa : \neg \exists \text{ free sequence of length } \kappa \text{ in } X\} \]

MAIN LEMMA.

Let \(X \) be a \(T_3 \) space with \(\hat{F}(X) \leq \varrho \leq \text{cf}(\mu) \), moreover \(p \in X \) with \(\psi(p, X) \geq \mu \). Then either

(i) there is a discrete \(D \in [X]^{< \varrho} \) with \(p \in \overline{D} \) and \(\psi(p, \overline{D}) \geq \mu \), or

(ii) there is a discrete \(D \in [X]^{\varrho} \) such that \(D \rightarrow p \).

\[\hat{t}(X) = \min \{ \kappa : \forall A \subset X (\overline{A} = \cup \{ \overline{B} : B \in [A]^{< \kappa} \}) \} \]

Arhangel’skii: \(\hat{t}(X) \leq \hat{F}(X) \leq \hat{t}(X)^+ \) and if \(\hat{t}(X) \) is regular then \(\hat{t}(X) = \hat{F}(X) \). In particular, \(X \) is countably tight iff

\[\hat{t}(X) = \hat{F}(X) = \omega_1 \]
Main lemma for inclusion

Non-attributed results below are joint with W. Weiss

\[\hat{F}(X) = \min \{ \kappa : \neg \exists \text{ free sequence of length } \kappa \text{ in } X \} \]

Main Lemma.

Let \(X \) be a \(T_3 \) space with \(\hat{F}(X) \leq \varrho \leq \text{cf}(\mu) \), moreover \(p \in X \) with \(\psi(p, X) \geq \mu \). Then either

(i) there is a discrete \(D \in [X]^{<\varrho} \) with \(p \in \overline{D} \) and \(\psi(p, \overline{D}) \geq \mu \), or

(ii) there is a discrete \(D \in [X]^\varrho \) such that \(D \rightarrow p \).

\[\hat{t}(X) = \min \{ \kappa : \forall A \subset X (\overline{A} = \bigcup \{ \overline{B} : B \in [A]^{<\kappa} \}) \} \]

Arhangel’skii: \(\hat{t}(X) \leq \hat{F}(X) \leq \hat{t}(X)^+ \) and if \(\hat{t}(X) \) is regular then \(\hat{t}(X) = \hat{F}(X) \). In particular, \(X \) is countably tight iff

\[\hat{t}(X) = \hat{F}(X) = \omega_1 \]
main lemma for inclusion

Non-attributed results below are joint with W. Weiss

\[\hat{F}(X) = \min\{\kappa : \neg \exists \text{ free sequence of length } \kappa \text{ in } X\} \]

MAIN LEMMA.

Let X be a T_3 space with $\hat{F}(X) \leq \varrho \leq \text{cf}(\mu)$, moreover $p \in X$ with $\psi(p, X) \geq \mu$. Then either

(i) there is a discrete $D \in [X]^\varrho$ with $p \in \overline{D}$ and $\psi(p, \overline{D}) \geq \mu$, or

(ii) there is a discrete $D \in [X]^{\varrho}$ such that $D \to p$.

\[\hat{t}(X) = \min \{\kappa : \forall A \subset X (\overline{A} = \bigcup\{\overline{B} : B \in [A]^{<\kappa}\})\} \]

Arhangel’skii: $\hat{t}(X) \leq \hat{F}(X) \leq \hat{t}(X)^+$ and if $\hat{t}(X)$ is regular then $\hat{t}(X) = \hat{F}(X)$. In particular, X is countably tight iff

$\hat{t}(X) = \hat{F}(X) = \omega_1$
Non-attributed results below are joint with W. Weiss

\[\hat{F}(X) = \min\{\kappa : \neg \exists \text{ free sequence of length } \kappa \text{ in } X\} \]

MAIN LEMMA.

Let \(X \) be a \(T_3 \) space with \(\hat{F}(X) \leq \varrho \leq \text{cf}(\mu) \), moreover \(p \in X \) with \(\psi(p, X) \geq \mu \). Then either

(i) there is a discrete \(D \in [X]^{< \varrho} \) with \(p \in \overline{D} \) and \(\psi(p, \overline{D}) \geq \mu \), or

(ii) there is a discrete \(D \in [X]^\varrho \) such that \(D \rightarrow p \).

\[\hat{t}(X) = \min \{ \kappa : \forall A \subset X (\overline{A} = \cup \{ \overline{B} : B \in [A]^{< \kappa} \}) \} \]

Arhangel’skii: \(\hat{t}(X) \leq \hat{F}(X) \leq \hat{t}(X)^+ \) and if \(\hat{t}(X) \) is regular then \(\hat{t}(X) = \hat{F}(X) \). In particular, \(X \) is countably tight iff

\[\hat{t}(X) = \hat{F}(X) = \omega_1 \]
main lemma for inclusion

Non-attributed results below are joint with W. Weiss

\[\widehat{F}(X) = \min \{ \kappa : \neg \exists \text{ free sequence of length } \kappa \text{ in } X \} \]

MAIN LEMMA.

Let \(X \) be a \(T_3 \) space with \(\widehat{F}(X) \leq \varrho \leq \text{cf}(\mu) \), moreover \(p \in X \) with \(\psi(p, X) \geq \mu \). Then either

(i) there is a discrete \(D \in [X]^{<\varrho} \) with \(p \in \overline{D} \) and \(\psi(p, \overline{D}) \geq \mu \), or

(ii) there is a discrete \(D \in [X]^{\varrho} \) such that \(D \to p \).

\[\widehat{t}(X) = \min \{ \kappa : \forall A \subset X (\overline{A} = \bigcup \{ \overline{B} : B \in [A]^{<\kappa} \}) \} \]

Arhangel’skii: \(\widehat{t}(X) \leq \widehat{F}(X) \leq \widehat{t}(X)^+ \) and if \(\widehat{t}(X) \) is regular then \(\widehat{t}(X) = \widehat{F}(X) \). In particular, \(X \) is countably tight iff

\[\widehat{t}(X) = \widehat{F}(X) = \omega_1 \]
THEOREM 1.

If $\chi(p, X) > \lambda = \lambda < \hat{t}(X)$ then $\lambda \in \chi S(p, X)$. So, if X is countably tight and $\chi(p, X) > \lambda = \lambda^\omega$ then $\lambda \in \chi S(p, X)$.

COROLLARY. $\chi(X) > c$ implies $\omega_1 \in \chi S(X)$ or $\{c, c^+\} \subset \chi S(X)$. So, if $\chi(X) > \omega$ then $\chi S(X) \cap [\omega_1, c] \neq \emptyset$.

COROLLARY. If κ is strong limit and $|X| \geq \kappa$ then

$$\sup (\kappa \cap \chi S(X)) = \kappa.$$
THEOREM 1. If $\chi(p, X) > \lambda = \lambda^{< \widehat{t}(X)}$ then $\lambda \in \chi S(p, X)$. So, if X is countably tight and $\chi(p, X) > \lambda = \lambda^\omega$ then $\lambda \in \chi S(p, X)$.

COROLLARY. $\chi(X) > c$ implies $\omega_1 \in \chi S(X)$ or $\{c, c^+\} \subset \chi S(X)$. So, if $\chi(X) > \omega$ then $\chi S(X) \cap [\omega_1, c] \neq \emptyset$.

COROLLARY. If κ is strong limit and $|X| \geq \kappa$ then

$$\sup (\kappa \cap \chi S(X)) = \kappa.$$
THEOREM 1.

If $\chi(p, X) > \lambda = \lambda^{<\hat{t}(X)}$ then $\lambda \in \chi S(p, X)$. So, if X is countably tight and $\chi(p, X) > \lambda = \lambda^\omega$ then $\lambda \in \chi S(p, X)$.

COROLLARY. $\chi(X) > c$ implies $\omega_1 \in \chi S(X)$ or $\{c, c^+\} \subset \chi S(X)$. So, if $\chi(X) > \omega$ then $\chi S(X) \cap [\omega_1, c] \neq \emptyset$.

COROLLARY. If κ is strong limit and $|X| \geq \kappa$ then

$$\sup (\kappa \cap \chi S(X)) = \kappa.$$
inclusion theorems

THEOREM 1. If \(\chi(p, X) > \lambda = \lambda^{< \hat{t}(X)}\) then \(\lambda \in \chi S(p, X)\). So, if \(X\) is countably tight and \(\chi(p, X) > \lambda = \lambda^\omega\) then \(\lambda \in \chi S(p, X)\).

COROLLARY. \(\chi(X) > c\) implies \(\omega_1 \in \chi S(X)\) or \(\{c, c^+\} \subset \chi S(X)\). So, if \(\chi(X) > \omega\) then \(\chi S(X) \cap [\omega_1, c] \neq \emptyset\).

COROLLARY. If \(\kappa\) is strong limit and \(|X| \geq \kappa\) then

\[
\sup (\kappa \cap \chi S(X)) = \kappa.
\]
THEOREM 1.

If $\chi(p, X) > \lambda = \lambda^{<\hat{t}(X)}$ then $\lambda \in \chi S(p, X)$. So, if X is countably tight and $\chi(p, X) > \lambda = \lambda^\omega$ then $\lambda \in \chi S(p, X)$.

COROLLARY. $\chi(X) > c$ implies $\omega_1 \in \chi S(X)$ or $\{c, c^+\} \subset \chi S(X)$. So, if $\chi(X) > \omega$ then $\chi S(X) \cap [\omega_1, c] \neq \emptyset$.

COROLLARY. If κ is strong limit and $|X| \geq \kappa$ then

$$\sup (\kappa \cap \chi S(X)) = \kappa.$$
THEOREM 1.

If \(\chi(p, X) > \lambda = \lambda^{<\hat{t}(X)} \) then \(\lambda \in \chi S(p, X) \). So, if \(X \) is countably tight and \(\chi(p, X) > \lambda = \lambda^\omega \) then \(\lambda \in \chi S(p, X) \).

COROLLARY. \(\chi(X) > c \) implies \(\omega_1 \in \chi S(X) \) or \(\{c, c^+\} \subset \chi S(X) \). So, if \(\chi(X) > \omega \) then \(\chi S(X) \cap [\omega_1, c] \neq \emptyset \).

COROLLARY. If \(\kappa \) is strong limit and \(|X| \geq \kappa \) then

\[
\sup (\kappa \cap \chi S(X)) = \kappa.
\]
inclusion theorems

NOTATION. \(dcS(p, X) = \{ |D| : D \subset X \text{ is discrete and } D \to p \} \)

\[
dcS(X) = \bigcup \{ dcS(x, X) : x \in X \}
\]

THEOREM 2.

\(\hat{F}(X) \leq \lambda = \text{cf}(\lambda) \) and \(\chi(p, X) \geq \sum \{ (2^{\kappa})^+ : \kappa < \lambda \} \Rightarrow \lambda \in dcS(p, X). \)

COROLLARY. If \(\chi(X) > 2^{\kappa} \) then \(\kappa^+ \in dcS(X). \)

So, \(\chi(X) > c \Rightarrow \omega_1 \in dcS(X). \)
NOTATION. \(dcS(p, X) = \{|D| : D \subset X \text{ is discrete and } D \to p\} \)

\[
dcS(X) = \bigcup \{dcS(x, X) : x \in X\}
\]

THEOREM 2.

\[\hat{F}(X) \leq \lambda = \text{cf}(\lambda) \text{ and } \chi(p, X) \geq \sum \{(2^{\kappa})^+ : \kappa < \lambda\} \Rightarrow \lambda \in dcS(p, X). \]

COROLLARY. If \(\chi(X) > 2^{\kappa} \) then \(\kappa^+ \in dcS(X) \).

So, \(\chi(X) > c \Rightarrow \omega_1 \in dcS(X) \).
inclusion theorems

NOTATION. \(dcS(p, X) = \{ |D| : D \subset X \text{ is discrete and } D \rightarrow p \} \)

\[
dcS(X) = \bigcup \{ dcS(x, X) : x \in X \}
\]

THEOREM 2.
\[\hat{F}(X) \leq \lambda = \text{cf}(\lambda) \text{ and } \chi(p, X) \geq \sum \{ (2^\kappa)^+ : \kappa < \lambda \} \Rightarrow \lambda \in dcS(p, X). \]

COROLLARY. If \(\chi(X) > 2^K \) then \(K^+ \in dcS(X) \).

So, \(\chi(X) > c \Rightarrow \omega_1 \in dcS(X). \)
INCLUSION THEOREMS

NOTATION. \(dcS(p, X) = \{ |D| : D \subseteq X \text{ is discrete and } D \to p \} \)

\[
dcS(X) = \bigcup \{ dcS(x, X) : x \in X \}
\]

THEOREM 2.

\(\hat{F}(X) \leq \lambda = \text{cf}(\lambda) \) and \(\chi(p, X) \geq \sum \{ (2^\kappa)^+ : \kappa < \lambda \} \Rightarrow \lambda \in dcS(p, X). \)

COROLLARY. If \(\chi(X) > 2^\kappa \) then \(\kappa^+ \in dcS(X) \).

So, \(\chi(X) > c \Rightarrow \omega_1 \in dcS(X). \)
NOTATION. \(dcS(p, X) = \{ |D| : D \subset X \text{ is discrete and } D \rightarrow p \} \)

\[dcS(X) = \bigcup \{ dcS(x, X) : x \in X \} \]

THEOREM 2.

\[\hat{F}(X) \leq \lambda = \text{cf}(\lambda) \text{ and } \chi(p, X) \geq \sum \{(2^\kappa)^+ : \kappa < \lambda \} \Rightarrow \lambda \in dcS(p, X). \]

COROLLARY. If \(\chi(X) > 2^\kappa \) then \(\kappa^+ \in dcS(X) \).

So, \(\chi(X) > c \Rightarrow \omega_1 \in dcS(X) \).
NOTATION. \(dcS(p, X) = \{ |D| : D \subset X \text{ is discrete and } D \rightarrow p \} \)

\[
dcS(X) = \bigcup \{ dcS(x, X) : x \in X \}
\]

THEOREM 2.

\[
\hat{F}(X) \leq \lambda = \text{cf}(\lambda) \text{ and } \chi(p, X) \geq \sum \{ (2^\kappa)^+: \kappa < \lambda \} \Rightarrow \lambda \in dcS(p, X).
\]

COROLLARY. If \(\chi(X) > 2^\kappa \) then \(\kappa^+ \in dcS(X) \).

So, \(\chi(X) > c \Rightarrow \omega_1 \in dcS(X) \).
omitting ω

S omits κ if $\kappa \notin S$ but there is a $\lambda \in S$ with $\lambda > \kappa$.

Tychonov (1935), Čech, (1937) : $\omega \notin cS(\beta \omega)$ ($\iff \omega \notin \chi S(\beta \omega)$); under CH, $\chi S(\beta \omega) = \{\omega_1\}$.

Fedorchuk (1977) : $s = \omega_1$ implies $\exists X$ with $\chi S(X) = \{\omega_1\}$; if $2^{\omega_1} < \aleph_{\omega_1}$ then $cS(X) = \{\omega_1\}$ as well. But

$$\{\lambda < 2^{\omega_1} : \text{cf}(\lambda) = \omega_1\} \subset cS(X).$$

If $p > \omega_1$ then $\chi S(X) \neq \{\omega_1\}$ for all X.
omitting ω

\[S \text{ omits } \kappa \text{ if } \kappa \notin S \text{ but there is a } \lambda \in S \text{ with } \lambda > \kappa. \]

Tychonov (1935), Čech, (1937) : $\omega \notin cS(\beta \omega) \iff \omega \notin \chi S(\beta \omega)$;
under CH, $\chi S(\beta \omega) = \{ \omega_1 \}$.

Fedorchuk (1977) : $s = \omega_1$ implies $\exists X$ with $\chi S(X) = \{ \omega_1 \}$;
if $2^{\omega_1} < \aleph_{\omega_1}$ then $cS(X) = \{ \omega_1 \}$ as well. But
\[
\{ \lambda < 2^{\omega_1} : cf(\lambda) = \omega_1 \} \subset cS(X).
\]

If $p > \omega_1$ then $\chi S(X) \neq \{ \omega_1 \}$ for all X.
omitting ω

S omits κ if $\kappa \notin S$ but there is a $\lambda \in S$ with $\lambda > \kappa$.

Tychonov (1935), Čech, (1937) : $\omega \notin cS(\beta \omega) \iff \omega \notin \chi S(\beta \omega)$;
under CH, $\chi S(\beta \omega) = \{\omega_1\}$.

Fedorchuk (1977) : $s = \omega_1$ implies $\exists X$ with $\chi S(X) = \{\omega_1\}$;
if $2^{\omega_1} < \aleph_{\omega_1}$ then $cS(X) = \{\omega_1\}$ as well. But

$$\{\lambda < 2^{\omega_1} : cf(\lambda) = \omega_1\} \subset cS(X).$$

If $p > \omega_1$ then $\chi S(X) \neq \{\omega_1\}$ for all X.
omitting ω

S omits κ if $\kappa \notin S$ but there is a $\lambda \in S$ with $\lambda > \kappa$.

Tychonov (1935), Čech, (1937): $\omega \notin cS(\beta \omega)$ ($\iff \omega \notin \chi S(\beta \omega)$); under CH, $\chi S(\beta \omega) = \{\omega_1\}$.

Fedorchuk (1977): $s = \omega_1$ implies $\exists X$ with $\chi S(X) = \{\omega_1\}$; if $2^{\omega_1} < \aleph_{\omega_1}$ then $cS(X) = \{\omega_1\}$ as well. But

$$\{\lambda < 2^{\omega_1} : \text{cf}(\lambda) = \omega_1\} \subset cS(X).$$

If $p > \omega_1$ then $\chi S(X) \neq \{\omega_1\}$ for all X.
omitting ω

S omits κ if $\kappa \notin S$ but there is a $\lambda \in S$ with $\lambda > \kappa$.

Tychonov (1935), Čech, (1937) : $\omega \notin cS(\beta \omega) \iff \omega \notin \chi S(\beta \omega)$; under CH, $\chi S(\beta \omega) = \{\omega_1\}$.

Fedorchuk (1977) : $s = \omega_1$ implies $\exists X$ with $\chi S(X) = \{\omega_1\}$; if $2^{\omega_1} < \aleph_{\omega_1}$ then $cS(X) = \{\omega_1\}$ as well. But

$$\{\lambda < 2^{\omega_1} : \text{cf}(\lambda) = \omega_1\} \subset cS(X).$$

If $p > \omega_1$ then $\chi S(X) \neq \{\omega_1\}$ for all X.

István Juhászjuhasz@renyi.hu (Rényi Institute)
omitting ω

S omits κ if $\kappa \notin S$ but there is a $\lambda \in S$ with $\lambda > \kappa$.

Tychonov (1935), Čech, (1937): $\omega \notin cS(\beta \omega)$ ($\iff \omega \notin \chi S(\beta \omega)$); under CH, $\chi S(\beta \omega) = \{\omega_1\}$.

Fedorchuk (1977): $s = \omega_1$ implies $\exists X$ with $\chi S(X) = \{\omega_1\}$; if $2^{\omega_1} < \aleph_{\omega_1}$ then $cS(X) = \{\omega_1\}$ as well. But

$$\{\lambda < 2^{\omega_1} : \text{cf}(\lambda) = \omega_1\} \subset cS(X).$$

If $p > \omega_1$ then $\chi S(X) \neq \{\omega_1\}$ for all X.
S omits \(\kappa \) if \(\kappa \notin S \) but there is a \(\lambda \in S \) with \(\lambda > \kappa \).

Tychonov (1935), Čech, (1937) : \(\omega \notin cS(\beta \omega) \) \(\iff \omega \notin \chi S(\beta \omega) \); under CH, \(\chi S(\beta \omega) = \{\omega_1\} \).

Fedorchuk (1977) : \(s = \omega_1 \) implies \(\exists X \) with \(\chi S(X) = \{\omega_1\} \); if \(2^{\omega_1} < \aleph_{\omega_1} \) then \(cS(X) = \{\omega_1\} \) as well. But

\[
\{\lambda < 2^{\omega_1} : \text{cf}(\lambda) = \omega_1\} \subset cS(X).
\]

If \(p > \omega_1 \) then \(\chi S(X) \neq \{\omega_1\} \) for all \(X \).
S omits κ if $\kappa \notin S$ but there is a $\lambda \in S$ with $\lambda > \kappa$.

Tychonov (1935), Čech, (1937) : $\omega \notin cS(\beta \omega) \iff \omega \notin \chi S(\beta \omega)$; under CH, $\chi S(\beta \omega) = \{\omega_1\}$.

Fedorchuk (1977) : $s = \omega_1$ implies $\exists X$ with $\chi S(X) = \{\omega_1\}$; if $2^{\omega_1} < \aleph_{\omega_1}$ then $cS(X) = \{\omega_1\}$ as well. But

$$\{\lambda < 2^{\omega_1} : \text{cf}(\lambda) = \omega_1\} \subset cS(X).$$

If $p > \omega_1$ then $\chi S(X) \neq \{\omega_1\}$ for all X.
omitting uncountable cardinals 1.

The cardinality spectrum $S(X)$ of any top. space Y is the set of cardinalities of all infinite closed subspaces of Y.

Lemma

Let Y be a locally compact T_2 space which is also locally μ, and let $X = Y \cup \{p\}$ be the one-point compactification of Y. If $\mu < \kappa < |Y|$ and $\kappa \notin S(Y)$ then $\kappa \notin \chi S(X)$, while $|Y| = \chi(p, X)$.

$\Phi(\kappa)$

There are $T \in [\mathbb{R}]^\kappa$ and $A \subset [T]^{\omega}$ with $|A| = \kappa$ such that (i) for every $A \in A$ we have $|T \cap \overline{A}| = \kappa$ and (ii) for every $B \in [T]^{\omega_1}$ there is $A \in A$ with $A \subset B$.

Theorem

$\Phi(\kappa) \Rightarrow \exists$ locally countable and locally compact T_2 space Y with $S(Y) = \{\omega, \kappa\}$, hence an X with $\chi S(X) = \{\omega, \kappa\}$.
omitting uncountable cardinals 1.

The cardinality spectrum $S(X)$ of any top. space Y is the set of cardinalities of all infinite closed subspaces of Y.

Lemma

Let Y be a locally compact T_2 space which is also locally μ, and let $X = Y \cup \{p\}$ be the one-point compactification of Y. If $\mu < \kappa < |Y|$ and $\kappa \notin S(Y)$ then $\kappa \notin \chi S(X)$, while $|Y| = \chi(p, X)$.

$\Phi(\kappa)$

There are $T \in [\mathbb{R}]^\kappa$ and $A \subset [T]^{\omega}$ with $|A| = \kappa$ such that (i) for every $A \in A$ we have $|T \cap \overline{A}| = \kappa$ and (ii) for every $B \in [T]^{\omega_1}$ there is $A \in A$ with $A \subset B$.

Theorem

$\Phi(\kappa) \Rightarrow \exists$ locally countable and locally compact T_2 space Y with $S(Y) = \{\omega, \kappa\}$, hence an X with $\chi S(X) = \{\omega, \kappa\}$.
omitting uncountable cardinals 1.

The cardinality spectrum $S(X)$ of any top. space Y is the set of cardinalities of all infinite closed subspaces of Y.

Lemma

Let Y be a locally compact T_2 space which is also locally μ, and let $X = Y \cup \{p\}$ be the one-point compactification of Y. If $\mu < \kappa < |Y|$ and $\kappa \notin S(Y)$ then $\kappa \notin \chi S(X)$, while $|Y| = \chi(p, X)$.

$\Phi(\kappa)$

There are $T \in [\mathbb{R}]^{\kappa}$ and $A \subset [T]^\omega$ with $|A| = \kappa$ such that (i) for every $A \in A$ we have $|T \cap \overline{A}| = \kappa$ and (ii) for every $B \in [T]^\omega_1$ there is $A \in A$ with $A \subset B$.

Theorem

$\Phi(\kappa) \Rightarrow \exists$ locally countable and locally compact T_2 space Y with $S(Y) = \{\omega, \kappa\}$, hence an X with $\chi S(X) = \{\omega, \kappa\}$.
omitting uncountable cardinals 1.

The cardinality spectrum $S(X)$ of any top. space Y is the set of cardinalities of all infinite closed subspaces of Y.

Lemma

Let Y be a locally compact T_2 space which is also locally μ, and let $X = Y \cup \{p\}$ be the one-point compactification of Y. If $\mu < \kappa < |Y|$ and $\kappa \notin S(Y)$ then $\kappa \notin \chi S(X)$, while $|Y| = \chi(p, X)$.

$\Phi(\kappa)$

There are $T \in [\mathbb{R}]^\kappa$ and $A \subseteq [T]^{\omega}$ with $|A| = \kappa$ such that (i) for every $A \in A$ we have $|T \cap \overline{A}| = \kappa$ and (ii) for every $B \in [T]^{\omega_1}$ there is $A \in A$ with $A \subseteq B$.

Theorem

$\Phi(\kappa) \Rightarrow \exists$ locally countable and locally compact T_2 space Y with $S(Y) = \{\omega, \kappa\}$, hence an X with $\chi S(X) = \{\omega, \kappa\}$.
omitting uncountable cardinals 1.

The cardinality spectrum \(S(X) \) of any top. space \(Y \) is the set of cardinalities of all infinite closed subspaces of \(Y \).

Lemma

Let \(Y \) be a locally compact \(T_2 \) space which is also locally \(\mu \), and let \(X = Y \cup \{p\} \) be the one-point compactification of \(Y \). If \(\mu < \kappa < |Y| \) and \(\kappa \notin S(Y) \) then \(\kappa \notin \chi S(X) \), while \(|Y| = \chi(p, X) \).

\(\Phi(\kappa) \)

There are \(T \in [\mathbb{R}]^\kappa \) and \(A \subset [T]^{\omega} \) with \(|A| = \kappa \) such that (i) for every \(A \in A \) we have \(|T \cap \overline{A}| = \kappa \) and (ii) for every \(B \in [T]^{\omega_1} \) there is \(A \in A \) with \(A \subset B \).

Theorem

\(\Phi(\kappa) \Rightarrow \exists \) locally countable and locally compact \(T_2 \) space \(Y \) with \(S(Y) = \{\omega, \kappa\} \), hence an \(X \) with \(\chi S(X) = \{\omega, \kappa\} \).
omitting uncountable cardinals 1.

The cardinality spectrum $S(X)$ of any top. space Y is the set of cardinalities of all infinite closed subspaces of Y.

Lemma

Let Y be a locally compact T_2 space which is also locally μ, and let $X = Y \cup \{p\}$ be the one-point compactification of Y. If $\mu < \kappa < |Y|$ and $\kappa \notin S(Y)$ then $\kappa \notin \chi S(X)$, while $|Y| = \chi(p, X)$.

$\Phi(\kappa)$

There are $T \in \mathbb{R}^\kappa$ and $A \subset [T]^{\omega}$ with $|A| = \kappa$ such that (i) for every $A \in A$ we have $|T \cap A| = \kappa$ and (ii) for every $B \in [T]^{\omega_1}$ there is $A \in A$ with $A \subset B$.

Theorem

$\Phi(\kappa) \Rightarrow \exists$ locally countable and locally compact T_2 space Y with $S(Y) = \{\omega, \kappa\}$, hence an X with $\chi S(X) = \{\omega, \kappa\}$.
omitting uncountable cardinals 1.

The **cardinality spectrum** $S(X)$ of any top. space Y is the set of cardinalities of all infinite closed subspaces of Y.

Lemma

Let Y be a locally compact T_2 space which is also locally μ, and let $X = Y \cup \{p\}$ be the one-point compactification of Y. If $\mu < \kappa < |Y|$ and $\kappa \notin S(Y)$ then $\kappa \notin \chi S(X)$, while $|Y| = \chi(p, X)$.

$\Phi(\kappa)$

There are $T \in [\mathbb{R}]^\kappa$ and $A \subset [T]^\omega$ with $|A| = \kappa$ such that (i) for every $A \in A$ we have $|T \cap \overline{A}| = \kappa$ and (ii) for every $B \in [T]^\omega_1$ there is $A \in A$ with $A \subset B$.

Theorem

$\Phi(\kappa) \Rightarrow \exists$ locally countable and locally compact T_2 space Y with $S(Y) = \{\omega, \kappa\}$, hence an X with $\chi S(X) = \{\omega, \kappa\}$.
omitting uncountable cardinals 1.

The cardinality spectrum $S(X)$ of any top. space Y is the set of cardinalities of all infinite closed subspaces of Y.

Lemma

Let Y be a locally compact T_2 space which is also locally μ, and let $X = Y \cup \{p\}$ be the one-point compactification of Y. If $\mu < \kappa < |Y|$ and $\kappa \notin S(Y)$ then $\kappa \notin \chi S(X)$, while $|Y| = \chi(p, X)$.

$\Phi(\kappa)$

There are $T \in [\mathbb{R}]^\kappa$ and $A \subset [T]^{\omega}$ with $|A| = \kappa$ such that (i) for every $A \in A$ we have $|T \cap \overline{A}| = \kappa$ and (ii) for every $B \in [T]^\omega_1$ there is $A \in A$ with $A \subset B$.

Theorem

$\Phi(\kappa) \Rightarrow \exists$ locally countable and locally compact T_2 space Y with $S(Y) = \{\omega, \kappa\}$, hence an X with $\chi S(X) = \{\omega, \kappa\}$.
omitting uncountable cardinals 2.

\(\Phi(c) \) is (trivially) true.

COROLLARY. (Hušek, 1981) \(\exists X \) s.t. \(\chi S(X) = \{\omega, c\} \).

Lemma

If \(\kappa \leq c \) with \(\text{cf}(\kappa) \neq \omega_1 \) and \(\langle [\kappa]^{\omega_1}, \subset \rangle \) has a dense subfamily of size \(\kappa \) then \(\Phi(\kappa) \) holds.

Proposition

Let \(\lambda \) be singular of countable cofinality s.t. \(\mu^{\omega_1} < \lambda \) whenever \(\mu < \lambda \). For every CCC partial order \(\mathbb{P} \) with \(|\mathbb{P}| = \lambda \), \(\langle [\lambda]^{\omega_1}, \subset \rangle \) has a dense subfamily of size \(\lambda \) in \(V^\mathbb{P} \). (A. Miller, for \(\mathbb{P} = C_\lambda \))

Corollary

If \(V \models GCH \) then, for any \(\kappa > \omega \), \(V^{C_\kappa} \models \Phi(\kappa) \).
omitting uncountable cardinals 2.

\(\Phi(c) \) is (trivially) true.

COROLLARY. (Hušek, 1981) \(\exists X \text{ s.t. } \chi_S(X) = \{\omega, c\} \).

Lemma

If \(\kappa \leq c \) with \(\text{cf}(\kappa) \neq \omega_1 \) and \(\langle [\kappa]^{\omega_1}, \subset \rangle \) has a dense subfamily of size \(\kappa \), then \(\Phi(\kappa) \) holds.

Proposition

Let \(\lambda \) be singular of countable cofinality s.t. \(\mu^{\omega_1} < \lambda \) whenever \(\mu < \lambda \). For every CCC partial order \(\mathbb{P} \) with \(|\mathbb{P}| = \lambda \), \(\langle [\lambda]^{\omega_1}, \subset \rangle \) has a dense subfamily of size \(\lambda \) in \(V^\mathbb{P} \). (A. Miller, for \(\mathbb{P} = C_\lambda \))

Corollary

If \(V \models GCH \) then, for any \(\kappa > \omega \), \(V^{C_\kappa} \models \Phi(\kappa) \).
omitting uncountable cardinals 2.

\[\Phi(c) \] is (trivially) true.

COROLLARY. (Hušek, 1981) \(\exists X \text{ s.t. } \chi S(X) = \{\omega, c\}. \)

Lemma

If \(\kappa \leq c \text{ with } \text{cf}(\kappa) \neq \omega_1 \) and \(\langle [\kappa]^{\omega_1}, \subset \rangle \) has a dense subfamily of size \(\kappa \) then \(\Phi(\kappa) \) holds.

Proposition

Let \(\lambda \) be singular of countable cofinality s.t. \(\mu^{\omega_1} < \lambda \) whenever \(\mu < \lambda \). For every CCC partial order \(P \) with \(|P| = \lambda \), \(\langle [\lambda]^{\omega_1}, \subset \rangle \) has a dense subfamily of size \(\lambda \) in \(V^P \). (A. Miller, for \(P = C_\lambda \))

Corollary

If \(V \models GCH \) then, for any \(\kappa > \omega \), \(V^{C_\kappa} \models \Phi(\kappa) \).
omitting uncountable cardinals 2.

\(\Phi(c) \) is (trivially) true.

COROLLARY. (Hušek, 1981) \(\exists X \text{ s.t. } \chi S(X) = \{\omega, c\} \).

Lemma

If \(\kappa \leq c \) with \(\text{cf}(\kappa) \neq \omega_1 \) and \(\langle [\kappa]^{\omega_1}, \subset \rangle \) has a dense subfamily of size \(\kappa \) then \(\Phi(\kappa) \) holds.

Proposition

Let \(\lambda \) be singular of countable cofinality s.t. \(\mu^{\omega_1} < \lambda \) whenever \(\mu < \lambda \). For every CCC partial order \(P \) with \(|P| = \lambda \), \(\langle [\lambda]^{\omega_1}, \subset \rangle \) has a dense subfamily of size \(\lambda \) in \(V^P \). (A. Miller, for \(P = C_\lambda \))

Corollary

If \(V \models GCH \) then, for any \(\kappa > \omega \), \(V^{C_\kappa} \models \Phi(\kappa) \).
omitting uncountable cardinals 2.

\(\Phi(c) \) is (trivially) true.

COROLLARY. (Hušek, 1981) \(\exists X \) s.t. \(\chi S(X) = \{\omega, c\} \).

Lemma

If \(\kappa \leq c \) with \(\text{cf}(\kappa) \neq \omega_1 \) and \(\langle [\kappa]^{\omega_1}, \subset \rangle \) has a dense subfamily of size \(\kappa \) then \(\Phi(\kappa) \) holds.

Proposition

Let \(\lambda \) be singular of countable cofinality s.t. \(\mu^{\omega_1} < \lambda \) whenever \(\mu < \lambda \). For every CCC partial order \(P \) with \(|P| = \lambda \), \(\langle [\lambda]^{\omega_1}, \subset \rangle \) has a dense subfamily of size \(\lambda \) in \(V^P \). (A. Miller, for \(P = C_\lambda \))

Corollary

If \(V \models GCH \) then, for any \(\kappa > \omega \), \(V^{C_\kappa} \models \Phi(\kappa) \).
omitting uncountable cardinals 2.

\(\Phi(c) \) is (trivially) true.

COROLLARY. (Hušek, 1981) \(\exists X \) s.t. \(\chi S(X) = \{\omega, c\} \).

Lemma

If \(\kappa \leq c \) with \(\text{cf}(\kappa) \neq \omega_1 \) and \(\langle [\kappa]^{\omega_1}, \subset \rangle \) has a dense subfamily of size \(\kappa \) then \(\Phi(\kappa) \) holds.

Proposition

Let \(\lambda \) be singular of countable cofinality s.t. \(\mu^{\omega_1} < \lambda \) whenever \(\mu < \lambda \).

For every CCC partial order \(P \) with \(|P| = \lambda \), \(\langle [\lambda]^{\omega_1}, \subset \rangle \) has a dense subfamily of size \(\lambda \) in \(V^P \). (A. Miller, for \(P = C_\lambda \))

Corollary

If \(V \models GCH \) then, for any \(\kappa > \omega \), \(V^{C_\kappa} \models \Phi(\kappa) \).
omitting uncountable cardinals 3.

Theorem

Suppose $V \models GCH$ and $\lambda > \omega$ is a cardinal in V. Then, in V^{C_λ}, for every $\kappa \leq c$ there is a locally countable and locally compact T_2 space Y with $S(Y) = \{\omega, \kappa\}$, hence there is a compactum X with character spectrum $\chi S(X) = \{\omega, \kappa\}$.

Proof: $V^{C_\lambda} = (V^{C_\kappa})^{C_\lambda \setminus \kappa}$ and the properties of Y are preserved.

Corollary

In V^{C_λ}, for every countable set A of cardinals with $\omega \in A \subset [\omega, c]$ there is X s.t. $\chi S(X) = A$.

Theorem (L. Soukup)

It is consistent with c big that $\Phi(\kappa)$ holds for all $\kappa \leq c$.
omitting uncountable cardinals 3.

Theorem

Suppose $V \models GCH$ and $\lambda > \omega$ is a cardinal in V. Then, in V^{C_λ}, for every $\kappa \leq c$ there is a locally countable and locally compact T_2 space Y with $S(Y) = \{\omega, \kappa\}$, hence there is a compactum X with character spectrum $\chi_S(X) = \{\omega, \kappa\}$.

Proof: $V^{C_\lambda} = (V^{C_\kappa})^{C_\lambda \setminus \kappa}$ and the properties of Y are preserved.

Corollary

In V^{C_λ}, for every countable set A of cardinals with $\omega \in A \subset [\omega, c]$ there is X s.t. $\chi_S(X) = A$.

Theorem (L. Soukup)

It is consistent with c big that $\Phi(\kappa)$ holds for all $\kappa \leq c$.
omitting uncountable cardinals 3.

Theorem

Suppose $V \models GCH$ and $\lambda > \omega$ is a cardinal in V. Then, in $V^{\mathcal{C}_\lambda}$, for every $\kappa \leq c$ there is a locally countable and locally compact T_2 space Y with $S(Y) = \{\omega, \kappa\}$, hence there is a compactum X with character spectrum $\chi S(X) = \{\omega, \kappa\}$.

Proof: $V^{\mathcal{C}_\lambda} = (V^{\mathcal{C}_\kappa})^{\mathcal{C}_\lambda \setminus \kappa}$ and the properties of Y are preserved.

Corollary

In $V^{\mathcal{C}_\lambda}$, for every countable set A of cardinals with $\omega \in A \subset [\omega, c]$ there is X s.t. $\chi S(X) = A$.

Theorem (L. Soukup)

It is consistent with c big that $\Phi(\kappa)$ holds for all $\kappa \leq c$.
omitting uncountable cardinals 3.

Theorem

Suppose \(V \models GCH \) and \(\lambda > \omega \) is a cardinal in \(V \). Then, in \(V^{C_\lambda} \), for every \(\kappa \leq c \) there is a locally countable and locally compact \(T_2 \) space \(Y \) with \(S(Y) = \{ \omega, \kappa \} \), hence there is a compactum \(X \) with character spectrum \(\chi S(X) = \{ \omega, \kappa \} \).

Proof: \(V^{C_\lambda} = (V^{C_\kappa})^{C_\lambda \setminus \kappa} \) and the properties of \(Y \) are preserved.

Corollary

In \(V^{C_\lambda} \), for every countable set \(A \) of cardinals with \(\omega \in A \subset [\omega, c] \) there is \(X \) s.t. \(\chi S(X) = A \).

Theorem (L. Soukup)

It is consistent with \(c \) big that \(\Phi(\kappa) \) holds for all \(\kappa \leq c \).
omitting uncountable cardinals 3.

Theorem

Suppose $V \models GCH$ and $\lambda > \omega$ is a cardinal in V. Then, in $V^{C\lambda}$, for every $\kappa \leq c$ there is a locally countable and locally compact T_2 space Y with $S(Y) = \{\omega, \kappa\}$, hence there is a compactum X with character spectrum $\chi S(X) = \{\omega, \kappa\}$.

Proof: $V^{C\lambda} = (V^{C\kappa})^{C\lambda \setminus \kappa}$ and the properties of Y are preserved.

Corollary

In $V^{C\lambda}$, for every countable set A of cardinals with $\omega \in A \subset [\omega, c]$ there is X s.t. $\chi S(X) = A$.

Theorem (L. Soukup)

It is consistent with c big that $\Phi(\kappa)$ holds for all $\kappa \leq c$.
omitting uncountable cardinals 4.

Each example X so far is the one-point compactification of a locally countable (loc. cpt) space, hence satisfies

$$cS(X) = [\omega, |X|].$$

Theorem (J-Koszmider-Soukup, 2009)

Consistently, there is X s.t.

$$\chi S(X) = cS(X) = \{\omega, \omega_2\}.$$

This is the only known example whose convergence spectrum is not convex on REG!
omitting uncountable cardinals 4.

Each example X so far is the one-point compactification of a locally countable (loc. cpt) space, hence satisfies

$$cS(X) = [\omega, |X|].$$

Theorem (J-Koszmider-Soukup, 2009)
Consistently, there is X s.t.

$$\chi S(X) = cS(X) = \{\omega, \omega_2\}.$$

This is the only known example whose convergence spectrum is not convex on REG!
omitting uncountable cardinals 4.

Each example X so far is the one-point compactification of a locally countable (loc. cpt) space, hence satisfies

$$cS(X) = [\omega, |X|].$$

Theorem (J-Koszmider-Soukup, 2009)

Consistently, there is X s.t.

$$\chi S(X) = cS(X) = \{\omega, \omega_2\}.$$

This is the only known example whose convergence spectrum is not convex on REG!
omitting uncountable cardinals 4.

Each example X so far is the one-point compactification of a locally countable (loc. cpt) space, hence satisfies

$$cS(X) = [\omega, |X|].$$

Theorem (J-Koszmider-Soukup, 2009)

Consistently, there is X s.t.

$$\chi S(X) = cS(X) = \{\omega, \omega_2\}.$$

This is the **only** known example whose convergence spectrum is not convex on REG!
FACT.
Any crowded X has a crowded, hence non-discrete countable subspace.

PROBLEM.
If $\chi(p, X) > \omega$ for all $p \in X$, does X_δ have a non-discrete subspace of size ω_1?

YES, if $\omega_1 \in cS(X)$, hence YES if X is not countably tight.

YES for all X, if my old conjecture holds.
FACT.

Any crowded X has a crowded, hence non-discrete countable subspace.

PROBLEM.

If $\chi(p, X) > \omega$ for all $p \in X$, does X_δ have a non-discrete subspace of size ω_1?

YES, if $\omega_1 \in cS(X)$, hence YES if X is not countably tight.

YES for all X, if my old conjecture holds.
FACT.
Any crowded X has a crowded, hence non-discrete countable subspace.

PROBLEM.
If $\chi(p, X) > \omega$ for all $p \in X$, does X_δ have a non-discrete subspace of size ω_1?

YES, if $\omega_1 \in cS(X)$, hence YES if X is not countably tight.

YES for all X, if my old conjecture holds.
FACT.
Any crowded X has a crowded, hence non-discrete countable subspace.

PROBLEM.
If $\chi(p, X) > \omega$ for all $p \in X$, does X_δ have a non-discrete subspace of size ω_1?

YES, if $\omega_1 \in cS(X)$, hence YES if X is not countably tight.

YES for all X, if my old conjecture holds.