Submeasures and signed measures

Omar Selim
Winter School

January 2013
Maharam’s problem (1947):

- Is every Maharam algebra a measure algebra?
- Does every exhaustive additive vector measure admit a control measure?
- Does every exhaustive submeasure fail to be pathological?
- Is every exhaustive submeasure uniformly exhaustive?
- Is every exhaustive submeasure equivalent to a measure?
- In 2006 M. Talagrand constructed a ZFC counter example to Maharam’s problem.
- This solution is very uncooperative!
- Does the corresponding non-measurable Maharam algebra contain the random algebra as a complete subalgebra (i.e. does it add a random real)?
- Can we eliminate AC from the construction (i.e. eliminate the use of an ultrafilter)?
- Is this complete Boolean algebra homogenous?
- Can we generalise this construction to clopen (2^κ)?
- What else can we say about the relationship between submeasures and measures (keeping the Maharam problem in mind)?
- I will discuss a linear association between the collection of all submeasures on the clopen sets of the Cantor space and the space of signed measures on this algebra.
Introduction

- Maharam’s problem (1947):
 - Is every Maharam algebra a measure algebra?
Introduction

- Maharam’s problem (1947):
 - Is every Maharam algebra a measure algebra?
 - Does every exhaustive additive vector measure admit a control measure \[\text{[the control measure problem]}\]?
Maharam’s problem (1947):
- Is every Maharam algebra a measure algebra?
- Does every exhaustive additive vector measure admit a control measure [the control measure problem]?
- Does every exhaustive submeasure fail to be pathological?
Maharam’s problem (1947):
- Is every Maharam algebra a measure algebra?
- Does every exhaustive additive vector measure admit a control measure [the control measure problem]?
- Does every exhaustive submeasure fail to be pathological?
- Is every exhaustive submeasure uniformly exhaustive?

In 2006 M. Talagrand constructed a ZFC counter example to Maharam’s problem. This solution is very uncooperative!

Does the corresponding non-measurable Maharam algebra contain the random algebra as a complete subalgebra (i.e. does it add a random real)?

Can we eliminate AC from the construction (i.e. eliminate the use of an ultrafilter)?

Is this complete Boolean algebra homogenous?

Can we generalise this construction to clopen \((2^\kappa)\)?

What else can we say about the relationship between submeasures and measures (keeping the Maharam problem in mind)?

I will discuss a linear association between the collection of all submeasures on the clopen sets of the Cantor space and the space of signed measures on this algebra.
Introduction

- Maharam’s problem (1947):
 - Is every Maharam algebra a measure algebra?
 - Does every exhaustive additive vector measure admit a control measure \([\text{the control measure problem}]\)?
 - Does every exhaustive submeasure fail to be pathological?
 - Is every exhaustive submeasure uniformly exhaustive?
 - Is every exhaustive submeasure equivalent to a measure?

In 2006 M. Talagrand constructed a ZFC counter example to Maharam’s problem. This solution is very uncooperative! Does the corresponding non-measurable Maharam algebra contain the random algebra as a complete subalgebra (i.e. does it add a random real)? Can we eliminate AC from the construction (i.e. eliminate the use of an ultrafilter)? Is this complete Boolean algebra homogenous? Can we generalise this construction to clopen \((2^{\kappa})\)?

What else can we say about the relationship between submeasures and measures (keeping the Maharam problem in mind)? I will discuss a linear association between the collection of all submeasures on the clopen sets of the Cantor space and the space of signed measures on this algebra.
Maharam’s problem (1947):
- Is every Maharam algebra a measure algebra?
- Does every exhaustive additive vector measure admit a control measure [the control measure problem]?
- Does every exhaustive submeasure fail to be pathological?
- Is every exhaustive submeasure uniformly exhaustive?
- Is every exhaustive submeasure equivalent to a measure?

In 2006 M. Talagrand constructed a ZFC counter example to Maharam’s problem.
Maharam’s problem (1947):
 - Is every Maharam algebra a measure algebra?
 - Does every exhaustive additive vector measure admit a control measure [the control measure problem]?
 - Does every exhaustive submeasure fail to be pathological?
 - Is every exhaustive submeasure uniformly exhaustive?
 - Is every exhaustive submeasure equivalent to a measure?

In 2006 M. Talagrand constructed a ZFC counter example to Maharam’s problem.
This solution is very uncooperative!
Maharam’s problem (1947):
- Is every Maharam algebra a measure algebra?
- Does every exhaustive additive vector measure admit a control measure? [the control measure problem]
- Does every exhaustive submeasure fail to be pathological?
- Is every exhaustive submeasure uniformly exhaustive?
- Is every exhaustive submeasure equivalent to a measure?

In 2006 M. Talagrand constructed a ZFC counter example to Maharam’s problem.

This solution is very uncooperative!
- Does the corresponding non-measurable Maharam algebra contain the random algebra as a complete subalgebra (i.e. does it add a random real)?
Introduction

- **Maharam’s problem (1947):**
 - Is every Maharam algebra a measure algebra?
 - Does every exhaustive additive vector measure admit a control measure *[the control measure problem]*?
 - Does every exhaustive submeasure fail to be pathological?
 - Is every exhaustive submeasure uniformly exhaustive?
 - Is every exhaustive submeasure equivalent to a measure?

- In 2006 M. Talagrand constructed a ZFC counter example to Maharam’s problem.

- This solution is very uncooperative!
 - Does the corresponding non-measurable Maharam algebra contain the random algebra as a complete subalgebra (i.e. does it add a random real)?
 - Can we eliminate AC from the construction (i.e. eliminate the use of an ultrafilter)?
Maharam’s problem (1947):
- Is every Maharam algebra a measure algebra?
- Does every exhaustive additive vector measure admit a control measure [the control measure problem]?
- Does every exhaustive submeasure fail to be pathological?
- Is every exhaustive submeasure uniformly exhaustive?
- Is every exhaustive submeasure equivalent to a measure?

In 2006 M. Talagrand constructed a ZFC counter example to Maharam’s problem.

This solution is very uncooperative!
- Does the corresponding non-measurable Maharam algebra contain the random algebra as a complete subalgebra (i.e. does it add a random real)?
- Can we eliminate AC from the construction (i.e. eliminate the use of an ultrafilter)?
- Is this complete Boolean algebra homogeneous?
Maharam’s problem (1947):
- Is every Maharam algebra a measure algebra?
- Does every exhaustive additive vector measure admit a control measure \([\text{the control measure problem}]\)?
- Does every exhaustive submeasure fail to be pathological?
- Is every exhaustive submeasure uniformly exhaustive?
- Is every exhaustive submeasure equivalent to a measure?

In 2006 M. Talagrand constructed a ZFC counter example to Maharam’s problem.

This solution is very uncooperative!
- Does the corresponding non-measurable Maharam algebra contain the random algebra as a complete subalgebra (i.e. does it add a random real)?
- Can we eliminate AC from the construction (i.e. eliminate the use of an ultrafilter)?
- Is this complete Boolean algebra homogenous?
- Can we generalise this construction to \(\text{clopen}(2^\kappa)\)?
Maharam’s problem (1947):

- Is every Maharam algebra a measure algebra?
- Does every exhaustive additive vector measure admit a control measure \([\text{the control measure problem}]\)?
- Does every exhaustive submeasure fail to be pathological?
- Is every exhaustive submeasure uniformly exhaustive?
- Is every exhaustive submeasure equivalent to a measure?

In 2006 M. Talagrand constructed a ZFC counter example to Maharam’s problem.

This solution is very uncooperative!

- Does the corresponding non-measurable Maharam algebra contain the random algebra as a complete subalgebra (i.e. does it add a random real)?
- Can we eliminate AC from the construction (i.e. eliminate the use of an ultrafilter)?
- Is this complete Boolean algebra homogenous?
- Can we generalise this construction to \(\text{clopen}(2^\kappa)\)?

What else can we say about the relationship between submeasures and measures (keeping the Maharam problem in mind)?
Introduction

- Maharam’s problem (1947):
 - Is every Maharam algebra a measure algebra?
 - Does every exhaustive additive vector measure admit a control measure [*the control measure problem*]?
 - Does every exhaustive submeasure fail to be pathological?
 - Is every exhaustive submeasure uniformly exhaustive?
 - Is every exhaustive submeasure equivalent to a measure?

- In 2006 M. Talagrand constructed a ZFC counter example to Maharam’s problem.
 - This solution is very uncooperative!
 - Does the corresponding non-measurable Maharam algebra contain the random algebra as a complete subalgebra (i.e. does it add a random real)?
 - Can we eliminate AC from the construction (i.e. eliminate the use of an ultrafilter)?
 - Is this complete Boolean algebra homogenous?
 - Can we generalise this construction to \(\text{clopen}(2^{\kappa})\)?

- What else can we say about the relationship between submeasures and measures (keeping the Maharam problem in mind)?

- I will discuss a linear association between the collection of all submeasures on the clopen sets of the Cantor space and the space of signed measures on this algebra.
Some definitions

Throughout \mathcal{B} will always denote a Boolean algebra.

A map $\lambda: \mathcal{B} \rightarrow \mathbb{R}$ is called a signed measure if, for every disjoint a and b from \mathcal{B}, we have $\lambda(a \cup b) = \lambda(a) + \lambda(b)$; a measure if it is a signed measure but only assumes non-negative values from \mathbb{R}; a submeasure if the following conditions hold:

1. $\lambda(0) = 0$,
2. $\lambda(a) \leq \lambda(b)$, for every a and b such that $a \leq b$,
3. $\lambda(a \cup b) \leq \lambda(a) + \lambda(b)$, always.

These are all examples of functionals, which is to say that each satisfies $\lambda(0) = 0$.
Throughout \mathcal{B} will always denote a Boolean algebra. A map $\lambda : \mathcal{B} \to \mathbb{R}$ is called a ... :
Throughout \mathcal{B} will always denote a Boolean algebra. A map $\lambda : \mathcal{B} \rightarrow \mathbb{R}$ is called a ... :

- **signed measure** if, for every disjoint a and b from \mathcal{B}, we have $\lambda(a \cup b) = \lambda(a) + \lambda(b)$;
Throughout \mathcal{B} will always denote a Boolean algebra. A map $\lambda : \mathcal{B} \to \mathbb{R}$ is called a ...:

- **signed measure** if, for every disjoint a and b from \mathcal{B}, we have $\lambda(a \cup b) = \lambda(a) + \lambda(b)$;
- **measure** if it is a signed measure but only assumes non-negative values from \mathbb{R};
Throughout \mathcal{B} will always denote a Boolean algebra. A map $\lambda : \mathcal{B} \to \mathbb{R}$ is called a ... :

- **signed measure** if, for every disjoint a and b from \mathcal{B}, we have $\lambda(a \cup b) = \lambda(a) + \lambda(b)$;
- **measure** if it is a signed measure but only assumes non-negative values from \mathbb{R};
- **submeasure** if the following conditions hold:
 - $\lambda(0) = 0$,
 - $\lambda(a) \leq \lambda(b)$, for every a and b such that $a \leq b$,
 - $\lambda(a \cup b) \leq \lambda(a) + \lambda(b)$, always.
Throughout \mathcal{B} will always denote a Boolean algebra. A map $\lambda : \mathcal{B} \to \mathbb{R}$ is called a … :

- **signed measure** if, for every disjoint a and b from \mathcal{B}, we have
 $$\lambda(a \cup b) = \lambda(a) + \lambda(b);$$

- **measure** if it is a signed measure but only assumes non-negative values from \mathbb{R};

- **submeasure** if the following conditions hold:
 - $\lambda(0) = 0$,
 - $\lambda(a) \leq \lambda(b)$, for every a and b such that $a \leq b$,
 - $\lambda(a \cup b) \leq \lambda(a) + \lambda(b)$, always.

These are all examples of **functionals**, which is to say that each satisfies $\lambda(0) = 0$.
Some definitions

Two functionals μ and λ on B are called equivalent if, for every sequence (a_n) from B, we have

$$\lim_{n} \mu(a_n) = 0 \iff \lim_{n} \lambda(a_n) = 0.$$

A functional λ on B is called exhaustive if, for every antichain (a_n) from B, we have

$$\lim_{n} \lambda(a_n) = 0.$$

Maharam's problem: Is every exhaustive submeasure on the clopen sets of the Cantor space equivalent to a measure?
Two functionals μ and λ on \mathcal{B} are called \textbf{equivalent} if, for every sequence $(a_n)_n$ from \mathcal{B}, we have

$$\lim_{n} \mu(a_n) = 0 \iff \lim_{n} \lambda(a_n) = 0.$$
Some definitions

Two functionals μ and λ on \mathcal{B} are called **equivalent** if, for every sequence $(a_n)_n$ from \mathcal{B}, we have

$$\lim_{n} \mu(a_n) = 0 \iff \lim_{n} \lambda(a_n) = 0.$$

A functional λ on \mathcal{B} is called **exhaustive** if, for every antichain $(a_n)_n$ from \mathcal{B}, we have

$$\lim_{n} \lambda(a_n) = 0.$$
Some definitions

Two functionals μ and λ on \mathcal{B} are called **equivalent** if, for every sequence $(a_n)_n$ from \mathcal{B}, we have

$$\lim_n \mu(a_n) = 0 \iff \lim_n \lambda(a_n) = 0.$$

A functional λ on \mathcal{B} is called **exhaustive** if, for every antichain $(a_n)_n$ from \mathcal{B}, we have

$$\lim_n \lambda(a_n) = 0.$$

Maharam's problem: *Is every exhaustive submeasure on the clopen sets of the Cantor space equivalent to a measure?*
Definition
Call a collection \(\{ a_i : i \in [n] \} \subseteq B, \) \(*\)-free if for every non-empty \(J \subseteq [n] \) we have
\[
\bigcap_{j \in J} a_j \cap \bigcap_{j \not\in J} a_{c_j} \neq 0
\]
\(\land \)
\[
\bigcup_{i \in [n]} a_i = 1.
\]

Remark: Recall that the collection \(\{ a_i : i \in [n] \} \) is free if for every \(J \subseteq [n] \) we have
\[
\bigcap_{j \in J} a_j \cap \bigcap_{j \not\in J} a_{c_j} \neq 0,
\]
in which case, by considering \(J = \emptyset \), we would have
\[
\bigcup_{i \in [n]} a_i \neq 1.
\]
Definition

Call a collection \(\{ a_i : i \in [n] \} \subseteq \mathcal{B} \) \textbf{*-free} if for every non-empty \(J \subseteq [n] \) we have

\[
\left(\bigcap_{j \in J} a_j \right) \cap \left(\bigcap_{j \notin J} a_j^c \right) \neq 0 \land \bigcup_{i \in [n]} a_i = 1.
\]
Definition

Call a collection \(\{ a_i : i \in [n] \} \subseteq \mathcal{B} \), \textbf{*-free} if for every non-empty \(J \subseteq [n] \) we have

\[
\left(\bigcap_{j \in J} a_j \right) \cap \left(\bigcap_{j \not\in J} a_j^c \right) \neq 0 \land \bigcup_{i \in [n]} a_i = 1.
\]

Remark: Recall that the collection \(\{ a_i : i \in [n] \} \) is \textbf{free} if for every \(J \subseteq [n] \) we have

\[
\left(\bigcap_{j \in J} a_j \right) \cap \left(\bigcap_{j \not\in J} a_j^c \right) \neq 0,
\]

in which case, by considering \(J = \emptyset \), we would have \(\bigcup_{i \in [n]} a_i \neq 1 \).
Theorem
For every countable Boolean algebra \mathcal{A} there exists a countable Boolean algebra \mathcal{B} and an injective map $f: \mathcal{A} \to \mathcal{B}$ with the following properties:

1. $\mathcal{B} = \langle f[\mathcal{A}] \rangle$;
2. If $\mathcal{A}' \subseteq \mathcal{A}$ is a finite subalgebra, then the collection $f[\text{atoms}(\mathcal{A}')]$ is \ast-free in \mathcal{B};
3. $\forall a, b \in \mathcal{A}$, $(f(a \cup b) = f(a) \cup f(b))$.

Moreover, if D is a Boolean algebra and $g: \mathcal{A} \to D$ satisfies the above, then for any functional μ on \mathcal{A}, there exists a unique signed measure λ on D such that $\mu(a) = \lambda(g(a))$, for each $a \in \mathcal{A}$.
Theorem

For every countable Boolean algebra \mathcal{A} there exists a countable Boolean algebra \mathcal{B} and an injective map $f : \mathcal{A} \to \mathcal{B}$ with the following properties:

(T.1) $\mathcal{B} = \langle f[\mathcal{A}] \rangle$;
Theorem

For every countable Boolean algebra \mathcal{A} there exists a countable Boolean algebra \mathcal{B} and an injective map $f : \mathcal{A} \to \mathcal{B}$ with the following properties:

(T.1) $\mathcal{B} = \langle f[\mathcal{A}] \rangle$;

(T.2) if $\mathcal{A}' \subseteq \mathcal{A}$ is a finite subalgebra, then the collection $f[\text{atoms}(\mathcal{A}')]$ is $*$-free in \mathcal{B};
Theorem
For every countable Boolean algebra \(A \) there exists a countable Boolean algebra \(B \) and an injective map \(f : A \to B \) with the following properties:

(T.1) \(B = \langle f[A] \rangle \);

(T.2) if \(A' \subseteq A \) is a finite subalgebra, then the collection \(f[\text{atoms}(A')] \) is \(* \)-free in \(B \);

(T.3) \((\forall a, b \in A)(f(a \cup b) = f(a) \cup f(b)) \).
Theorem

For every countable Boolean algebra \mathcal{A} there exists a countable Boolean algebra \mathcal{B} and an injective map $f : \mathcal{A} \to \mathcal{B}$ with the following properties:

(T.1) $\mathcal{B} = \langle f[\mathcal{A}] \rangle$;

(T.2) If $\mathcal{A}' \subseteq \mathcal{A}$ is a finite subalgebra, then the collection $f[\text{atoms}(\mathcal{A}')]$ is $*$-free in \mathcal{B};

(T.3) $(\forall a, b \in \mathcal{A})(f(a \cup b) = f(a) \cup f(b))$.

Moreover, if \mathcal{D} is a Boolean algebra and $g : \mathcal{A} \to \mathcal{D}$ satisfies the above, then for any functional μ on \mathcal{A}, there exists a unique signed measure λ on \mathcal{D} such that $\mu(a) = \lambda(g(a))$, for each $a \in \mathcal{A}$.
The basic idea

Let A be the finite Boolean algebra of two atoms a and b and define the functional $\mu: A \to \mathbb{R}$ by:

$\mu(a) = \frac{3}{4}$
$\mu(b) = \frac{3}{4}$

This is not additive, since a and b cannot assume these values and be disjoint at the same time ($\frac{3}{4} + \frac{3}{4} \neq 1$).

If we want it to be additive and maintain these values, we will need a and b to intersect.

So we arrive at the Boolean algebra B of three atoms c, d, e and the measure $\lambda: B \to \mathbb{R}$ defined by:

$\lambda(c) = \frac{1}{4}$
$\lambda(d) = \frac{1}{2}$
$\lambda(e) = \frac{1}{4}$
Let \mathcal{A} be the finite Boolean algebra of two atoms a and b and define the functional $\mu : \mathcal{A} \rightarrow \mathbb{R}$ by:

$$\mu(a) = \mu(b) = \frac{3}{4} \quad \text{and} \quad \mu(a \cup b) = 1.$$
Let \(\mathcal{A} \) be the finite Boolean algebra of two atoms \(a \) and \(b \) and define the functional \(\mu : \mathcal{A} \to \mathbb{R} \) by:

\[
\mu(a) = \mu(b) = \frac{3}{4} \quad \text{and} \quad \mu(a \cup b) = 1.
\]

This is not additive, since \(a \) and \(b \) cannot assume these values and be disjoint at the same time \((\frac{3}{4} + \frac{3}{4} \neq 1...!)\).
Let \(\mathcal{A} \) be the finite Boolean algebra of two atoms \(a \) and \(b \) and define the functional \(\mu : \mathcal{A} \to \mathbb{R} \) by:

\[
\mu(a) = \mu(b) = \frac{3}{4} \quad \text{and} \quad \mu(a \cup b) = 1.
\]

- This is not additive, since \(a \) and \(b \) cannot assume these values and be disjoint at the same time \((\frac{3}{4} + \frac{3}{4} \neq 1...!)\).
- If we want it to be additive and maintain these values, we will need \(a \) and \(b \) to intersect.
The basic idea

Let \(\mathcal{A} \) be the finite Boolean algebra of two atoms \(a \) and \(b \) and define the functional \(\mu : \mathcal{A} \rightarrow \mathbb{R} \) by:

\[
\mu(a) = \mu(b) = \frac{3}{4} \quad \text{and} \quad \mu(a \cup b) = 1.
\]

- This is not additive, since \(a \) and \(b \) cannot assume these values and be disjoint at the same time (\(\frac{3}{4} + \frac{3}{4} \neq 1 \ldots ! \)).
- If we want it to be additive and maintain these values, we will need \(a \) and \(b \) to intersect.
- So we arrive at the Boolean algebra \(\mathcal{B} \) of three atoms \(c, d \) and \(e \) and the measure \(\lambda : \mathcal{B} \rightarrow \mathbb{R} \) defined by

\[
\lambda(c) = \lambda(e) = \frac{1}{4} \quad \text{and} \quad \lambda(d) = \frac{1}{2}.
\]
The basic idea

We are in fact solving the following system of linear equations:

\[\mu(a) = \frac{3}{4} \]
\[\mu(b) = \frac{3}{4} \]
\[\lambda(c) = \frac{1}{4} \]
\[\lambda(d) = \frac{1}{2} \]
\[\lambda(e) = \frac{1}{4} \]

By constructing an appropriate matrix and showing that it is invertible, we see that in general this can be done for any finite Boolean algebra. The final construction is obtained as a direct limit of these finite constructions.
The basic idea

We are in fact solving the following system of linear equations:

1. \(\mu(a \cup b) = \lambda(c) + \lambda(d) + \lambda(e); \)
2. \(\mu(a) = \lambda(c) + \lambda(d); \)
3. \(\mu(b) = \lambda(d) + \lambda(e). \)
The basic idea

We are in fact solving the following system of linear equations:

- $\mu(a \cup b) = \lambda(c) + \lambda(d) + \lambda(e);$
- $\mu(a) = \lambda(c) + \lambda(d);$
- $\mu(b) = \lambda(d) + \lambda(e).$

By constructing an appropriate matrix and showing that it is invertible, we see that in general this can be done for any finite Boolean algebra.
We are in fact solving the following system of linear equations:

- \(\mu(a \cup b) = \lambda(c) + \lambda(d) + \lambda(e); \)
- \(\mu(a) = \lambda(c) + \lambda(d); \)
- \(\mu(b) = \lambda(d) + \lambda(e). \)

By constructing an appropriate matrix and showing that it is invertible, we see that in general this can be done for any finite Boolean algebra.

The final construction is obtained as a direct limit of these finite constructions.
We can construct this map (almost) explicitly.
Explicit construction

We can construct this map (almost) explicitly.

- Let X_1, X_2, \ldots be a sequence of finite non-empty sets, let $X^{(n)} = \prod_{i \in [n]} X_i$ and $X = \prod_{i \in \mathbb{N}} X_i$.

- Define another sequence of finite non-empty sets T_1, T_2, \ldots as follows.

- Let $T_1 = \mathcal{P}(X_1)$ and $T_{i+1} = \{A \subseteq X^{(i+1)} : \text{every member of } X^{(i)} \text{ has an extension in } A\}$.

- Our A will be the clopen sets of X.

- Define another sequence of finite non-empty sets T_1, T_2, \ldots as follows.

- Let $T_1 = \mathcal{P}(X_1)$ and $T_{i+1} = \{A \subseteq X^{(i+1)} : \text{every member of } X^{(i)} \text{ has an extension in } A\}$.

- Our B will be the clopen sets of $T := \prod_{i \in \mathbb{N}} T_i$ and let $T^{(n)} = \prod_{i \in [n]} T_i$.

- Say that $s \in X^{(n)}$ generates $t \in T^{(n)}$ if $(\forall i \in [n])(s \upharpoonright [i] \in t(i))$.

- Now define f by $f([s]) = \bigcup \{[t] : s \text{ generates } t\}$.

We can construct this map (almost) explicitly.

- Let X_1, X_2, \ldots be a sequence of finite non-empty sets, let $X^{(n)} = \prod_{i \in [n]} X_i$ and $X = \prod_{i \in \mathbb{N}} X_i$.

- Our \mathcal{A} will be the clopen sets of X.
We can construct this map (almost) explicitly.

- Let $X_1, X_2, ...$ be a sequence of finite non-empty sets, let $X^{(n)} = \prod_{i \in [n]} X_i$ and $X = \prod_{i \in \mathbb{N}} X_i$.
- Our \mathcal{A} will be the clopen sets of X.
- Define another sequence of finite non-empty sets $T_1, T_2, ...$ as follows.
We can construct this map (almost) explicitly.

- Let X_1, X_2, \ldots be a sequence of finite non-empty sets, let $X^{(n)} = \prod_{i \in [n]} X_i$ and $X = \prod_{i \in \mathbb{N}} X_i$.
- Our \mathcal{A} will be the clopen sets of X.
- Define another sequence of finite non-empty sets T_1, T_2, \ldots as follows.
- Let $T_1 = \mathcal{P}(X_1)^+$ and
 \[
 T_{i+1} = \{ A \subseteq X^{(i+1)} : \text{every member of } X^{(i)} \text{ has an extension in } A \}.
 \]
Explicit construction

We can construct this map (almost) explicitly.

- Let \(X_1, X_2, \ldots \) be a sequence of finite non-empty sets, let \(X^{(n)} = \prod_{i \in [n]} X_i \) and \(X = \prod_{i \in \mathbb{N}} X_i \).
- Our \(\mathcal{A} \) will be the clopen sets of \(X \).
- Define another sequence of finite non-empty sets \(T_1, T_2, \ldots \) as follows.
 - Let \(T_1 = \mathcal{P}(X_1)^+ \) and
 \[
 T_{i+1} = \{ A \subseteq X^{(i+1)} : \text{every member of } X^{(i)} \text{ has an extension in } A \}.
 \]
- Our \(\mathcal{B} \) will be the clopen sets of \(T := \prod_{i \in \mathbb{N}} T_i \) and let \(T^{(n)} = \prod_{i \in [n]} T_i \).
We can construct this map (almost) explicitly.

- Let X_1, X_2, \ldots be a sequence of finite non-empty sets, let $X^{(n)} = \prod_{i \in [n]} X_i$ and $X = \prod_{i \in \mathbb{N}} X_i$.
- Our \mathcal{A} will be the clopen sets of X.
- Define another sequence of finite non-empty sets T_1, T_2, \ldots as follows.
- Let $T_1 = \mathcal{P}(X_1)^+$ and
 \[T_{i+1} = \{ A \subseteq X^{(i+1)} : \text{every member of } X^{(i)} \text{ has an extension in } A \} \].
- Our \mathcal{B} will be the clopen sets of $T := \prod_{i \in \mathbb{N}} T_i$ and let $T^{(n)} = \prod_{i \in [n]} T_i$.
- Say that $s \in X^{(n)}$ generates $t \in T^{(n)}$ if
 \[(\forall i \in [n])(s \upharpoonright [i] \in t(i)) \].

Now define f by $f([s]) = \bigcup \{ [t] : s \text{ generates } t \}$.
Explicit construction

We can construct this map (almost) explicitly.

- Let X_1, X_2, \ldots be a sequence of finite non-empty sets, let $X^{(n)} = \prod_{i \in [n]} X_i$ and $X = \prod_{i \in \mathbb{N}} X_i$.
- Our \mathcal{A} will be the clopen sets of X.
- Define another sequence of finite non-empty sets T_1, T_2, \ldots as follows.
- Let $T_1 = \mathcal{P}(X_1)^+$ and
 \[T_{i+1} = \{ A \subseteq X^{(i+1)} : \text{every member of } X^{(i)} \text{ has an extension in } A \}. \]
- Our \mathcal{B} will be the clopen sets of $T := \prod_{i \in \mathbb{N}} T_i$ and let $T^{(n)} = \prod_{i \in [n]} T_i$.
- Say that $s \in X^{(n)}$ generates $t \in T^{(n)}$ if
 \[(\forall i \in [n])(s \upharpoonright [i] \in t(i)). \]
- Now define f by
 \[f([s]) = \bigcup \{ [t] : s \text{ generates } t \}. \]
By induction we see that: Every $t \in T^{(n)}$ will be generated by some $s \in X^{(n)}$.
Explicit construction

By induction we see that: Every $t \in T^{(n)}$ will be generated by some $s \in X^{(n)}$:

- Assume it is true for n and let $f \in T^{(n+1)}$. Since we can find a $s \in X^{(n)}$ that generates $f \upharpoonright [n]$, and $f(n+1)$ contains an extension of s, we are done.
By induction we see that: **Every** \(t \in T^{(n)} \) **will be generated by some** \(s \in X^{(n)} \):

- Assume it is true for \(n \) and let \(f \in T^{(n+1)} \). Since we can find a \(s \in X^{(n)} \) that generates \(f \upharpoonright [n] \), and \(f(n + 1) \) contains an extension of \(s \), we are done.

For every \(A \subseteq X^{(n)} \), **there exists a** \(t \in T^{(n)} \) **which is generated precisely by the members of** \(A \):
By induction we see that: **Every** $t \in T^{(n)}$ **will be generated by some** $s \in X^{(n)}$:

- Assume it is true for n and let $f \in T^{(n+1)}$. Since we can find a $s \in X^{(n)}$ that generates $f \upharpoonright [n]$, and $f(n+1)$ contains an extension of s, we are done.

For every $A \subseteq X^{(n)}$, **there exists a** $t \in T^{(n)}$ **which is generated precisely by the members of** A:

- Assume true for n and let $A \subseteq X^{(n+1)}$.

Note that as it is defined, (T.1) fails (the image of this map does not generate B). But just consider the algebra generated by this image.
By induction we see that: **Every** \(t \in T^{(n)} \) **will be generated by some** \(s \in X^{(n)} \):

- Assume it is true for \(n \) and let \(f \in T^{(n+1)} \). Since we can find a \(s \in X^{(n)} \) that generates \(f \upharpoonright [n] \), and \(f(n + 1) \) contains an extension of \(s \), we are done.

For every \(A \subseteq X^{(n)} \), **there exists a** \(t \in T^{(n)} \) **which is generated precisely by the members of** \(A \):

- Assume true for \(n \) and let \(A \subseteq X^{(n+1)} \).
- Let \(B = \{ s \upharpoonright [n] : s \in A \} \).
By induction we see that: **Every** $t \in T^{(n)}$ **will be generated by some** $s \in X^{(n)}$:

- Assume it is true for n and let $f \in T^{(n+1)}$. Since we can find a $s \in X^{(n)}$ that generates $f \upharpoonright [n]$, and $f(n + 1)$ contains an extension of s, we are done.

For every $A \subseteq X^{(n)}$, **there exists a** $t \in T^{(n)}$ **which is generated precisely by the members of** A:

- Assume true for n and let $A \subseteq X^{(n+1)}$.
- Let $B = \{s \upharpoonright [n] : s \in A\}$.
- Let $g \in T^{(n)}$ be generated by precisely the members of B.

Note that as it is defined, (T.1) fails (the image of this map does not generate B). But just consider the algebra generated by this image.
Explicit construction

By induction we see that: Every $t \in T^{(n)}$ will be generated by some $s \in X^{(n)}$:

- Assume it is true for n and let $f \in T^{(n+1)}$. Since we can find a $s \in X^{(n)}$ that generates $f \upharpoonright [n]$, and $f(n+1)$ contains an extension of s, we are done.

For every $A \subseteq X^{(n)}$, there exists a $t \in T^{(n)}$ which is generated precisely by the members of A:

- Assume true for n and let $A \subseteq X^{(n+1)}$.
- Let $B = \{s \upharpoonright [n] : s \in A\}$.
- Let $g \in T^{(n)}$ be generated by precisely the members of B.
- Fix and $x \in X_{n+1}$ and let $f = g \langle \{s \langle x : s \in X^{(n)} \setminus B\} \rangle$.

Note that as it is defined, (T.1) fails (the image of this map does not generate B). But just consider the algebra generated by this image.
Explicit construction

By induction we see that: **Every** \(t \in T^{(n)} \) **will be generated by some** \(s \in X^{(n)} \):

- Assume it is true for \(n \) and let \(f \in T^{(n+1)} \). Since we can find a \(s \in X^{(n)} \) that generates \(f \upharpoonright [n] \), and \(f(n+1) \) contains an extension of \(s \), we are done.

For every \(A \subseteq X^{(n)} \), **there exists a** \(t \in T^{(n)} \) **which is generated precisely by the members of** \(A \):

- Assume true for \(n \) and let \(A \subseteq X^{(n+1)} \).
- Let \(B = \{ s \upharpoonright [n] : s \in A \} \).
- Let \(g \in T^{(n)} \) be generated by precisely the members of \(B \).
- Fix and \(x \in X_{n+1} \) and let \(f = g \upharpoonright (A \cup \{ s \upharpoonright x : s \in X^{(n)} \setminus B \}) \).
- \(f \in T^{(n+1)} \).
Explicit construction

By induction we see that: **Every** \(t \in T^{(n)} \) **will be generated by some** \(s \in X^{(n)} \):

- Assume it is true for \(n \) and let \(f \in T^{(n+1)} \). Since we can find a \(s \in X^{(n)} \) that generates \(f \upharpoonright [n] \), and \(f(n + 1) \) contains an extension of \(s \), we are done.

For every \(A \subseteq X^{(n)} \), **there exists a** \(t \in T^{(n)} \) **which is generated precisely by the members of** \(A \):

- Assume true for \(n \) and let \(A \subseteq X^{(n+1)} \).
- Let \(B = \{ s \upharpoonright [n] : s \in A \} \).
- Let \(g \in T^{(n)} \) be generated by precisely the members of \(B \).
- Fix and \(x \in X_{n+1} \) and let \(f = g \upharpoonright (A \cup \{ s \upharpoonright x : s \in X^{(n)} \setminus B \}) \).
- \(f \in T^{(n+1)} \).
- If \(t \not\in A \) and generates \(f \), then \(t = s \upharpoonright x \) for some \(s \not\in B \) and \(s \) generates \(g \), which is a contradiction.
Explicit construction

By induction we see that: **Every** \(t \in T^{(n)} \) **will be generated by some** \(s \in X^{(n)} \):

- Assume it is true for \(n \) and let \(f \in T^{(n+1)} \). Since we can find a \(s \in X^{(n)} \) that generates \(f \upharpoonright [n] \), and \(f(n+1) \) contains an extension of \(s \), we are done.

For every \(A \subseteq X^{(n)} \), there exists a \(t \in T^{(n)} \) which is generated precisely by the members of \(A \):

- Assume true for \(n \) and let \(A \subseteq X^{(n+1)} \).
- Let \(B = \{ s \upharpoonright [n] : s \in A \} \).
- Let \(g \in T^{(n)} \) be generated by precisely the members of \(B \).
- Fix and \(x \in X_{n+1} \) and let \(f = g \upharpoonright (A \cup \{ s \upharpoonright x : s \in X^{(n)} \setminus B \}) \).
- \(f \in T^{(n+1)} \).
- If \(t \notin A \) and generates \(f \), then \(t = s \upharpoonright x \) for some \(s \notin B \) and \(s \) generates \(g \), which is a contradiction.

From this we see that \(f \) is injective and satisfies properties (T.2) and (T.3) of Theorem.

Note that as it is defined, (T.1) fails (the image of this map does not generate \(B \)). But just consider the algebra generated by this image.
By induction we see that: **Every** \(t \in T^{(n)} \) **will be generated by some** \(s \in X^{(n)} \):

- Assume it is true for \(n \) and let \(f \in T^{(n+1)} \). Since we can find a \(s \in X^{(n)} \) that generates \(f \upharpoonright [n] \), and \(f(n+1) \) contains an extension of \(s \), we are done.

For every \(A \subseteq X^{(n)} \), **there exists a** \(t \in T^{(n)} \) **which is generated precisely by the members of** \(A \):

- Assume true for \(n \) and let \(A \subseteq X^{(n+1)} \).
- Let \(B = \{ s \upharpoonright [n] : s \in A \} \).
- Let \(g \in T^{(n)} \) be generated by precisely the members of \(B \).
- Fix and \(x \in X_{n+1} \) and let \(f = g \upharpoonright (A \cup \{ s \upharpoonright x : s \in X^{(n)} \setminus B \}) \).
- \(f \in T^{(n+1)} \).
- If \(t \not\in A \) and generates \(f \), then \(t = s \upharpoonright x \) for some \(s \not\in B \) **and** \(s \) **generates** \(g \), which is a contradiction.

From this we see that \(f \) is injective and satisfies properties (T.2) and (T.3) of Theorem.
Explicit construction

By induction we see that: **Every** $t \in T^{(n)}$ **will be generated by some** $s \in X^{(n)}$:

- Assume it is true for n and let $f \in T^{(n+1)}$. Since we can find a $s \in X^{(n)}$ that generates $f \upharpoonright [n]$, and $f(n+1)$ contains an extension of s, we are done.

For every $A \subseteq X^{(n)}$, **there exists a** $t \in T^{(n)}$ **which is generated precisely by the members of** A:

 - Assume true for n and let $A \subseteq X^{(n+1)}$.
 - Let $B = \{s \upharpoonright [n] : s \in A\}$.
 - Let $g \in T^{(n)}$ be generated by precisely the members of B.
 - Fix and $x \in X_{n+1}$ and let $f = g \upharpoonright (A \cup \{s \upharpoonright x : s \in X^{(n)} \setminus B\})$.
 - $f \in T^{(n+1)}$.
 - If $t \notin A$ and generates f, then $t = s \upharpoonright x$ for some $s \notin B$ and s generates g, which is a contradiction.

From this we see that f is injective and satisfies properties (T.2) and (T.3) of Theorem.

Note that as it is defined, (T.1) fails (the image of this map does not generate \mathcal{B}).
By induction we see that: Every \(t \in T^{(n)} \) will be generated by some \(s \in X^{(n)} \):

- Assume it is true for \(n \) and let \(f \in T^{(n+1)} \). Since we can find a \(s \in X^{(n)} \) that generates \(f \upharpoonright [n] \), and \(f(n+1) \) contains an extension of \(s \), we are done.

For every \(A \subseteq X^{(n)} \), there exists a \(t \in T^{(n)} \) which is generated precisely by the members of \(A \):

- Assume true for \(n \) and let \(A \subseteq X^{(n+1)} \).
- Let \(B = \{s \upharpoonright [n] : s \in A\} \).
- Let \(g \in T^{(n)} \) be generated by precisely the members of \(B \).
- Fix and \(x \in X_{n+1} \) and let \(f = g \upharpoonright (A \cup \{s \upharpoonright x : s \in X^{(n)} \setminus B\}) \).
- \(f \in T^{(n+1)} \).
- If \(t \not\in A \) and generates \(f \), then \(t = s \upharpoonright x \) for some \(s \not\in B \) and \(s \) generates \(g \), which is a contradiction.

From this we see that \(f \) is injective and satisfies properties (T.2) and (T.3) of Theorem.

Note that as it is defined, (T.1) fails (the image of this map does not generate \(\mathcal{B} \)). But just consider the algebra generated by this image.
Let λ be the Lebesgue measure on \mathcal{B}.
Let λ be the Lebesgue measure on \mathcal{B}.

The map μ on \mathcal{A} defined by

$$(\forall a \in \mathcal{A})(\mu(a) = \lambda(f(a)))$$

is a submeasure.
Let λ be the Lebesgue measure on \mathcal{B}.

The map μ on \mathcal{A} defined by

$$(\forall a \in \mathcal{A})(\mu(a) = \lambda(f(a)))$$

is a submeasure.

Calculating the values of μ reduces to counting sequences in the $T^{(n)}$.

Let λ be the Lebesgue measure on \mathcal{B}.

The map μ on \mathcal{A} defined by

$$(\forall a \in \mathcal{A})(\mu(a) = \lambda(f(a)))$$

is a submeasure.

Calculating the values of μ reduces to counting sequences in the $T^{(n)}$.

It is not difficult to see that the subsets of X of the form

$$C_{i,j} = \{f \in X : f(i) = j\}$$

have μ-measure bounded away from 0.
Let λ be the Lebesgue measure on \mathcal{B}.

The map μ on \mathcal{A} defined by

$$(\forall a \in \mathcal{A})(\mu(a) = \lambda(f(a)))$$

is a submeasure.

Calculating the values of μ reduces to counting sequences in the $T^{(n)}$.

It is not difficult to see that the subsets of X of the form

$$C_{i,j} = \{f \in X : f(i) = j\}$$

have μ-measure bounded away from 0.

In particular if $\sup_i |X_i| = \infty$ then μ will not be equivalent to a measure.
Let λ be the Lebesgue measure on \mathcal{B}.

The map μ on \mathcal{A} defined by

$$(\forall a \in \mathcal{A})(\mu(a) = \lambda(f(a)))$$

is a submeasure.

Calculating the values of μ reduces to counting sequences in the $T^{(n)}$.

It is not difficult to see that the subsets of X of the form

$$C_{i,j} = \{f \in X : f(i) = j\}$$

have μ-measure bounded away from 0.

In particular if $\sup_i |X_i| = \infty$ then μ will not be equivalent to a measure.

However, we cannot decide if μ is ever exhaustive.
Let λ be the Lebesgue measure on \mathcal{B}.

The map μ on \mathcal{A} defined by

$$(\forall a \in \mathcal{A})(\mu(a) = \lambda(f(a)))$$

is a submeasure.

Calculating the values of μ reduces to counting sequences in the $T^{(n)}$.

It is not difficult to see that the subsets of X of the form

$$C_{i,j} = \{f \in X : f(i) = j\}$$

have μ-measure bounded away from 0.

In particular if $\sup_i |X_i| = \infty$ then μ will not be equivalent to a measure.

However, we cannot decide if μ is ever exhaustive.

Warning! If each $X_i = \{1, 2\}$ then μ is not exhaustive.
Can this be useful?
Can this be useful?

Lemma

If μ is a submeasure and the corresponding signed measure is non-negative, then μ must dominate a non-trivial measure (i.e. it cannot be pathological).
Can this be useful?

Lemma
If μ is a submeasure and the corresponding signed measure is non-negative, then μ must dominate a non-trivial measure (i.e. it cannot be pathological).

In particular the signed measure corresponding to Talagrand’s submeasure is indeed non-negative.
Can this be useful?

Lemma

If μ *is a submeasure and the corresponding signed measure is non-negative, then μ must dominate a non-trivial measure (i.e. it cannot be pathological).*

In particular the signed measure corresponding to Talagrand's submeasure is indeed non-negative.

On the other hand, there are very simple submeasures where the corresponding signed measure is unbounded. For example take the submeasure

$$
\mu(a) = \begin{cases}
1, & \text{if } a = 1; \\
\frac{1}{2}, & \text{otherwise.}
\end{cases}
$$
The End