Wallman representations of hyperspaces

Wojciech Stadnicki (University of Wrocław)

January 31, 2013
Winter School, Hejnice
We say X is a C-space (or X has property C) if for each sequence $\mathcal{U}_1, \mathcal{U}_2, \ldots$ of open covers of X, there exists a sequence $\mathcal{V}_1, \mathcal{V}_2, \ldots$, such that:

- each \mathcal{V}_i is a family of pairwise disjoint open subsets of X
- $\mathcal{V}_i \prec \mathcal{U}_i$ ({\mathcal{V}_i} refines \mathcal{U}_i, i.e. $\forall V \in \mathcal{V}_i \exists U \in \mathcal{U}_i$ $V \subseteq U$)
- $\bigcup_{i=1}^{\infty} \mathcal{V}_i$ is a cover of X
C-spaces

We say X is a C-space (or X has property C) if for each sequence $\mathcal{U}_1, \mathcal{U}_2, \ldots$ of open covers of X, there exists a sequence $\mathcal{V}_1, \mathcal{V}_2, \ldots$, such that:

- each \mathcal{V}_i is a family of pairwise disjoint open subsets of X
- $\mathcal{V}_i \prec \mathcal{U}_i$ (i.e. $\forall V \in \mathcal{V}_i \exists U \in \mathcal{U}_i$ $V \subseteq U$)
- $\bigcup_{i=1}^{\infty} \mathcal{V}_i$ is a cover of X

finite dimension \Rightarrow property C \Rightarrow weakly infinite dimension
Theorem (Levin, Rogers 1999)

If X is a metric continuum of dimension ≥ 2 then its hyperspace $C(X)$ is not a C-space.
Theorem (Levin, Rogers 1999)
If \(X \) is a metric continuum of dimension \(\geq 2 \) then its hyperspace \(C(X) \) is not a \(C \)-space.

Theorem
Suppose \(X \) is a 1-dimensional hereditarily indecomposable metric continuum. Then either \(\dim C(X) = 2 \) or \(C(X) \) is not a \(C \)-space.

Question
Are above theorems true for non-metric continua?
Answer: Yes.
Reduce the non-metric case to the metric one by applying L"owenheim-Skolem theorem. Then use the already known theorems. This approach was presented by K. P. Hart on the Winter School in 2012.
Theorem (Levin, Rogers 1999)
If X is a metric continuum of dimension ≥ 2 then its hyperspace $C(X)$ is not a C-space.

Theorem
Suppose X is a 1-dimensional hereditarily indecomposable metric continuum. Then either $\dim C(X) = 2$ or $C(X)$ is not a C-space.

Question
Are above theorems true for non-metric continua?

Answer: Yes. Reduce the non-metric case to the metric one by applying the L"owenheim-Skolem theorem. Then use the already known theorems. This approach was presented by K. P. Hart on the Winter School in 2012.
Theorem (Levin, Rogers 1999)
If X is a metric continuum of dimension ≥ 2 then its hyperspace $C(X)$ is not a C-space.

Theorem
Suppose X is a 1-dimensional hereditarily indecomposable metric continuum. Then either $\dim C(X) = 2$ or $C(X)$ is not a C-space.

Question
Are above theorems true for non-metric continua?
Answer: Yes.

Reduce the non-metric case to the metric one by applying Löwenheim-Skolem theorem. Then use the already known theorems. This approach was presented by K. P. Hart on the Winter School in 2012.
For a compact space X consider the lattice 2^X which consists of all closed subsets of X.
For a compact space X consider the lattice 2^X which consists of all closed subsets of X.

Each (distributive and separative) lattice L corresponds to the Wallman space wL, which consists of all ultrafilters on L.

For $a \in L$ let \(\hat{a} = \{ u \in wL : a \in u \} \). We define the topology in wL taking the family \(\{ \hat{a} : a \in L \} \) as a base for closed sets.

If L is a countable (normal) lattice then wL is a compact metric space.

Fact

Let L be a sublattice of 2^X. The function $q : X \to wL$ given by $q(x) = \{ a \in L : x \in a \}$ is a continuous surjection.
For a compact space X consider the lattice 2^X which consists of all closed subsets of X.

Each (distributive and separative) lattice L corresponds to the Wallman space wL, which consists of all ultrafilters on L. For $a \in L$ let $\hat{a} = \{ u \in wL : a \in u \}$. We define the topology in wL taking the family $\{ \hat{a} : a \in L \}$ as a base for closed sets.
For a compact space X consider the lattice 2^X which consists of all closed subsets of X.

Each (distributive and separative) lattice L corresponds to the Wallman space wL, which consists of all ultrafilters on L. For $a \in L$ let $\hat{a} = \{u \in wL : a \in u\}$. We define the topology in wL taking the family $\{\hat{a} : a \in L\}$ as a base for closed sets. If L is a countable (normal) lattice then wL is a compact metric space.
For a compact space X consider the lattice 2^X which consists of all closed subsets of X.

Each (distributive and separative) lattice L corresponds to the Wallman space wL, which consists of all ultrafilters on L. For $a \in L$ let $\widehat{a} = \{ u \in wL : a \in u \}$. We define the topology in wL taking the family $\{ \widehat{a} : a \in L \}$ as a base for closed sets. If L is a countable (normal) lattice then wL is a compact metric space.

Fact

Let L be a sublattice of 2^X. The function $q : X \to wL$ given by $q(x) = \{ a \in L : x \in a \}$ is a continuous surjection.
Definition

A property \(\mathcal{P} \) is \textit{elementarily reflected} if:
for any compact space \(X \) with the property \(\mathcal{P} \) and for any \(L \prec 2^X \)
its Wallman representation \(wL \) also has \(\mathcal{P} \).
Definition

A property \mathcal{P} is *elementarily reflected* if:
for any compact space X with the property \mathcal{P} and for any $L \prec 2^X$ its Wallman representation wL also has \mathcal{P}.

Definition

A property \mathcal{P} is *elementarily reflected by submodels* if:
for any compact space X with the property \mathcal{P} and for any $L \prec 2^X$ of the form $L = 2^X \cap \mathcal{M}$, where $2^X \in \mathcal{M}$ and $\mathcal{M} \prec H(\kappa)$ (for a large enough regular κ), its Wallman representation wL also has \mathcal{P}.
Definition

A property \mathcal{P} is *elementarily reflected* if:
for any compact space X with the property \mathcal{P} and for any $L \prec 2^X$ its Wallman representation wL also has \mathcal{P}.

Definition

A property \mathcal{P} is *elementarily reflected by submodels* if:
for any compact space X with the property \mathcal{P} and for any $L \prec 2^X$ of the form $L = 2^X \cap \mathcal{M}$, where $2^X \in \mathcal{M}$ and $\mathcal{M} \prec H(\kappa)$ (for a large enough regular κ), its Wallman representation wL also has \mathcal{P}.

- Connectedness is elementarily reflected.
- The dimension dim is elementarily reflected (including $\text{dim} = \infty$).
- Hereditary indecomposability is elementarily reflected.
If $\dim X \geq 2$ then $C(X)$ is not a C-space:
If $\dim X \geq 2$ then $C(X)$ is not a C-space:

Suppose $\dim X \geq 2$. Take countable $\mathcal{M} \prec H(\kappa)$ such that $2^X, 2^{C(X)} \in \mathcal{M}$.

Let $L = 2^X \cap \mathcal{M}$ and $L^* = 2^{C(X)} \cap \mathcal{M}$. Then wL, wL^* are metric continua. Moreover, $\dim wL = \dim X \geq 2$.

By the result of M. Levin and J. T. Rogers, Jr. for metric continua, we obtain $C(wL)$ is not a C-space.

Lemma 1 The space wL^* is homeomorphic to $C(wL)$.

Property C is elementarily reflected.

By Lemma 1, wL^* is not a C-space. By Lemma (2), neither is $C(X)$.
If $\text{dim}X \geq 2$ then $C(X)$ is not a C-space:

Suppose $\text{dim} X \geq 2$. Take countable $\mathcal{M} \prec H(\kappa)$ such that $2^X, 2^{C(X)} \in \mathcal{M}$. Let $L = 2^X \cap \mathcal{M}$ and $L^* = 2^{C(X)} \cap \mathcal{M}$. Then wL, wL^* are metric continua. Moreover, $\text{dim} wL = \text{dim} X \geq 2$.

By the result of M. Levin and J. T. Rogers, Jr. for metric continua, we obtain $C(wL)$ is not a C-space.

Lemma 1
The space wL^* is homeomorphic to $C(wL)$.

Property C is elementarily reflected.

By Lemma (1) wL^* is not a C-space.

By Lemma (2), neither is $C(X)$.

Wojciech Stadnicki (University of Wrocław) Wallman representations of hyperspaces
If $\dim X \geq 2$ then $C(X)$ is not a C-space:

Suppose $\dim X \geq 2$. Take countable $\mathcal{M} \prec H(\kappa)$ such that $2^X, 2^{C(X)} \in \mathcal{M}$. Let $L = 2^X \cap \mathcal{M}$ and $L^* = 2^{C(X)} \cap \mathcal{M}$. Then wL, wL^* are metric continua. Moreover, $\dim wL = \dim X \geq 2$. By the result of M. Levin and J. T. Rogers, Jr. for metric continua, we obtain $C(wL)$ is not a C-space.
If $\dim X \geq 2$ then $C(X)$ is not a C-space:

Suppose $\dim X \geq 2$. Take countable $\mathcal{M} \prec H(\kappa)$ such that $2^X, 2^{C(X)} \in \mathcal{M}$. Let $L = 2^X \cap \mathcal{M}$ and $L^* = 2^{C(X)} \cap \mathcal{M}$. Then wL, wL^* are metric continua. Moreover, $\dim wL = \dim X \geq 2$. By the result of M. Levin and J. T. Rogers, Jr. for metric continua, we obtain $C(wL)$ is not a C-space.

Lemma

1. The space wL^* is homeomorphic to $C(wL)$.
2. Property C is elementarily reflected.
If $\dim X \geq 2$ then $C(X)$ is not a C-space:

Suppose $\dim X \geq 2$. Take countable $\mathcal{M} \prec H(\kappa)$ such that $2^X, 2^{C(X)} \in \mathcal{M}$. Let $L = 2^X \cap \mathcal{M}$ and $L^* = 2^{C(X)} \cap \mathcal{M}$. Then wL, wL^* are metric continua. Moreover, $\dim wL = \dim X \geq 2$.

By the result of M. Levin and J. T. Rogers, Jr. for metric continua, we obtain $C(wL)$ is not a C-space.

Lemma

1. The space wL^* is homeomorphic to $C(wL)$.
2. Property C is elementarily reflected.

By Lemma (1) wL^* is not a C-space.
By Lemma (2), neither is $C(X)$.
Property C is elementarily reflected \((proof)\):

Let \(X\) be a \(C\)-space, 2\(\mathcal{X}\) the lattice of its closed subsets and \(\mathcal{L} \prec 2\mathcal{X}\).

Suppose \(U_1, U_2, \ldots\) is a sequence of finite open covers of \(\mathcal{wL}\), consisting of basic sets (i.e. for all \(U_{ik} \in U_i\) there is \(F_{ik} \in \mathcal{L}\) such that \(U_{ik} = \mathcal{wL} \\setminus \hat{F}_{ik}\)).

Define \(U'_{ik} = X \setminus F_{ik}\) and \(U'_i = \{U'_{i1}, U'_{i2}, \ldots, U'_{ik_i}\}\). Then \(U'_1, U'_2, \ldots\) is a sequence of open covers of \(X\).

Hence, there exists a finite sequence \(V'_1, V'_2, \ldots, V'_n\) of finite families as in the definition of a \(C\)-space.

So we have:

\[
\mathcal{L} = \exists G_{11}, \ldots, G_{1m_1}, G_{21}, \ldots, G_{2m_2}, \ldots, G_{n1}, \ldots, G_{nm_n} \text{ such that:} \]

1. \(\bigwedge_{n_i=1}^{\infty} (\bigwedge_{j \leq j' < m_i} (G_{ij} \cup G_{ij'} = X))\)
2. \(\bigwedge_{n_i=1}^{\infty} (\bigvee_{m_i=1}^{\infty} (\bigwedge_{k_i=1}^{k_i} (G_{ij} \cap F_{ij'} = F_{ij'})))\)
3. \(\bigwedge_{n_i=1}^{\infty} \bigwedge_{m_i=1}^{\infty} G_{ij} = \emptyset\).

By elementarity such sets \(G_{ij}\) exist in \(\mathcal{L}\).

Take \(V_{ij} = \mathcal{wL} \setminus \hat{G}_{ij}\) and \(V_i = \{V_{i1}, V_{i2}, \ldots, V_{im_k}\}\). Then \(V_1, V_2, \ldots, V_n\) are families of pairwise disjoint sets (by (1)), open in \(\mathcal{wL}\). For \(i \leq n\) the family \(V_i\) refines \(U_i\) (by (2)) and \(\bigcup_{n_i=1}^{\infty} V_i\) is a cover of \(\mathcal{wL}\) (by (3)).
Property C is elementarily reflected (proof):

Let X be a C-space, 2^X the lattice of its closed subsets and $L \prec 2^X$.

Suppose U_1, U_2, \ldots is a sequence of finite open covers of ωL, consisting of basic sets (i.e. for all $U_{ik} \in U_i$ there is $F_{ik} \in L$ such that $U_{ik} = \omega L \setminus \hat{F}_{ik}$). Define $U'_{ik} = X \setminus F_{ik}$ and $U'_i = \{U'_{i1}, U'_{i2}, \ldots, U'_{ik_i}\}$. Then U'_1, U'_2, \ldots is a sequence of open covers of X.

Hence, there exists a finite sequence $V'_{11}, V'_{12}, \ldots, V'_{nm}$ of finite families as in the definition of a C-space. So we have:

$2^X | = \exists G_{11}, \ldots, G_{1m_1}, G_{21}, \ldots, G_{2m_2}, \ldots, G_{n1}, \ldots, G_{nm}$ such that:

1. $\bigwedge_{n_i=1}^{\bigwedge_n} (\bigwedge_{j=1}^{m_i} (G_{ij} \cup G_{ij'} = X))$
2. $\bigwedge_{n_i=1}^{\bigwedge_n} (\bigvee_{m_i=1}^{\bigwedge_m} (G_{ij} \cap F_{ij'} = F_{ij'}))$
3. $\bigwedge_{n_i=1}^{\bigwedge_n} \bigwedge_{m_i=1}^{\bigwedge_m} G_{ij} = \emptyset$.

By elementarity such sets G_{ij} exist in L. Take $V_{ij} = \omega L \setminus \hat{G}_{ij}$ and $V_i = \{V_{i1}, V_{i2}, \ldots, V_{im_i}\}$. Then V_1, V_2, \ldots, V_n are families of pairwise disjoint sets (by (1)), open in ωL. For $i \leq n$ the family V_i refines U_i (by (2)) and $\bigcup_{n_i=1}^{\bigcup_n} V_i$ is a cover of ωL (by (3)).
Property C is elementarily reflected (*proof*):

Let X be a C-space, 2^X the lattice of its closed subsets and $L \prec 2^X$. Suppose U_1, U_2, \ldots is a sequence of finite open covers of wL, consisting of basic sets (i.e. for all $U_{ik} \in U_i$ there is $F_{ik} \in L$ such that $U_{ik} = wL \setminus \hat{F}_{ik}$).

Define $U_i'_{ik} = X \setminus F_{ik}$ and $U_i' = \{U_i'_{i1}, U_i'_{i2}, \ldots, U_i'_{im_i}\}$. Then U_i', U_2', \ldots is a sequence of open covers of X.

Hence, there exists a finite sequence V_i', V_2', \ldots, V_n' of finite families as in the definition of a C-space. So we have:

$$2^X = \exists G_{11}, \ldots, G_{m_1}, G_{21}, \ldots, G_{m_2}, \ldots, G_{n1}, \ldots, G_{nm}$$

such that:

1. $\bigwedge_{i=1}^n (\bigwedge_{j=j_i}^{j_i'} (G_{ij} \cup G_{ij}')) = X$
2. $\bigwedge_{i=1}^n (\bigwedge_{m=1}^{m_i} G_{ij} \cap F_{ij}') = F_{ij}'$
3. $\bigwedge_{i=1}^n \bigwedge_{m=1}^{m_i} G_{ij} = \emptyset$.

By elementarity such sets G_{ij} exist in L.

Take $V_{ij} = wL \setminus \hat{G}_{ij}$ and $V_i = \{V_{i1}, V_{i2}, \ldots, V_{im_i}\}$. Then V_1, V_2, \ldots, V_n are families of pairwise disjoint sets (by (1)), open in wL. For $i \leq n$ the family V_i refines U_i (by (2)) and $\bigcup_{i=1}^n V_i$ is a cover of wL (by (3)).
Property C is elementarily reflected *(proof)*:

Let X be a C-space, 2^X the lattice of its closed subsets and $L \vartriangleleft 2^X$. Suppose U_1, U_2, \ldots is a sequence of finite open covers of wL, consisting of basic sets (i.e. for all $U_{ik} \in U_i$ there is $F_{ik} \in L$ such that $U_{ik} = wL \setminus \hat{F}_{ik}$). Define $U'_{ik} = X \setminus F_{ik}$ and $U'_i = \{U'_{i1}, U'_{i2}, \ldots, U'_{ik_i}\}$. Then U'_1, U'_2, \ldots is a sequence of open covers of X.

Wojciech Stadnicki (University of Wrocław) Wallman representations of hyperspaces
Property C is elementarily reflected (proof):

Let X be a C-space, 2^X the lattice of its closed subsets and $L \ll 2^X$. Suppose $\mathcal{U}_1, \mathcal{U}_2, \ldots$ is a sequence of finite open covers of wL, consisting of basic sets (i.e. for all $U_{ik} \in \mathcal{U}_i$ there is $F_{ik} \in L$ such that $U_{ik} = wL \setminus \hat{F}_{ik}$). Define $U'_{ik} = X \setminus F_{ik}$ and $\mathcal{U}'_i = \{U'_{i1}, U'_{i2}, \ldots, U'_{ik_i}\}$. Then $\mathcal{U}'_1, \mathcal{U}'_2, \ldots$ is a sequence of open covers of X. Hence, there exists a finite sequence $\mathcal{V}'_1, \mathcal{V}'_2, \ldots, \mathcal{V}'_n$ of finite families as in the definition of a C-space.
Property C is elementarily reflected (proof):

Let X be a C-space, 2^X the lattice of its closed subsets and $L \prec 2^X$. Suppose $\mathcal{U}_1, \mathcal{U}_2, \ldots$ is a sequence of finite open covers of wL, consisting of basic sets (i.e. for all $U_{ik} \in \mathcal{U}_i$ there is $F_{ik} \in L$ such that $U_{ik} = wL \setminus \overset{\sim}{F_{ik}}$). Define $U_{ik}' = X \setminus F_{ik}$ and $\mathcal{U}_i' = \{ U_{i1}', U_{i2}', \ldots, U_{ik_i}' \}$. Then $\mathcal{U}_1', \mathcal{U}_2', \ldots$ is a sequence of open covers of X. Hence, there exists a finite sequence $\mathcal{V}_1', \mathcal{V}_2', \ldots, \mathcal{V}_n'$ of finite families as in the definition of a C-space. So we have:

$2^X \models \exists G_{11}, \ldots, G_{1m_1}, G_{21}, \ldots G_{2m_2}, \ldots, G_{n1}, \ldots, G_{nm_n}$ such that:

1. $\bigwedge_{i=1}^{n} \left(\bigwedge_{1 \leq j < j' \leq m_i} \left(G_{ij} \cup G_{ij'} = X \right) \right)$
2. $\bigwedge_{i=1}^{n} \left(\bigwedge_{j=1}^{m_i} \left(\bigvee_{j'=1}^{k_i} \left(G_{ij} \cap F_{ij'} = F_{ij'} \right) \right) \right)$
3. $\bigcap_{i=1}^{n} \bigcap_{j=1}^{m_i} G_{ij} = \emptyset$.

Wojciech Stadnicki (University of Wrocław)
Wallman representations of hyperspaces
Property C is elementarily reflected (proof):

Let X be a C-space, 2^X the lattice of its closed subsets and $L \prec 2^X$. Suppose $\mathcal{U}_1, \mathcal{U}_2, \ldots$ is a sequence of finite open covers of wL, consisting of basic sets (i.e. for all $U_{ik} \in \mathcal{U}_i$ there is $F_{ik} \in L$ such that $U_{ik} = wL \setminus \hat{F}_{ik}$). Define $U'_{ik} = X \setminus F_{ik}$ and $\mathcal{U}'_i = \{U'_{i1}, U'_{i2}, \ldots, U'_{ik_i}\}$. Then $\mathcal{U}'_1, \mathcal{U}'_2, \ldots$ is a sequence of open covers of X. Hence, there exists a finite sequence $\mathcal{V}'_1, \mathcal{V}'_2, \ldots, \mathcal{V}'_n$ of finite families as in the definition of a C-space. So we have:

\[2^X \models \exists G_{11}, \ldots, G_{1m_1}, G_{21}, \ldots G_{2m_2}, \ldots, G_{n1}, \ldots, G_{nm_n} \text{ such that:} \]

(1) $\bigwedge_{i=1}^{n} \left(\bigwedge_{1 \leq j < j' \leq m_i} (G_{ij} \cup G_{ij'} = X) \right)$
(2) $\bigwedge_{i=1}^{n} \left(\bigwedge_{j=1}^{m_i} \left(\bigvee_{j'=1}^{k_i} (G_{ij} \cap F_{ij'} = F_{ij'}) \right) \right)$
(3) $\bigcap_{i=1}^{n} \bigcap_{j=1}^{m_i} G_{ij} = \emptyset$.

By elementarity such sets G_{ij} exist in L.

Wojciech Stadnicki (University of Wrocław) Wallman representations of hyperspaces
Property C is elementarily reflected (proof):

Let X be a C-space, 2^X the lattice of its closed subsets and $L \prec 2^X$. Suppose U_1, U_2, \ldots is a sequence of finite open covers of wL, consisting of basic sets (i.e. for all $U_{ik} \in U_i$ there is $F_{ik} \in L$ such that $U_{ik} = wL \setminus \hat{F}_{ik}$). Define $U'_{ik} = X \setminus F_{ik}$ and $U'_i = \{U'_{i1}, U'_{i2}, \ldots, U'_{ik_i}\}$. Then U'_1, U'_2, \ldots is a sequence of open covers of X. Hence, there exists a finite sequence V'_1, V'_2, \ldots, V'_n of finite families as in the definition of a C-space. So we have:

$2^X \models \exists G_{11}, \ldots, G_{1m_1}, G_{21}, \ldots G_{2m_2}, \ldots, G_{n1}, \ldots, G_{nm_n}$ such that:

1. $\bigwedge_{i=1}^n \left(\bigwedge_{1 \leq j < j' \leq m_i} \left(G_{ij} \cup G_{ij'} = X \right) \right)$
2. $\bigwedge_{i=1}^n \left(\bigwedge_{j=1}^{m_i} \left(\bigvee_{j'=1}^{k_i} \left(G_{ij} \cap F_{ij'} = F_{ij'} \right) \right) \right)$
3. $\bigcap_{i=1}^n \bigcap_{j=1}^{m_i} G_{ij} = \emptyset$.

By elementarity such sets G_{ij} exist in L. Take $V_{ij} = wL \setminus \hat{G}_{ij}$ and $V_i = \{V_{i1}, V_{i2}, \ldots, V_{im_k}\}$. Then V_1, V_2, \ldots, V_n are families of pairwise disjoint sets (by (1)), open in wL. For $i \leq n$ the family V_i refines U_i (by (2)) and $\bigcup_{i=1}^n V_i$ is a cover of wL (by (3)).
Remark

Similarly one can prove that chainability is elementarily reflected.
Remark
Similarly one can prove that chainability is elementarily reflected.

The space wL^* is homeomorphic to $C(wL)$ (sketch of proof):

Let $u^* \in wL^*$. Extend it to an ultrafilter u on $2^{C(X)}$. Let $K_u \in C(X)$ be the only point in $\bigcap u$. So K_u is a subcontinuum of X. Define $h(u^*) = q[K_u]$, where $q: X \to wL$ is the continuous surjection given by $q(x) = \{ a \in L : x \in a \}$. Then h does not depend on the choice of K_u and it is a homeomorphism.
Remark
Similarly one can prove that chainability is elementarily reflected.

The space wL^* is homeomorphic to $C(wL)$ (*sketch of proof*):
We will find a homeomorphism $h : wL^* \to C(wL)$.

Wojciech Stadnicki (University of Wrocław)
Wallman representations of hyperspaces
Remark

Similarly one can prove that chainability is elementarily reflected.

The space wL^* is homeomorphic to $C(wL)$ (sketch of proof):

We will find a homeomorphism $h: wL^* \to C(wL)$. Let $u^* \in wL^*$. Extend it to an ultrafilter u on $2^{C(X)}$.

Wojciech Stadnicki (University of Wrocław)
Wallman representations of hyperspaces
Remark
Similarly one can prove that chainability is elementarily reflected.

The space wL^* is homeomorphic to $C(wL)$ (sketch of proof):

We will find a homeomorphism $h: wL^* \to C(wL)$. Let $u^* \in wL^*$. Extend it to an ultrafilter u on $2^{C(X)}$. Let $K_u \in C(X)$ be the only point in $\bigcap u$. So K_u is a subcontinuum of X.

Wojciech Stadnicki (University of Wrocław) | Wallman representations of hyperspaces
Remark
Similarly one can prove that chainability is elementarily reflected.

The space wL^* is homeomorphic to $C(wL)$ (sketch of proof):

We will find a homeomorphism $h: wL^* \to C(wL)$.
Let $u^* \in wL^*$. Extend it to an ultrafilter u on $2^{C(X)}$.
Let $K_u \in C(X)$ be the only point in $\bigcap u$.
So K_u is a subcontinuum of X.
Define $h(u^*) = q[K_u]$, where $q: X \to wL$ is the continuous
surjection given by $q(x) = \{a \in L: x \in a\}$.
Remark

Similarly one can prove that chainability is elementarily reflected.

The space wL^* is homeomorphic to $C(wL)$ (sketch of proof):

We will find a homeomorphism $h: wL^* \rightarrow C(wL)$.

Let $u^* \in wL^*$. Extend it to an ultrafilter u on $2^{C(X)}$.
Let $K_u \in C(X)$ be the only point in $\bigcap u$.
So K_u is a subcontinuum of X.
Define $h(u^*) = q[K_u]$, where $q: X \rightarrow wL$ is the continuous surjection given by $q(x) = \{a \in L: x \in a\}$.
Then h does not depend on the choice of K_u and it is a homeomorphism.
Proposition

Being not a C-space is elementarily reflected by submodels.

Let X be a non-C-space, $M≺H(\kappa)$, such that $2^X ∈ M$ and $L = 2^X \cap M$.

There is a sequence $(U_i)_{i=1}^{∞} ∈ H(\kappa)$ witnessing that X is not a C-space.

Hence, $H(\kappa)$ models the following sentence $ϕ$:

There exists a sequence $(F_i)_{i=1}^{∞}$ of finite subsets of 2^X such that

$\bigcap F_i = \emptyset$ for each i and for no $m ∈ N$ and G_1, \ldots, G_m finite subsets of 2^X, the following conditions hold simultaneously:

- for $j ≤ m$ and distinct G, $G' \in G_j$ their union $G \cup G' = X$,
- for $j ≤ m$ and $G \in G_j$ there exists $F \in F_j$ such that $F \subseteq G$,

$\bigcap (G_1 \cup \ldots \cup G_m) = \emptyset$.

By elementarity $M| = ϕ$. Therefore such a sequence $(F_i)_{i=1}^{∞}$ exists in M.

Each F_i is finite, so $F_i \subseteq L$. Define $U'_i = \{ w ∈ L : F \in F_i \}$.

The sequence $(U'_i)_{i=1}^{∞}$ witnesses that wL is not a C-space.
Proposition

Being not a C-space is elementarily reflected by submodels.

Let X be a non-C-space, $\mathcal{M} \prec H(\kappa)$, such that $2^X \in \mathcal{M}$ and $L = 2^X \cap \mathcal{M}$. There is a sequence $(U_i)_{i=1}^\infty \in H(\kappa)$ witnessing that X is not a C-space. Hence, $H(\kappa)$ models the following sentence ϕ:

There exists a sequence $(F_i)_{i=1}^\infty$ of finite subsets of 2^X such that $\bigcap F_i = \emptyset$ for each i and for no $m \in \mathbb{N}$ and G_1, \ldots, G_m finite subsets of 2^X, the following conditions hold simultaneously:

- For $j \leq m$ and distinct $G, G' \in G_j$ their union $G \cup G' = X$,
- For $j \leq m$ and $G \in G_j$ there exists $F \in F_j$ such that $F \subseteq G$.

$\bigcap (G_1 \cup \ldots \cup G_m) = \emptyset$.

By elementarity $M \models \phi$. Therefore such a sequence $(F_i)_{i=1}^\infty$ exists in M. Each F_i is finite, so $F_i \subseteq L$. Define $U'_i = \{ wL \setminus \hat{F} : F \in F_i \}$.

The sequence $(U'_i)_{i=1}^\infty$ witnesses that wL is not a C-space.
Proposition

Being not a C-space is elementarily reflected by submodels.

Let X be a non-C-space, $\mathcal{M} \prec H(\kappa)$, such that $2^X \in \mathcal{M}$ and $L = 2^X \cap \mathcal{M}$. There is a sequence $(U_i)_{i=1}^\infty \in H(\kappa)$ witnessing that X is not a C-space. Hence, $H(\kappa)$ models the following sentence φ:

\[
\text{There exists a sequence} (F_i)_{i=1}^\infty \text{of finite subsets of } 2^X \text{ such that } \bigcap F_i = \emptyset \text{ for each } i \text{ and for no } m \in \mathbb{N} \text{ and } G_1, \ldots, G_m \text{ finite subsets of } 2^X, \text{ the following conditions hold simultaneously: for } j \leq m \text{ and distinct } G, G' \in G_j \text{ their union } G \cup G' = X, \text{ for } j \leq m \text{ and } G \in G_j \text{ there exists } F \in F_j \text{ such that } F \subseteq G, \text{ } \bigcap (G_1 \cup \ldots \cup G_m) = \emptyset.
\]
Proposition

Being not a C-space is elementarily reflected by submodels.

Let X be a non-C-space, $\mathcal{M} \prec H(\kappa)$, such that $2^X \in \mathcal{M}$ and $L = 2^X \cap \mathcal{M}$. There is a sequence $(\mathcal{U}_i)_{i=1}^\infty \in H(\kappa)$ witnessing that X is not a C-space. Hence, $H(\kappa)$ models the following sentence φ:

There exists a sequence $(\mathcal{F}_i)_{i=1}^\infty$ of finite subsets of 2^X such that $\bigcap \mathcal{F}_i = \emptyset$ for each i and for no $m \in \mathbb{N}$ and G_1, \ldots, G_m finite subsets of 2^X, the following conditions hold simultaneously:

- for $j \leq m$ and distinct $G, G' \in G_j$ their union $G \cup G' = X$,
- for $j \leq m$ and $G \in G_j$ there exists $F \in \mathcal{F}_j$ such that $F \subseteq G$,
- $\bigcap(G_1 \cup \ldots \cup G_m) = \emptyset$.
Proposition

Being not a C-space is elementarily reflected by submodels.

Let X be a non-C-space, $M \prec H(\kappa)$, such that $2^X \in M$ and $L = 2^X \cap M$. There is a sequence $(U_i)_{i=1}^\infty \in H(\kappa)$ witnessing that X is not a C-space. Hence, $H(\kappa)$ models the following sentence φ:

There exists a sequence $(F_i)_{i=1}^\infty$ of finite subsets of 2^X such that $\bigcap F_i = \emptyset$ for each i and for no $m \in \mathbb{N}$ and G_1, \ldots, G_m finite subsets of 2^X, the following conditions hold simultaneously:

- for $j \leq m$ and distinct $G, G' \in G_j$ their union $G \cup G' = X$,
- for $j \leq m$ and $G \in G_j$ there exists $F \in F_j$ such that $F \subseteq G$,
- $\bigcap (G_1 \cup \ldots \cup G_m) = \emptyset$.

By elementarity $M \models \varphi$. Therefore such a sequence $(F_i)_{i=1}^\infty$ exists in M. Each F_i is finite, so $F_i \subseteq L$. Define $U'_i = \{ wL \setminus \hat{F} : F \in F_i \}$. The sequence $(U'_i)_{i=1}^\infty$ witnesses that wL is not a C-space.
Fact

A normal space X is weakly infinite dimensional if and only if it is a 2-C-space.

Definition

For $m \geq 2$ we say X is an m-C-space if for each sequence U_1, U_2, \ldots of open covers of X such that $|U_i| \leq m$, there exists a sequence V_1, V_2, \ldots, such that:

- each V_i is a family of pairwise disjoint open subsets of X
- $V_i \prec U_i$ (V_i refines U_i, i.e. $\forall V \in V_i \exists U \in U_i \ V \subseteq U$)
- $\bigcup_{i=1}^{\infty} V_i$ is a cover of X
2-C-spaces ⊇ 3-C-spaces ⊇ \ldots ⊇ n-C-spaces ⊇ \ldots ⊇ C-spaces
2-\(C\)-spaces \(\supseteq\) 3-\(C\)-spaces \(\supseteq\) \ldots \(\supseteq\) \(n\)-\(C\)-spaces \(\supseteq\) \ldots \(\supseteq\) \(C\)-spaces

Corollary

- Weak infinite dimension is elementarily reflected.
- Strong infinite dimension is elementarily reflected by submodels.
2-C-spaces \supseteq 3-C-spaces \supseteq ... \supseteq n-C-spaces \supseteq ... \supseteq C-spaces

Corollary
- Weak infinite dimension is elementarily reflected.
- Strong infinite dimension is elementarily reflected by submodels.

Corollary
If there exist a compact space which is weakly infinite dimensional but fails to be a C-space, then there exists such a space which is metric.