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Urysohn universal space

The Urysohn universal metric space U is a Polish metric space
which is both universal and homogeneous for the class of all finite
metric spaces; i.e.

I It contains an isometric copy of any finite metric space.

I Any finite partial isometry
φ : {x1, . . . , xn} ⊆ U→ {y1, . . . , yn} ⊆ U can be extended to
an isometry φ̄ ⊇ φ : U→ U on the whole space.

Fact
There is only one such a space up to isometry and it contains an
isometric copy of every separable metric space.
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General goal

The goal is to enrich the Urysohn universal space with some
additional structure so that this enriched Urysohn space is still
universal and homogeneous for that particular kind of Polish
structure.

Examples of Polish structures:

I Polish metric spaces equipped with finitely or countably many
closed relations (i.e. closed subsets of the space or its
products)
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General goal

I Polish metric spaces equipped with closed subsets of the
product of the space and some other fixed Polish space
([0, 1]).

I Polish metric spaces equipped with a continuous function to
some fixed space
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Coding of Polish spaces and Polish structures

In order to use the methods of descriptive set theory in
investigating/classifying some class of mathematical structures one
needs to find a way how to code this class as a standard Borel
space. The Effros-Borel space (of some Polish space) can
sometimes serve in this direction.

Let X be a Polish space and F (X ) the set of all closed subsets of
X . Let B be a σ-algebra on F (X ) generated by the sets
{F ∈ F (X ) : F ∩ U 6= ∅ ∧ U is a basic open set of X}. (F (X ),B)
is then a standard Borel space called the Effros-Borel space of
F (X ).
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Coding of Polish spaces and Polish structures-examples

Examples of Effros-Borel spaces:

I F (RN) - coding of all Polish spaces

I Consider F (C ([0, 1])) and its Borel subset Subs(C ([0, 1])) =
{X ∈ F (C ([0, 1])) : X is a closed linear space of C ([0, 1])} -
coding of all separable Banach spaces

I F (U) - coding of all Polish metric spaces
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Main results

Theorem
Let n1 ≤ . . . ≤ nm be a finite non-decreasing sequence of natural
numbers. For every 1 ≤ i ≤ m there is a closed set Fni ⊆ Uni such
that for any Polish metric space (X , d) equiped with closed sets
Gni ⊆ X ni there is an isometry ψ : X ↪→ U such that for all i ≤ m
ψni (X ni ) ∩ Fni = ψni (Gni ).

There is also a version with infinitely many closed relations that is
slightly weaker though.
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Main results

Theorem
Let U be the universal Urysohn space. For every n,m ∈ N there
exist closed sets F n

m such that F n
m ⊆ Un which are universal in the

following sense. Let (X , d) be a Polish metric space equipped with
closed sets Gn

m, for all m, n ∈ N, where Gn
m ⊆ X n. Then there exist

an isometric embedding ψ : X ↪→ U and injections πn : N→ N for
all n ∈ N such that ∀n,m ∈ N(ψn(X n) ∩ F n

πn(m) = ψn(Gn
m)).
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Main results

Theorem
There exist a closed set C ⊆ U× [0, 1] such that for any Polish
metric space (X , d) and closed set B ⊆ X × [0, 1] there exists an
isometric emebedding ψ : X → U that moreover respects B; i.e.
ψ(X )× [0, 1] ∩ C = ψ̃(B), where ψ̃(x , r) = (ψ(x), r) for
(x , r) ∈ X × [0, 1].
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Sketch of a simple case

Let us consider the following simple version of the main theorem.

Theorem
There is a closed set FU ⊆ U2 such that for any Polish metric
space (X , d) equipped with a closed set FX ⊆ X 2 there is an
isometry ψ : X ↪→ U such that ψ2(X ) ∩ FU = ψ2(FX ).

We use Fräıssé theory to find such a set.
We describe a class of finite structures, prove that it is a Fräıssé
class and its Fräıssé limit is the Urysohn universal space along with
the universal closed set in the square.
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Sketch of a simple case-definition of the Fräıssé class

Definition (The Fräıssé class K)

A finite structure A belongs to K if

I A is a rational metric space (the metric is denoted d).

I There is a rational function p : A2 → Q+
0 such that

∀(a1, a2), (b1, b2) ∈ A2(p(a1, a2) ≤
p(b1, b2) + d(a1, b1) + d(a2, b2)).

The interpretation of the function p is that it gives to a pair of
points a distance (in the sum metric) from the desired closed set F .
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A finite structure A belongs to K if

I A is a rational metric space (the metric is denoted d).

I There is a rational function p : A2 → Q+
0 such that

∀(a1, a2), (b1, b2) ∈ A2(p(a1, a2) ≤
p(b1, b2) + d(a1, b1) + d(a2, b2)).

The interpretation of the function p is that it gives to a pair of
points a distance (in the sum metric) from the desired closed set F .

Michal Doucha Universal structures on the Urysohn universal space



Sketch of a simple case-definition of the Fräıssé class
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Sketch of a simple case

To prove that K is really a Fräıssé class we need to check that:

1. K contains only countably many structures (up to
isomorphism)

2. It is hereditary, i.e. for each B ∈ K and A a substructure of B
also A ∈ K

3. It satisfies the joint embedding property, i.e. for any A,B ∈ K
there is C ∈ K containing A and B as substructures.
We can just put A and B sufficiently far away (in the metric)
from each other.

4. It satisfies the amalgamation property; i.e. for any structures
A,B,C ∈ K such that A is embedded into B via φA and into
C via φC there is some D such that both B and C embedded
into D via ψB , resp. ψC so that ψB ◦ φB = ψC ◦ φC .
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Sketch of a simple case

Proof of 4.
Suppose A is a substructure of both B and C . We set the
underlying set for D to be A

∐
(B \ A)

∐
(C \ A). We extend the

metric as usual: for b ∈ B and c ∈ C we set
d(b, c) = min{d(b, a) + d(a, c) : a ∈ A}. And for b ∈ B and
c ∈ C we set
p(b, c) = max{|p(x , y)− (d(x , b) + d(y , c))| : (x , y) ∈ B2 ∪ C 2}.

Let ~a,~b ∈ D2 be given.
Suppose that p(~a) = p(~x)− d(~a,~x) for some ~x ∈ B2 ∪ C 2. Then
p(~a) = p(~x)− d(~a,~x) ≤ p(~x)− d(~b,~x) + d(~a,~b) ≤ p(~b) + d(~a,~b).

Suppose that p(~a) = d(~a,~x)− p(~x) for some ~x ∈ B2 ∪ C 2. Then
p(~a) = d(~a,~x)− p(~x) ≤ d(~a,~b) + d(~b,~x)− p(~x) ≤
d(~a,~b) + p(~b).
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Sketch of a simple case

So K has a Fräıssé limit which we will denote U (we do not
notationally distinguish between the structure and its underlying
set) and it is the rational Urysohn metric space along with a closed
set F ′ ⊆ U2 defined as follows: for (u1, u2) ∈ U2 we have
(u1, u2) ∈ F ′ iff p(u1, u2) = 0. Let U be the completion of U and
FU ⊆ U the closure of F ′ in U.

Let (X , d) be a Polish metric space equipped with a closed set
FX ∈ X 2. Let {di : i ∈ N} ⊆ X be a countable dense subset.
There exists an isometry φ̃ : {di : i ∈ N} → {ui : i ∈ N} sending di

to ui , for i ∈ N, such that for all i , j ∈ N
dU((ui , uj),FU) ≈ d((di , dj),FX )/2.
We can then extend the isometry φ̃ to φ̃ ⊆ φ : X ↪→ U and that is
it.
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Sketch of a simple case

Let (x1, x2) ∈ X 2 be arbitrary.

I Suppose that (x1, x2) /∈ FX and let ε = d((x1, x2),FX ). There
exist (di , dj) ∈ D2 such that d((d1, d2), (x1, x2)) < ε/3. It
follows that d((di , dj),FX ) > 2ε/3, thus
dU((ui , uj),FU) > ε/3, thus dU((φ(x1), φ(x2)),FU) > 0, i.e.
(φ(x1), φ(x2)) /∈ FU.

I Suppose that (x1, x2) ∈ FX but dU((φ(x1), φ(x2)),FU) > 0.
Then we would again find (ui , uj) ∈ U2 such that
dU((ui , uj),FU) = ε > 0 and dU((ui , uj), (φ(x1), φ(x2))) < ε.
But then d((di , dj),FX ) ≥ ε and d((di , dj), (x1, x2)) < ε, so
(x1, x2) /∈ FX , a contradiction.
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Classification of Polish metric spaces

Let us consider the class of Polish metric spaces (coded by F (U))
with the relation of isometry.
We cannot in general extend an isometry φ : X ⊆ U→ Y ⊆ U to
an isometry φ ⊆ φ̄ : U→ U. However, there is the following
theorem.

Theorem (Gao-Kechris; 2003)

Let EI be an equivalence relation on F (U) such that for
X ,Y ∈ F (U) XEiY iff X and Y are isometric, and let FI be an
equivalence relation on F (U) induced by a group action of Iso(U),
i.e. for X ,Y ∈ F (U) XFIY iff there exists an isometry φ : U→ U
such that φ[X ] = Y .
Then EI ≤B FI .
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