Regularity properties on the real line

Michal Staš

Department of Mathematics
Faculty of Science P. J. Šafárik University

4. februar 2010
Hejnice
Some weak forms of the Axiom of Choice:

- The **Weak Axiom of Choice (wAC)** says that for any countable family of non-empty subsets of a given set of power 2^\aleph_0 there exists a choice function.

- The **Axiom of Dependent Choice (DC)** says that for any binary relation R on a non-empty set A such that for every $a \in A$ there exists a $b \in A$ such that aRb, for every $a \in A$ there exists a function $f : \omega \rightarrow A$ satisfying $f(n)Rf(n + 1)$ for any $n \in \omega$ and $f(0) = a$.

Then

$$AC \rightarrow DC, \quad DC \rightarrow wAC$$

and the implications cannot be reversed.
Some weak forms of the Axiom of Choice:

- The **Weak Axiom of Choice** $w\text{AC}$ says that for any countable family of non-empty subsets of a given set of power 2^{\aleph_0} there exists a choice function.

- The **Axiom of Dependent Choice** DC says that for any binary relation R on a non-empty set A such that for every $a \in A$ there exists a $b \in A$ such that aRb, for every $a \in A$ there exists a function $f : \omega \to A$ satisfying $f(n)Rf(n+1)$ for any $n \in \omega$ and $f(0) = a$.

Then

$$\text{AC} \to \text{DC}, \quad \text{DC} \to w\text{AC}$$

and the implications cannot be reversed.
Some weak forms of the Axiom of Choice:

- The **Weak Axiom of Choice wAC** says that for any countable family of non-empty subsets of a given set of power 2^{\aleph_0} there exists a choice function.

- The **Axiom of Dependent Choice DC** says that for any binary relation R on a non-empty set A such that for every $a \in A$ there exists a $b \in A$ such that aRb, for every $a \in A$ there exists a function $f : \omega \rightarrow A$ satisfying $f(n)Rf(n + 1)$ for any $n \in \omega$ and $f(0) = a$.

Then

$$AC \rightarrow DC, \quad DC \rightarrow wAC$$

and the implications cannot be reversed.
Some weak forms of the Axiom of Choice:

- The **Weak Axiom of Choice wAC** says that for any countable family of non-empty subsets of a given set of power 2^{\aleph_0} there exists a choice function.

- The **Axiom of Dependent Choice DC** says that for any binary relation R on a non-empty set A such that for every $a \in A$ there exists a $b \in A$ such that aRb, for every $a \in A$ there exists a function $f : \omega \rightarrow A$ satisfying $f(n)Rf(n+1)$ for any $n \in \omega$ and $f(0) = a$.

Then

$$\text{AC} \rightarrow \text{DC}, \quad \text{DC} \rightarrow \text{wAC}$$

and the implications cannot be reversed.
Some weak forms of the Axiom of Choice:

- The **Weak Axiom of Choice wAC** says that for any countable family of non-empty subsets of a given set of power 2^{\aleph_0} there exists a choice function.

- The **Axiom of Dependent Choice DC** says that for any binary relation R on a non-empty set A such that for every $a \in A$ there exists a $b \in A$ such that aRb, for every $a \in A$ there exists a function $f : \omega \rightarrow A$ satisfying $f(n)Rf(n+1)$ for any $n \in \omega$ and $f(0) = a$.

Then

$$\text{AC} \rightarrow \text{DC}, \quad \text{DC} \rightarrow \text{wAC}$$

and the implications cannot be reversed.
A subset $B \subseteq X$ is called a **Bernstein set** if $|B| = |X \setminus B| = c$ and neither B nor $X \setminus B$ contains a perfect subset.

Theorem 1 (F. Bernstein [1])

If an uncountable Polish space X can be well-ordered, then there exists a Bernstein set $B \subseteq X$, i.e. $WR \rightarrow BS$.

- a Bernstein set is a classical example of a non-measurable set

Theorem 2 (F. Bernstein [1])

A Bernstein set does not possess the Baire Property and is not Lebesgue measurable, i.e. $BP \rightarrow \neg BS$ and $LM \rightarrow \neg BS$.
A subset $B \subseteq X$ is called a **Bernstein set** if $|B| = |X \setminus B| = c$ and neither B nor $X \setminus B$ contains a perfect subset.

Theorem 1 (F. Bernstein [1])

If an uncountable Polish space X can be well-ordered, then there exists a Bernstein set $B \subseteq X$, i.e. $\text{WR} \rightarrow \text{BS}$.

- A Bernstein set is a classical example of a non-measurable set.

Theorem 2 (F. Bernstein [1])

A Bernstein set does not possess the Baire Property and is not Lebesgue measurable, i.e. $\text{BP} \rightarrow \neg \text{BS}$ and $\text{LM} \rightarrow \neg \text{BS}$.
A subset $B \subseteq X$ is called a **Bernstein set** if $|B| = |X \setminus B| = c$ and neither B nor $X \setminus B$ contains a perfect subset.

Theorem 1 (F. Bernstein [1])

If an uncountable Polish space X can be well-ordered, then there exists a Bernstein set $B \subseteq X$, i.e. $\text{WR} \rightarrow \text{BS}$.

- A Bernstein set is a classical example of a non-measurable set.

Theorem 2 (F. Bernstein [1])

A Bernstein set does not possess the Baire Property and is not Lebesgue measurable, i.e. $\text{BP} \rightarrow \neg \text{BS}$ and $\text{LM} \rightarrow \neg \text{BS}$.
A subset $B \subseteq X$ is called a **Bernstein set** if $|B| = |X \setminus B| = c$ and neither B nor $X \setminus B$ contains a perfect subset.

Theorem 1 (F. Bernstein [1])

If an uncountable Polish space X can be well-ordered, then there exists a Bernstein set $B \subseteq X$, i.e. $\text{WR} \rightarrow \text{BS}$.

- a Bernstein set is a classical example of a non-measurable set

Theorem 2 (F. Bernstein [1])

A Bernstein set does not possess the Baire Property and is not Lebesgue measurable, i.e. $\text{BP} \rightarrow \neg \text{BS}$ and $\text{LM} \rightarrow \neg \text{BS}$.
A subset $B \subseteq X$ is called a **Bernstein set** if $|B| = |X \setminus B| = c$ and neither B nor $X \setminus B$ contains a perfect subset.

Theorem 1 (F. Bernstein [1])

If an uncountable Polish space X can be well-ordered, then there exists a Bernstein set $B \subseteq X$, i.e. $\text{WR} \rightarrow \text{BS}$.

- A Bernstein set is a classical example of a non-measurable set

Theorem 2 (F. Bernstein [1])

A Bernstein set does not possess the Baire Property and is not Lebesgue measurable, i.e. $\text{BP} \rightarrow \neg \text{BS}$ and $\text{LM} \rightarrow \neg \text{BS}$.
BS: there exists a Bernstein set

WR: the set of R can be well-ordered

LM: every set of R is Lebesgue measurable

BP: every set of R possesses the Baire property
Let $\langle X, +, 0 \rangle$ be additive group. A set $V \subseteq X$ is called a Vitali set if there exists a countable dense subset D such that

1. $(\forall x, y) ((x, y \in V \land x \neq y) \rightarrow x - y \notin D)$,
2. $(\forall x \in X)(\exists y \in V) x - y \in D$.

Note that, for every $x \in X$ there exists exactly one real $y \in V$ such that $x - y \in D$.

- the family $\{\{y \in X : x - y \in D\} : x \in X\}$ is a decomposition of the set X and we call it the Vitali decomposition
- if there exists a selector for the Vitali decomposition then the selector is a Vitali set
Let $\langle X, +, 0 \rangle$ be additive group. A set $V \subseteq X$ is called a Vitali set if there exists a countable dense subset D such that

- $(\forall x, y)((x, y \in V \land x \neq y) \rightarrow x - y \notin D)$,
- $(\forall x \in X)(\exists y \in V)x - y \in D$.

Note that, for every $x \in X$ there exists exactly one real $y \in V$ such that $x - y \in D$.

- the family $\{\{y \in X : x - y \in D\} : x \in X\}$ is a decomposition of the set X and we call it the Vitali decomposition
- if there exists a selector for the Vitali decomposition then the selector is a Vitali set.
Let $\langle X, +, 0 \rangle$ be additive group. A set $V \subseteq X$ is called a Vitali set if there exists a countable dense subset D such that

- $(\forall x, y)((x, y \in V \land x \neq y) \rightarrow x - y \notin D)$,
- $(\forall x \in X)(\exists y \in V) x - y \in D$.

Note that, for every $x \in X$ there exists exactly one real $y \in V$ such that $x - y \in D$.

- the family $\{\{y \in X : x - y \in D\} : x \in X\}$ is a decomposition of the set X and we call it the Vitali decomposition
- if there exists a selector for the Vitali decomposition then the selector is a Vitali set
Let $\langle X, +, 0 \rangle$ be additive group. A set $V \subseteq X$ is called a **Vitali set** if there exists a countable dense subset D such that

- $(\forall x, y)((x, y \in V \land x \neq y) \rightarrow x - y \notin D)$,
- $(\forall x \in X)(\exists y \in V) x - y \in D$.

Note that, for every $x \in X$ there exists exactly one real $y \in V$ such that $x - y \in D$.

- the family $\{\{y \in X : x - y \in D\} : x \in X\}$ is a decomposition of the set X and we call it the **Vitali decomposition**
- if there exists a selector for the Vitali decomposition then the selector is a Vitali set.
Let \(\langle X, +, 0 \rangle \) be additive group. A set \(V \subseteq X \) is called a **Vitali set** if there exists a countable dense subset \(D \) such that

- \((\forall x, y) ((x, y \in V \land x \neq y) \rightarrow x - y \notin D),\)

- \((\forall x \in X)(\exists y \in V) x - y \in D.\)

Note that, for every \(x \in X \) there exists exactly one real \(y \in V \) such that \(x - y \in D.\)

- the family \(\{\{y \in X : x - y \in D\} : x \in X\} \) is a decomposition of the set \(X \) and we call it the **Vitali decomposition**

- if there exists a selector for the Vitali decomposition then the selector is a Vitali set
Let $\langle X, +, 0 \rangle$ be additive group. A set $V \subseteq X$ is called a **Vitali set** if there exists a countable dense subset D such that

1. $(\forall x, y) ((x, y \in V \land x \neq y) \rightarrow x - y \not\in D)$,

2. $(\forall x \in X)(\exists y \in V) x - y \in D$.

Note that, for every $x \in X$ there exists exactly one real $y \in V$ such that $x - y \in D$.

- the family $\{\{y \in X : x - y \in D\} : x \in X\}$ is a decomposition of the set X and we call it the **Vitali decomposition**
- if there exists a selector for the Vitali decomposition then the selector is a Vitali set
Let $\langle X, +, 0 \rangle$ be additive group. A set $V \subseteq X$ is called a Vitali set if there exists a countable dense subset D such that

1. $(\forall x, y)((x, y \in V \land x \neq y) \rightarrow x - y \notin D)$,
2. $(\forall x \in X)(\exists y \in V) x - y \in D$.

Note that, for every $x \in X$ there exists exactly one real $y \in V$ such that $x - y \in D$.

- the family $\{\{y \in X : x - y \in D\} : x \in X\}$ is a decomposition of the set X and we call it the Vitali decomposition
- if there exists a selector for the Vitali decomposition then the selector is a Vitali set
Let $\langle X, +, 0 \rangle$ be an additive group. A set $V \subseteq X$ is called a **Vitali set** if there exists a countable dense subset D such that

- $(\forall x, y) ((x, y \in V \land x \neq y) \rightarrow x - y \notin D)$,
- $(\forall x \in X)(\exists y \in V) x - y \in D$.

Note that, for every $x \in X$ there exists exactly one real $y \in V$ such that $x - y \in D$.

- the family $\left\{ \{y \in X : x - y \in D\} : x \in X \right\}$ is a decomposition of the set X and we call it the **Vitali decomposition**
- if there exists a selector for the Vitali decomposition then the selector is a Vitali set
Let $\langle X, +, 0 \rangle$ be additive group. A set $V \subseteq X$ is called a Vitali set if there exists a countable dense subset D such that

1. $(\forall x, y)((x, y \in V \land x \neq y) \rightarrow x - y \notin D),$
2. $(\forall x \in X)(\exists y \in V) x - y \in D.$

Note that, for every $x \in X$ there exists exactly one real $y \in V$ such that $x - y \in D.$

- the family $\{\{y \in X : x - y \in D\} : x \in X\}$ is a decomposition of the set X and we call it the Vitali decomposition
- if there exists a selector for the Vitali decomposition then the selector is a Vitali set
Theorem 3 (G. Vitali [4])
If the real line can be well-ordered, then there exists a Vitali set, i.e. $\text{WR} \rightarrow \text{VS}$.

- A Vitali set is an another example of a non-measurable set

Theorem 4 (G. Vitali [4])
A Vitali set does not possess the Baire Property and is not Lebesgue measurable, i.e. $\text{BP} \rightarrow \neg \text{VS}$ and $\text{LM} \rightarrow \neg \text{VS}$.
Theorem 3 (G. Vitali [4])

If the real line can be well-ordered, then there exists a Vitali set, i.e. $\text{WR} \rightarrow \text{VS}$.

- a Vitali set is another example of a non-measurable set

Theorem 4 (G. Vitali [4])

A Vitali set does not possess the Baire Property and is not Lebesgue measurable, i.e. $\text{BP} \rightarrow \neg \text{VS}$ and $\text{LM} \rightarrow \neg \text{VS}$.
Theorem 3 (G. Vitali [4])

If the real line can be well-ordered, then there exists a Vitali set, i.e. \(WR \rightarrow VS \).

- A Vitali set is another example of a non-measurable set.

Theorem 4 (G. Vitali [4])

A Vitali set does not possess the Baire Property and is not Lebesgue measurable, i.e. \(BP \rightarrow \neg VS \) and \(LM \rightarrow \neg VS \).
Theorem 3 (G. Vitali [4])

If the real line can be well-ordered, then there exists a Vitali set, i.e. $\text{WR} \rightarrow \text{VS}$.

- A Vitali set is another example of a non-measurable set.

Theorem 4 (G. Vitali [4])

A Vitali set does not possess the Baire Property and is not Lebesgue measurable, i.e. $\text{BP} \rightarrow \neg \text{VS}$ and $\text{LM} \rightarrow \neg \text{VS}$.
Regularity properties on the real line

LM: every set of \mathbb{R} is Lebesgue measurable

BP: every set of \mathbb{R} possesses the Baire property

BS: there exists a Bernstein set

WR: the set of \mathbb{R} can be well-ordered

VS: there exists a selector for a Vitali set

Note: The diagram shows the relationships between these properties, with arrows indicating implications or equivalences between them.
Let us consider the family $\mathcal{P}(\omega)$ of all subsets of ω. $\mathcal{P}(\omega)$ is a Boolean algebra and the set

$$\text{Fin} = \{ A \subseteq \omega : |A| < \aleph_0 \}$$

of all finite subsets of ω is an ideal of algebra $\mathcal{P}(\omega)$.

- we can consider the quotient algebra $\mathcal{P}(\omega)/\text{Fin}$ and we denote by t its cardinality

$$t = |\mathcal{P}(\omega)/\text{Fin}|$$

- we define relation \ll between cardinalities of sets as

$$|A| \ll |B| \equiv (\exists f) (f: B \overset{\text{onto}}{\rightarrow} A)$$
Let us consider the family $\mathcal{P}(\omega)$ of all subsets of ω. $\mathcal{P}(\omega)$ is a Boolean algebra and the set

$$\text{Fin} = \{ A \subseteq \omega : |A| < \aleph_0 \}$$

of all finite subsets of ω is an ideal of algebra $\mathcal{P}(\omega)$.

we can consider the quotient algebra $\mathcal{P}(\omega)/\text{Fin}$ and we denote by \mathfrak{t} its cardinality

$$\mathfrak{t} = |\mathcal{P}(\omega)/\text{Fin}|$$

we define relation \ll between cardinalities of sets as

$$|A| \ll |B| \equiv (\exists f) (f : B \xrightarrow{\text{onto}} A)$$
Let us consider the family $\mathcal{P}(\omega)$ of all subsets of ω. $\mathcal{P}(\omega)$ is a Boolean algebra and the set

$$\text{Fin} = \{ A \subseteq \omega : |A| < \aleph_0 \}$$

of all finite subsets of ω is an ideal of algebra $\mathcal{P}(\omega)$.

1. we can consider the quotient algebra $\mathcal{P}(\omega)/\text{Fin}$ and we denote by κ its cardinality

$$\kappa = |\mathcal{P}(\omega)/\text{Fin}|$$

2. we define relation \ll between cardinalities of sets as

$$|A| \ll |B| \equiv (\exists f) (f : B \overset{\text{onto}}{\rightarrow} A)$$
Let us consider the family $\mathcal{P}(\omega)$ of all subsets of ω. $\mathcal{P}(\omega)$ is a Boolean algebra and the set

$$\text{Fin} = \{ A \subseteq \omega : |A| < \aleph_0 \}$$

of all finite subsets of ω is an ideal of algebra $\mathcal{P}(\omega)$. We can consider the quotient algebra $\mathcal{P}(\omega)/\text{Fin}$ and we denote by \mathfrak{t} its cardinality

$$\mathfrak{t} = |\mathcal{P}(\omega)/\text{Fin}|$$

We define relation \ll between cardinalities of sets as

$$|A| \ll |B| \equiv (\exists f) (f : B \to A)$$
Let us consider the family $\mathcal{P}(\omega)$ of all subsets of ω. $\mathcal{P}(\omega)$ is a Boolean algebra and the set

$$\text{Fin} = \{ A \subseteq \omega : |A| < \aleph_0 \}$$

of all finite subsets of ω is an ideal of algebra $\mathcal{P}(\omega)$.

\begin{itemize}
 \item we can consider the quotient algebra $\mathcal{P}(\omega) / \text{Fin}$ and we denote by κ its cardinality

$$\kappa = |\mathcal{P}(\omega) / \text{Fin}|$$

\end{itemize}

\begin{itemize}
 \item we define relation \ll between cardinalities of sets as

$$|A| \ll |B| \equiv (\exists f)(f : B \overset{\text{onto}}{\to} A)$$

\end{itemize}
Let us consider the family $\mathcal{P}(\omega)$ of all subsets of ω. $\mathcal{P}(\omega)$ is a Boolean algebra and the set

$$\text{Fin} = \{A \subseteq \omega : |A| < \aleph_0\}$$

of all finite subsets of ω is an ideal of algebra $\mathcal{P}(\omega)$.

- we can consider the quotient algebra $\mathcal{P}(\omega)/\text{Fin}$ and we denote by κ its cardinality

$$\kappa = |\mathcal{P}(\omega)/\text{Fin}|$$

- we define relation \ll between cardinalities of sets as

$$|A| \ll |B| \equiv (\exists f)(f : B \xrightarrow{\text{onto}} A)$$
Let us consider the family $\mathcal{P}(\omega)$ of all subsets of ω. $\mathcal{P}(\omega)$ is a Boolean algebra and the set

$$\text{Fin} = \{A \subseteq \omega : |A| < \aleph_0\}$$

of all finite subsets of ω is an ideal of algebra $\mathcal{P}(\omega)$.

- we can consider the quotient algebra $\mathcal{P}(\omega)/\text{Fin}$ and we denote by \mathfrak{t} its cardinality

$$\mathfrak{t} = |\mathcal{P}(\omega)/\text{Fin}|$$

- we define relation \ll between cardinalities of sets as

$$|A| \ll |B| \equiv (\exists f) (f : B \overset{\text{onto}}{\rightarrow} A)$$
Let us consider the family $\mathcal{P}(\omega)$ of all subsets of ω. $\mathcal{P}(\omega)$ is a Boolean algebra and the set

$$\text{Fin} = \{A \subseteq \omega : \lvert A \rvert < \aleph_0\}$$

of all finite subsets of ω is an ideal of algebra $\mathcal{P}(\omega)$.

- we can consider the quotient algebra $\mathcal{P}(\omega)/\text{Fin}$ and we denote by \mathfrak{t} its cardinality

$$\mathfrak{t} = \lvert \mathcal{P}(\omega)/\text{Fin} \rvert$$

- we define relation \ll between cardinalities of sets as

$$\lvert A \rvert \ll \lvert B \rvert \equiv (\exists f)(f : B \twoheadrightarrow A)$$
Theorem 5

The inequalities $2^{\aleph_0} \leq \kappa$ and $\kappa \ll 2^{\aleph_0}$ hold true. Moreover, if the set $P(\omega)$ can be well-ordered, then $\kappa = 2^{\aleph_0}$, i.e. $\text{In1} \rightarrow \neg \text{WR}$.

Note the following: if A, B are sets such that $|A| \leq |B|, |B| \ll |A|$ then A can be well-ordered if and only if B can be well-ordered.

Corollary 6

A set of cardinality κ can be well-ordered if and only if the set of reals \mathbb{R} can be well-ordered.

Corollary 7

If a set of cardinality κ cannot be linearly ordered, then $\aleph_1 < \aleph_1 + c < \aleph_1 + \kappa$, i.e. $\neg \text{Lk} \rightarrow \text{In2}$.
Theorem 5

The inequalities $2^{\aleph_0} \leq \kappa$ and $\kappa \ll 2^{\aleph_0}$ hold true. Moreover, if the set $\mathcal{P}(\omega)$ can be well-ordered, then $\kappa = 2^{\aleph_0}$, i.e. \(\text{In} \rightarrow \neg \text{WR} \).

Note the following: if A, B are sets such that $|A| \leq |B|$, $|B| \ll |A|$ then A can be well-ordered if and only if B can be well-ordered.
Theorem 5
The inequalities $2^{\aleph_0} \leq \kappa$ and $\kappa \ll 2^{\aleph_0}$ hold true. Moreover, if the set $\mathcal{P}(\omega)$ can be well-ordered, then $\kappa = 2^{\aleph_0}$, i.e. $\ln 1 \rightarrow \neg \text{WR}$.

Note the following: if A, B are sets such that $|A| \leq |B|$, $|B| \ll |A|$ then A can be well-ordered if and only if B can be well-ordered.

Corollary 6
A set of cardinality κ can be well-ordered if and only if the set of reals \mathbb{R} can be well-ordered.

Corollary 7
If a set of cardinality κ cannot be linearly ordered, then $\aleph_1 < \aleph_1 + c < \aleph_1 + \kappa$, i.e. $\neg Lk \rightarrow \ln 2$.
Theorem 5

The inequalities $2^{\aleph_0} \leq \tau$ and $\tau \ll 2^{\aleph_0}$ hold true. Moreover, if the set $\mathcal{P}(\omega)$ can be well-ordered, then $\tau = 2^{\aleph_0}$, i.e. $\ln 1 \rightarrow \neg \text{WR}$.

Note the following: if A, B are sets such that $|A| \leq |B|$, $|B| \ll |A|$ then A can be well-ordered if and only if B can be well-ordered.

Corollary 6

A set of cardinality τ can be well-ordered if and only if the set of reals \mathbb{R} can be well-ordered.

Corollary 7

If a set of cardinality τ cannot be linearly ordered, then $\aleph_1 < \aleph_1 + \tau < \aleph_1 + \tau$, i.e. $\neg \text{Lk} \rightarrow \ln 2$.

Theorem 5
The inequalities $2^{\aleph_0} \leq \mathfrak{c}$ and $\mathfrak{c} \ll 2^{\aleph_0}$ hold true. Moreover, if the set $\mathcal{P}(\omega)$ can be well-ordered, then $\mathfrak{c} = 2^{\aleph_0}$, i.e. $\text{In}1 \rightarrow \neg \text{WR}$.

Note the following: if A, B are sets such that $|A| \leq |B|$, $|B| \ll |A|$ then A can be well-ordered if and only if B can be well-ordered.

Corollary 6
A set of cardinality \mathfrak{c} can be well-ordered if and only if the set of reals \mathbb{R} can be well-ordered.

Corollary 7
If a set of cardinality \mathfrak{c} cannot be linearly ordered, then $\aleph_1 < \aleph_1 + c < \aleph_1 + \mathfrak{c}$, i.e. $\neg \text{Lk} \rightarrow \text{In}2$.
Theorem 5

The inequalities $2^{\aleph_0} \leq \mathfrak{c}$ and $\mathfrak{c} \ll 2^{\aleph_0}$ hold true. Moreover, if the set $\mathcal{P}(\omega)$ can be well-ordered, then $\mathfrak{c} = 2^{\aleph_0}$, i.e. $\text{In1} \rightarrow \neg \text{WR}$.

Note the following: if A, B are sets such that $|A| \leq |B|$, $|B| \ll |A|$ then A can be well-ordered if and only if B can be well-ordered.

Corollary 6

A set of cardinality \mathfrak{c} can be well-ordered if and only if the set of reals \mathbb{R} can be well-ordered.

Corollary 7

If a set of cardinality \mathfrak{c} cannot be linearly ordered, then $\aleph_1 < \aleph_1 + c < \aleph_1 + \mathfrak{c}$, i.e. $\neg \text{Lk} \rightarrow \text{In2}$.
Theorem 5

The inequalities $2^\aleph_0 \leq \mathfrak{c}$ and $\mathfrak{c} \ll 2^\aleph_0$ hold true. Moreover, if the set $\mathcal{P}(\omega)$ can be well-ordered, then $\mathfrak{c} = 2^\aleph_0$, i.e. $\text{In1} \rightarrow \neg \text{WR}$.

Note the following: if A, B are sets such that $|A| \leq |B|, |B| \ll |A|$ then A can be well-ordered if and only if B can be well-ordered.

Corollary 6

A set of cardinality \mathfrak{c} can be well-ordered if and only if the set of reals \mathbb{R} can be well-ordered.

Corollary 7

If a set of cardinality \mathfrak{c} cannot be linearly ordered, then $\aleph_1 < \aleph_1 + c < \aleph_1 + \mathfrak{c}$, i.e. $\neg \text{Lk} \rightarrow \text{In2}$.
Regularity properties on the real line

- **LM**: every set of \mathbb{R} is Lebesgue measurable
- **BP**: every set of \mathbb{R} possesses the Baire property
- **¬BS**: there exists a Bernstein set
- **WR**: the set of \mathbb{R} can be well-ordered
- **¬Lk**: a set of cardinality k can be linearly ordered
- **¬VS**: there exists a selector for a Vitali set
- **¬Wk**: a set of cardinality k can be well-ordered
- **In1**: $c < k \ll c$
- **In2**: $\aleph_1 < \aleph_1 + c < \aleph_1 + k$

BS: there exists a Bernstein set

WR: the set of \mathbb{R} can be well-ordered

VS: there exists a selector for a Vitali set

LM: every set of \mathbb{R} is Lebesgue measurable

BP: every set of \mathbb{R} possesses the Baire property
Vitali set V on the Cantor space ω^2

- $(\forall x, y) ((x, y \in V \land x \neq y) \rightarrow \{n : x(n) \neq y(n)\} \in [\omega]^\omega,$
- $(\forall x \in \omega^2) (\exists y \in V) \{n : x(n) \neq y(n)\} \in [\omega]^{<\omega}.$

- The family

$$\{\{y \in \omega^2 : \{n : x(n) \neq y(n)\} \in [\omega]^{<\omega}\} : x \in \omega^2\}$$

is a Vitali decomposition of the Cantor space ω^2

- If $f : \mathcal{P}(\omega) \rightarrow \omega^2$ is a function such that $f(A) = \chi(A)$ for any $A \subseteq \omega$, then

$$\overline{f} : \mathcal{P}(\omega)/\text{Fin} \xrightarrow{1-1 \text{ onto}} \omega^2/\text{Fin}$$
Vitali set \(V \) on the Cantor space \(\omega^2 \)

- \((\forall x, y)((x, y \in V \land x \neq y) \rightarrow \{n : x(n) \neq y(n)\} \in [\omega]^\omega),\)

- \((\forall x \in \omega^2)(\exists y \in V)\{n : x(n) \neq y(n)\} \in [\omega]<\omega\).

- the family

\[
\{\{y \in \omega^2 : \{n : x(n) \neq y(n)\} \in [\omega]<\omega\} : x \in \omega^2\}
\]

is a Vitali decomposition of the Cantor space \(\omega^2 \)

- if \(f : P(\omega) \rightarrow \omega^2 \) is a function such that \(f(A) = \chi(A) \) for any \(A \subseteq \omega \), then

\[
\overline{f} : P(\omega)/\text{Fin} \overset{1-1}{\longrightarrow} \omega^2/\text{Fin} \overset{\text{onto}}{\rightarrow}
\]
Vitali set V on the Cantor space ω^2

- $\forall x, y \in V \land x \neq y \rightarrow \{n : x(n) \neq y(n)\} \in [\omega]^\omega$,
- $\forall x \in \omega^2 \exists y \in V \{n : x(n) \neq y(n)\} \in [\omega]<^\omega$.

- the family

$$\{\{y \in \omega^2 : \{n : x(n) \neq y(n)\} \in [\omega]<^\omega\} : x \in \omega^2\}$$

is a Vitali decomposition of the Cantor space ω^2

- if $f : \mathcal{P}(\omega) \rightarrow \omega^2$ is a function such that $f(A) = \chi(A)$ for any $A \subseteq \omega$, then

$$\overline{f} : \mathcal{P}(\omega)/\text{Fin} \overset{1-1}{\rightarrow} \omega^2/\text{Fin}$$
Vitali set V on the Cantor space ω^2

- $(\forall x, y)((x, y \in V \land x \neq y) \rightarrow \{n : x(n) \neq y(n)\} \in [\omega]^{\omega})$,
- $(\forall x \in \omega^2)(\exists y \in V)\{n : x(n) \neq y(n)\} \in [\omega]^{<\omega}$.

- the family

$$\left\{\{y \in \omega^2 : \{n : x(n) \neq y(n)\} \in [\omega]^{<\omega}\} : x \in \omega^2\right\}$$

is a Vitali decomposition of the Cantor space ω^2

- if $f : \mathcal{P}(\omega) \rightarrow \omega^2$ is a function such that $f(A) = \chi(A)$ for any $A \subseteq \omega$, then

$$\bar{f} : \mathcal{P}(\omega)/\text{Fin} \xrightarrow{1-1} \omega^2/\text{Fin}$$
Vitali set V on the Cantor space ω^2

- $(\forall x, y)((x, y \in V \land x \neq y) \rightarrow \{n : x(n) \neq y(n)\} \in [\omega]^\omega,$

- $(\forall x \in \omega^2)(\exists y \in V)\{n : x(n) \neq y(n)\} \in [\omega]<^\omega.$

- the family

$$\{\{y \in \omega^2 : \{n : x(n) \neq y(n)\} \in [\omega]<^\omega\} : x \in \omega^2\}$$

is a Vitali decomposition of the Cantor space ω^2

- if $f : \mathcal{P}(\omega) \rightarrow \omega^2$ is a function such that $f(A) = \chi(A)$ for any $A \subseteq \omega,$ then

$$\bar{f} : \mathcal{P}(\omega)/\text{Fin} \xrightarrow{1-1} \omega^2/\text{Fin} \xrightarrow{\text{onto}}$$

A Vitali set V on Cantor space ω^2 is a set of cardinality $\mathfrak{c}.$
Vitali set V on the Cantor space ω^2

- $(\forall x, y) ((x, y \in V \land x \neq y) \rightarrow \{n : x(n) \neq y(n)\} \in [\omega]^\omega$,

- $(\forall x \in \omega^2)(\exists y \in V) \{n : x(n) \neq y(n)\} \in [\omega]^{<\omega}$.

- the family

$$\left\{\{y \in \omega^2 : \{n : x(n) \neq y(n)\} \in [\omega]^{<\omega}\} : x \in \omega^2\right\}$$

is a Vitali decomposition of the Cantor space ω^2

- if $f : \mathcal{P}(\omega) \rightarrow \omega^2$ is a function such that $f(A) = \chi(A)$ for any $A \subseteq \omega$, then

$$\overline{f} : \mathcal{P}(\omega)/\text{Fin} \xrightarrow{\text{onto}} \omega^2/\text{Fin}$$

Fact

A Vitali set V on Cantor space ω^2 is a set of cardinality \mathfrak{t}.
Vitali set V on the Cantor space ω^2

- $(\forall x, y)((x, y \in V \land x \neq y) \rightarrow \{n : x(n) \neq y(n)\} \in [\omega]^\omega,$

- $(\forall x \in \omega^2)(\exists y \in V)\{n : x(n) \neq y(n)\} \in [\omega]<^\omega.

- The family

$$\{\{y \in \omega^2 : \{n : x(n) \neq y(n)\} \in [\omega]<^\omega\} : x \in \omega^2\}$$

is a Vitali decomposition of the Cantor space ω^2

- If $f : \mathcal{P}(\omega) \rightarrow \omega^2$ is a function such that $f(A) = \chi(A)$ for any $A \subseteq \omega$, then

$$\overline{f} : \mathcal{P}(\omega)/\text{Fin} \xrightarrow{1-1} \omega^2/\text{Fin} \xrightarrow{\text{onto}} \omega^2/\text{Fin}$$

Fact

A Vitali set V on Cantor space ω^2 is a set of cardinality \mathfrak{t}.
Regularity properties on the real line

Vitali set V on the Cantor space ω^2

- $(\forall x, y)((x, y \in V \land x \neq y) \rightarrow \{n : x(n) \neq y(n)\} \in [\omega]^\omega$,
- $(\forall x \in \omega^2)(\exists y \in V) \{n : x(n) \neq y(n)\} \in [\omega]^{<\omega}$.

- the family

$$\left\{\{y \in \omega^2 : \{n : x(n) \neq y(n)\} \in [\omega]^{<\omega}\} : x \in \omega^2\right\}$$

is a Vitali decomposition of the Cantor space ω^2

- if $f : \mathcal{P}(\omega) \rightarrow \omega^2$ is a function such that $f(A) = \chi(A)$ for any $A \subseteq \omega$, then

$$\overline{f} : \mathcal{P}(\omega)/\text{Fin} \xrightarrow{1 \leftarrow 1} \omega^2/\text{Fin}$$

Fact

A Vitali set V on Cantor space ω^2 is a set of cardinality \mathfrak{c}.
Vitali set on the circle \mathbb{T} for the set of all dyadic numbers \mathbb{D}

- Vitali decomposition: $\mathbb{T}/\mathbb{D} = \{\{y \in \mathbb{T} : x - y \in \mathbb{D}\} : x \in \mathbb{T}\}$

- $f : \omega^2/\text{Fin} \xrightarrow{1-1} \mathbb{T}/\mathbb{D}$

if there exists a selector for the Vitali decomposition, then a Vitali set is the set of cardinality \mathfrak{c}

Vitali set on the circle \mathbb{T} for the set of all rational numbers \mathbb{Q}

$\mathbb{T}/\mathbb{Q} \cong (\mathbb{T}/\mathbb{D})/(\mathbb{Q}/\mathbb{D})$

Thus,

$\mathfrak{c} = \aleph_0 \cdot |\mathbb{T}/\mathbb{Q}|$
Vitali set on the circle \mathbb{T} for the set of all dyadic numbers \mathbb{D}

- Vitali decomposition: $\mathbb{T}/\mathbb{D} = \{ \{ y \in \mathbb{T} : x - y \in \mathbb{D} \} : x \in \mathbb{T} \}$

- $f : \omega^2/\text{Fin} \xrightarrow{1-1} \mathbb{T}/\mathbb{D}$ onto

- If there exists a selector for the Vitali decomposition, then a Vitali set is the set of cardinality \mathfrak{c}

Vitali set on the circle \mathbb{T} for the set of all rational numbers \mathbb{Q}

$$\mathbb{T}/\mathbb{Q} \cong (\mathbb{T}/\mathbb{D})/(\mathbb{Q}/\mathbb{D})$$

Thus,

$$\mathfrak{c} = \aleph_0 \cdot |\mathbb{T}/\mathbb{Q}|$$
Vitali set on the circle \mathbb{T} for the set of all dyadic numbers \mathbb{D}

- Vitali decomposition: $\mathbb{T}/\mathbb{D} = \{\{y \in \mathbb{T} : x - y \in \mathbb{D}\} : x \in \mathbb{T}\}$

- If there exists a selector for the Vitali decomposition, then a Vitali set is the set of cardinality \mathfrak{c}

Vitali set on the circle \mathbb{T} for the set of all rational numbers \mathbb{Q}

$\mathbb{T}/\mathbb{Q} \cong (\mathbb{T}/\mathbb{D})/(\mathbb{Q}/\mathbb{D})$

Thus,

$\mathfrak{c} = \aleph_0 \cdot |\mathbb{T}/\mathbb{Q}|$
Vitali set on the circle \mathbb{T} for the set of all dyadic numbers \mathbb{D}

- Vitali decomposition: $\mathbb{T}/\mathbb{D} = \{ \{ y \in \mathbb{T} : x - y \in \mathbb{D} \} : x \in \mathbb{T} \}$

$$f : \omega 2/\text{Fin} \overset{1-1}{\rightarrow} \mathbb{T}/\mathbb{D}$$

if there exists a selector for the Vitali decomposition, then a Vitali set is the set of cardinality \mathfrak{c}

Vitali set on the circle \mathbb{T} for the set of all rational numbers \mathbb{Q}

$$\mathbb{T}/\mathbb{Q} \cong (\mathbb{T}/\mathbb{D})/(\mathbb{Q}/\mathbb{D})$$

Thus,

$$\mathfrak{c} = \aleph_0 \cdot |\mathbb{T}/\mathbb{Q}|$$
Vitali set on the circle \mathbb{T} for the set of all dyadic numbers \mathbb{D}

- Vitali decomposition: $\mathbb{T}/\mathbb{D} = \{\{y \in \mathbb{T} : x - y \in \mathbb{D}\} : x \in \mathbb{T}\}$

$$f : \omega^2/\text{Fin} \xrightarrow{1:1} \mathbb{T}/\mathbb{D} \text{ onto}$$

- if there exists a selector for the Vitali decomposition, then a Vitali set is the set of cardinality \mathfrak{c}

Vitali set on the circle \mathbb{T} for the set of all rational numbers \mathbb{Q}

$$\mathbb{T}/\mathbb{Q} \simeq (\mathbb{T}/\mathbb{D})/(\mathbb{Q}/\mathbb{D})$$

Thus,

$$\mathfrak{c} = \aleph_0 \cdot |\mathbb{T}/\mathbb{Q}|$$
Vitali set on the circle \mathbb{T} for the set of all dyadic numbers \mathbb{D}

- Vitali decomposition: $\mathbb{T}/\mathbb{D} = \{ \{y \in \mathbb{T} : x - y \in \mathbb{D}\} : x \in \mathbb{T}\}$

$$f : \omega 2/\text{Fin} \xrightarrow{\text{1-1}} \mathbb{T}/\mathbb{D}$$

- If there exists a selector for the Vitali decomposition, then a Vitali set is the set of cardinality \mathfrak{c}

Vitali set on the circle \mathbb{T} for the set of all rational numbers \mathbb{Q}

$$\mathbb{T}/\mathbb{Q} \cong (\mathbb{T}/\mathbb{D})/(\mathbb{Q}/\mathbb{D})$$

Thus,

$$\mathfrak{c} = \aleph_0 \cdot |\mathbb{T}/\mathbb{Q}|$$
Vitali set on the circle \mathbb{T} for the set of all dyadic numbers \mathbb{D}

- Vitali decomposition: $\mathbb{T}/\mathbb{D} = \{\{y \in \mathbb{T} : x - y \in \mathbb{D}\} : x \in \mathbb{T}\}$

- $f : \omega 2/\text{Fin} \overset{1-1}{\rightarrow} \mathbb{T}/\mathbb{D}$

- if there exists a selector for the Vitali decomposition, then a Vitali set is the set of cardinality \mathfrak{c}

Vitali set on the circle \mathbb{T} for the set of all rational numbers \mathbb{Q}

$\mathbb{T}/\mathbb{Q} \cong (\mathbb{T}/\mathbb{D})/(\mathbb{Q}/\mathbb{D})$

Thus,

$\mathfrak{c} = \aleph_0 \cdot |\mathbb{T}/\mathbb{Q}|$
Vitali set on the circle \mathbb{T} for the set of all dyadic numbers \mathbb{D}

- Vitali decomposition: $\mathbb{T}/\mathbb{D} = \{\{y \in \mathbb{T} : x - y \in \mathbb{D}\} : x \in \mathbb{T}\}$

- $f : \omega^2/\text{Fin} \xrightarrow{\text{onto}} \mathbb{T}/\mathbb{D}$

if there exists a selector for the Vitali decomposition, then a Vitali set is the set of cardinality \mathfrak{c}

Vitali set on the circle \mathbb{T} for the set of all rational numbers \mathbb{Q}

$$\mathbb{T}/\mathbb{Q} \cong (\mathbb{T}/\mathbb{D})/(\mathbb{Q}/\mathbb{D})$$

Thus,

$$\mathfrak{c} = \aleph_0 \cdot |\mathbb{T}/\mathbb{Q}|$$
Vitali set on the circle \mathbb{T} for the set of all dyadic numbers \mathbb{D}

- Vitali decomposition: $\mathbb{T}/\mathbb{D} = \{\{y \in \mathbb{T} : x - y \in \mathbb{D}\} : x \in \mathbb{T}\}$

\[
f : \omega 2/\text{Fin} \xrightarrow{1-1} \mathbb{T}/\mathbb{D}
\]

if there exists a selector for the Vitali decomposition, then a Vitali set is the set of cardinality \aleph.

Vitali set on the circle \mathbb{T} for the set of all rational numbers \mathbb{Q}

\[
\mathbb{T}/\mathbb{Q} \cong (\mathbb{T}/\mathbb{D})/(\mathbb{Q}/\mathbb{D})
\]

Thus,

\[
\aleph = \aleph_0. |\mathbb{T}/\mathbb{Q}|
\]
A set $A \subseteq \mathbb{T}$ is called a **tail-set** if the set $\{r \in \mathbb{T} : A + r = A\}$ contains a countable subset dense in \mathbb{T}.

Theorem 10 (J. Mycielski [1])

If AC_2 holds true, then there exist a Lebesgue non-measurable set of reals and a set which does not possess the Baire Property, i.e. $LM \rightarrow \neg AC_2$ and $BP \rightarrow \neg AC_2$.

- Similarly by the same argument we have
A set $A \subseteq \mathbb{T}$ is called a **tail-set** if the set $\{ r \in \mathbb{T} : A + r = A \}$ contains a countable subset dense in \mathbb{T}.

Theorem 10 (J. Mycielski [1])

If AC_2 holds true, then there exist a Lebesgue non-measurable set of reals and a set which does not possess the Baire Property, i.e. $\text{LM} \rightarrow \neg \text{AC}_2$ and $\text{BP} \rightarrow \neg \text{AC}_2$.

- Similarly by the same argument we have

Theorem 11 (J. Mycielski [1])

If a set of cardinality k is linearly ordered, then there exist a Lebesgue non-measurable set of reals and a set which does not possess the Baire Property, i.e. $\text{LM} \rightarrow \neg \text{Lk}$ and $\text{BP} \rightarrow \neg \text{Lk}$.
A set $A \subseteq \mathbb{T}$ is called a **tail-set** if the set \(\{ r \in \mathbb{T} : A + r = A \} \) contains a countable subset dense in \mathbb{T}.

Theorem 10 (J. Mycielski [1])

If AC_2 holds true, then there exist a Lebesgue non-measurable set of reals and a set which does not possess the Baire Property, i.e. $LM \rightarrow \neg AC_2$ and $BP \rightarrow \neg AC_2$.

Similarly by the same argument we have

Theorem 11 (J. Mycielski [1])

If a set of cardinality k is linearly ordered, then there exist a Lebesgue non-measurable set of reals and a set which does not possess the Baire Property, i.e. $LM \rightarrow \neg Lk$ and $BP \rightarrow \neg Lk$.
A set $A \subseteq \mathbb{T}$ is called a **tail-set** if the set $\{ r \in \mathbb{T} : A + r = A \}$ contains a countable subset dense in \mathbb{T}.

Theorem 10 (J. Mycielski [1])

If AC_2 holds true, then there exist a Lebesgue non-measurable set of reals and a set which does not possess the Baire Property, i.e. $\text{LM} \rightarrow \neg \text{AC}_2$ and $\text{BP} \rightarrow \neg \text{AC}_2$.

- Similarly by the same argument we have

Theorem 11 (J. Mycielski [1])

If a set of cardinality \mathfrak{t} is linearly ordered, then there exist a Lebesgue non-measurable set of reals and a set which does not possess the Baire Property, i.e. $\text{LM} \rightarrow \neg \text{Lk}$ and $\text{BP} \rightarrow \neg \text{Lk}$.
A set $A \subseteq \mathbb{T}$ is called a **tail-set** if the set \(\{ r \in \mathbb{T} : A + r = A \} \) contains a countable subset dense in \(\mathbb{T} \).

Theorem 10 (J. Mycielski [1])

If AC_2 holds true, then there exist a Lebesgue non-measurable set of reals and a set which does not possess the Baire Property, i.e. $\text{LM} \rightarrow \neg \text{AC}_2$ and $\text{BP} \rightarrow \neg \text{AC}_2$.

- similarly by the same argument we have

Theorem 11 (J. Mycielski [1])

If a set of cardinality \mathfrak{t} is linearly ordered, then there exist a Lebesgue non-measurable set of reals and a set which does not possess the Baire Property, i.e. $\text{LM} \rightarrow \neg \text{Lk}$ and $\text{BP} \rightarrow \neg \text{Lk}$.
Regularity properties on the real line

\[\neg AC_2 \]

\[\neg BS \]

\[\neg VS \]

\[\neg Lk \]

\[\neg WR \]

\[\neg Wk \]

In1: \(c < k \ll c \)

In2: \(\aleph_1 < \aleph_1 + c < \aleph_1 + k; \)

BS: there exists a Bernstein set

WR: the set of \(R \) can be well-ordered

VS: there exists a selector for a Vitali set

LM: every set of \(R \) is Lebesgue measurable

BP: every set of \(R \) possesses the Baire property

Wk: a set of cardinality \(k \) can be well-ordered

Lk: a set of cardinality \(k \) can be linearly ordered
A free ultrafilter on ω is a filter $\mathcal{I} \subseteq \mathcal{P}(\omega)$ not containing any finite set and for every $A \subseteq \omega$, either $A \in \mathcal{I}$ or $\omega \setminus A \in \mathcal{I}$.

Theorem 12
If the real line can be well-ordered, then there exists a free ultrafilter on ω, i.e. $WR \rightarrow FU$.

Theorem 13 (W. Sierpiński [1])
A free ultrafilter on ω is a Lebesgue non-measurable set and does not possess the Baire Property, i.e. $LM \rightarrow \neg FU$ and $BP \rightarrow \neg FU$.
A free ultrafilter on ω is a filter $\mathcal{J} \subseteq \mathcal{P}(\omega)$ not containing any finite set and for every $A \subseteq \omega$, either $A \in \mathcal{J}$ or $\omega \setminus A \in \mathcal{J}$.

Theorem 12

If the real line can be well-ordered, then there exists a free ultrafilter on ω, i.e. $WR \rightarrow FU$.

Theorem 13 (W. Sierpiński [1])

A free ultrafilter on ω is a Lebesgue non-measurable set and does not possess the Baire Property, i.e. $LM \rightarrow \neg FU$ and $BP \rightarrow \neg FU$.
A **free ultrafilter on** ω is a filter $\mathcal{J} \subseteq \mathcal{P}(\omega)$ not containing any finite set and for every $A \subseteq \omega$, either $A \in \mathcal{J}$ or $\omega \setminus A \in \mathcal{J}$.

Theorem 12

If the real line can be well-ordered, then there exists a free ultrafilter on ω, i.e. $\text{WR} \rightarrow \text{FU}$.

Theorem 13 (W. Sierpiński [1])

A free ultrafilter on ω is a Lebesgue non-measurable set and does not possess the Baire Property, i.e. $\text{LM} \rightarrow \neg\text{FU}$ and $\text{BP} \rightarrow \neg\text{FU}$.
A free ultrafilter on ω is a filter $\mathcal{J} \subseteq \mathcal{P}(\omega)$ not containing any finite set and for every $A \subseteq \omega$, either $A \in \mathcal{J}$ or $\omega \setminus A \in \mathcal{J}$.

Theorem 12

If the real line can be well-ordered, then there exists a free ultrafilter on ω, i.e. WR \rightarrow FU.

Theorem 13 (W. Sierpiński [1])

A free ultrafilter on ω is a Lebesgue non-measurable set and does not possess the Baire Property, i.e. LM $\rightarrow \neg$ FU and BP $\rightarrow \neg$ FU.
Regularity properties on the real line

- AC₂: there exists a Bernstein set
- WR: the set of R can be well-ordered
- LM: every set of R is Lebesgue measurable
- BP: every set of R possesses the Baire property
- VS: there exists a selector for a Vitali set
- In₁: \(c < k \ll c \)
- In₂: \(\aleph_1 < \aleph_1 + c < \aleph_1 + k \)
- FU: there exists a free ultrafilter on \(\omega \)
- BS: there exists a Bernstein set
- Wk: a set of cardinality \(k \) can be well-ordered
- Lk: a set of cardinality \(k \) can be linearly ordered
- LM: every set of R is Lebesgue measurable
- BP: every set of R possesses the Baire property
- some kind of duality between measure and category, J. Raisonnier [3] proved in the theory $\text{ZF} + \text{wAC}$ that

Theorem 14 (J. Raisonnier)
If $\aleph_1 \leq \mathfrak{c}$, then there is a Lebesgue non-measurable set, i.e. $\text{LM} \rightarrow \text{Inc}$.

- parallel theorem on the Baire Property is not provable in $\text{ZF} + \text{wAC}$.
Regularity properties on the real line

- some kind of duality between measure and category,

J. Raisonnier [3] proved in the theory $\text{ZF} + \text{wAC}$ that

Theorem 14 (J. Raisonnier)

If $\aleph_1 \leq \mathfrak{c}$, then there is a Lebesgue non-measurable set, i.e. $\text{LM} \rightarrow \text{Inc}$.

- parallel theorem on the Baire Property is not provable in $\text{ZF} + \text{wAC}$.
- some kind of duality between measure and category, J. Raisonnier [3] proved in the theory $\mathbf{ZF} + w\mathbf{AC}$ that

Theorem 14 (J. Raisonnier)

If $\aleph_1 \leq c$, then there is a Lebesgue non-measurable set, i.e. $\text{LM} \rightarrow \text{Inc}$.

parallel theorem on the Baire Property is not provable in $\mathbf{ZF} + w\mathbf{AC}$.
- some kind of duality between measure and category, J. Raisonnier [3] proved in the theory $\text{ZF} + \text{wAC}$ that

Theorem 14 (J. Raisonnier)

If $\aleph_1 \leq \mathfrak{c}$, then there is a Lebesgue non-measurable set, i.e. $\text{LM} \rightarrow \text{Inc}$.

- Parallel theorem on the Baire Property is not provable in $\text{ZF} + \text{wAC}$.
- some kind of duality between measure and category, J. Raisonnier [3] proved in the theory $\text{ZF} + \text{wAC}$ that

Theorem 14 (J. Raisonnier)

If $\aleph_1 \leq \mathfrak{c}$, then there is a Lebesgue non-measurable set, i.e. $\text{LM} \rightarrow \text{Inc}$.

- parallel theorem on the Baire Property is not provable in $\text{ZF} + \text{wAC}$.
Regularity properties on the real line

wAC

LM: every set of R is Lebesgue measurable

BP: every set of R possesses the Baire property

¬AC₂: there exists a Bernstein set

WR: the set of R can be well-ordered

LM: every set of R is Lebesgue measurable

BP: every set of R possesses the Baire property

¬VS: there exists a selector for a Vitali set

Lk: a set of cardinality k can be linearly ordered

Wk: a set of cardinality k can be well-ordered

¬FU: there exists a free ultrafilter on ω

Inc: ℵ₁ and c are incomparable

BS: there exists a Bernstein set

In1: c < k ≪ c

In2: ℵ₁ < ℵ₁ + c < ℵ₁ + k

Regularity properties on the real line

wAC

LM: every set of R is Lebesgue measurable

BP: every set of R possesses the Baire property

¬VS: there exists a selector for a Vitali set

Lk: a set of cardinality k can be linearly ordered

Wk: a set of cardinality k can be well-ordered

¬FU: there exists a free ultrafilter on ω

Inc: ℵ₁ and c are incomparable

BS: there exists a Bernstein set

In1: c < k ≪ c

In2: ℵ₁ < ℵ₁ + c < ℵ₁ + k

In1: c < k ≪ c

In2: ℵ₁ < ℵ₁ + c < ℵ₁ + k

Inc: ℵ₁ and c are incomparable

BS: there exists a Bernstein set

FU: there exists a free ultrafilter on ω

WR: the set of R can be well-ordered

VS: there exists a selector for a Vitali set

Wk: a set of cardinality k can be well-ordered

Lk: a set of cardinality k can be linearly ordered
Theorem 15

If \(w\text{CH} \) holds true, then the following are equivalent:

WR the set of reals \(\mathbb{R} \) can be well-ordered;

Inc \(\aleph_1 \) and \(c \) are comparable, i.e \(\aleph_1 \leq c \);

LDe there exists a selector for the Lebesgue decomposition.

- If \(\aleph_1 \) and \(c \) are incomparable, then \(c = 2^{\aleph_0} < 2^{\aleph_1} \). Thus, we get Inc \(\rightarrow \) In3.
- From \(\aleph_1 < 2^{\aleph_1} \) we have \(w\text{CH} \rightarrow \text{In3} \).
Theorem 15

If wCH holds true, then the following are equivalent:

- **WR** the set of reals \mathbb{R} can be well-ordered;
- **Inc** \aleph_1 and c are comparable, i.e. $\aleph_1 \leq c$;
- **LDe** there exists a selector for the Lebesgue decomposition.

- If \aleph_1 and c are incomparable, then $c = 2^{\aleph_0} < 2^{\aleph_1}$. Thus, we get $Inc \rightarrow In3$.
- From $\aleph_1 < 2^{\aleph_1}$ we have $wCH \rightarrow In3$.
Theorem 15

If wCH holds true, then the following are equivalent:

1. **WR** the set of reals \mathbb{R} can be well-ordered;
2. $\neg Inc$ \aleph_1 and c are comparable, i.e $\aleph_1 \leq c$;
3. **LDe** there exists a selector for the Lebesgue decomposition.

- If \aleph_1 and c are incomparable, then $c = 2^{\aleph_0} < 2^{\aleph_1}$. Thus, we get $Inc \rightarrow In3$.
- From $\aleph_1 < 2^{\aleph_1}$ we have $wCH \rightarrow In3$.
Theorem 15

If \(\text{wCH} \) holds true, then the following are equivalent:

- **WR** the set of reals \(\mathbb{R} \) can be well-ordered;
- \(\neg \text{Inc} \) \(\aleph_1 \) and \(c \) are comparable, i.e. \(\aleph_1 \leq c \);
- **LDe** there exists a selector for the Lebesgue decomposition.

- If \(\aleph_1 \) and \(c \) are incomparable, then \(c = 2^{\aleph_0} < 2^{\aleph_1} \). Thus, we get \(\text{Inc} \rightarrow \text{In3} \).
- From \(\aleph_1 < 2^{\aleph_1} \) we have \(\text{wCH} \rightarrow \text{In3} \).
Theorem 15

If \(wCH \) holds true, then the following are equivalent:

- **WR** the set of reals \(\mathbb{R} \) can be well-ordered;
- \(\neg Inc \) \(\aleph_1 \) and \(c \) are comparable, i.e. \(\aleph_1 \leq c \);
- **LDe** there exists a selector for the Lebesgue decomposition.

- If \(\aleph_1 \) and \(c \) are incomparable, then \(c = 2^{\aleph_0} < 2^{\aleph_1} \). Thus, we get \(Inc \rightarrow In3 \).
- From \(\aleph_1 < 2^{\aleph_1} \) we have \(wCH \rightarrow In3 \).
Theorem 15

If wCH holds true, then the following are equivalent:

- **WR** the set of reals \mathbb{R} can be well-ordered;
- \neg**Inc** \aleph_1 and c are comparable, i.e $\aleph_1 \leq c$;
- **LDe** there exists a selector for the Lebesgue decomposition.

- If \aleph_1 and c are incomparable, then $c = 2^{\aleph_0} < 2^{\aleph_1}$. Thus, we get $\text{Inc} \rightarrow \text{In3}$.
- From $\aleph_1 < 2^{\aleph_1}$ we have $wCH \rightarrow \text{In3}$.
Theorem 15

If wCH holds true, then the following are equivalent:

- **WR** the set of reals \mathbb{R} can be well-ordered;
- **$\neg Inc$** \mathbb{N}_1 and c are comparable, i.e. $\mathbb{N}_1 \leq c$;
- **LDe** there exists a selector for the Lebesgue decomposition.

- If \mathbb{N}_1 and c are incomparable, then $c = 2^{\mathbb{N}_0} < 2^{\mathbb{N}_1}$. Thus, we get $Inc \rightarrow In3$.
- From $\mathbb{N}_1 < 2^{\mathbb{N}_1}$ we have $wCH \rightarrow In3$.

Regularity properties on the real line
Theorem 15

If \textbf{wCH} holds true, then the following are equivalent:

WR the set of reals \mathbb{R} can be well-ordered;

\negInc \aleph_1 and \mathfrak{c} are comparable, i.e $\aleph_1 \leq \mathfrak{c}$;

LDe there exists a selector for the Lebesgue decomposition.

- If \aleph_1 and \mathfrak{c} are incomparable, then $\mathfrak{c} = 2^{\aleph_0} < 2^{\aleph_1}$. Thus, we get $\textbf{Inc} \rightarrow \textbf{In3}$.
- from $\aleph_1 < 2^{\aleph_1}$ we have $\textbf{wCH} \rightarrow \textbf{In3}$
LM: every set of \(\mathbb{R} \) is Lebesgue measurable

BP: every set of \(\mathbb{R} \) possesses the Baire property

¬BS: there does not exist a Bernstein set

In3: \(c \neq 2^{\aleph_1} \)

In1: \(c < k \ll c \)

¬WR: the set of \(\mathbb{R} \) cannot be well-ordered

¬AC: there does not exist a selector for a Vitali set

In2: \(\aleph_1 < \aleph_1 + c < \aleph_1 + k \)

Inc: \(\aleph_1 \) and \(c \) are incomparable

¬Lk: a set of cardinality \(k \) cannot be linearly ordered

¬Wk: there does not exist a selection for a well-ordering

¬FU: there does not exist a free ultrafilter on \(\omega \)

¬LDe: there does not exist a selector for a Lebesgue decomposition

wCH: there is no set \(X \) such that \(\aleph_0 < |X| < c \)

BP: every set of \(\mathbb{R} \) possesses the Baire property

LM: every set of \(\mathbb{R} \) is Lebesgue measurable

¬BS: there does not exist a Bernstein set

In3: \(c \neq 2^{\aleph_1} \)

In1: \(c < k \ll c \)

¬WR: the set of \(\mathbb{R} \) cannot be well-ordered

¬AC: there does not exist a selector for a Vitali set

In2: \(\aleph_1 < \aleph_1 + c < \aleph_1 + k \)

Inc: \(\aleph_1 \) and \(c \) are incomparable

¬Lk: a set of cardinality \(k \) cannot be linearly ordered

¬Wk: there does not exist a selection for a well-ordering

¬FU: there does not exist a free ultrafilter on \(\omega \)

¬LDe: there does not exist a selector for a Lebesgue decomposition

wCH: there is no set \(X \) such that \(\aleph_0 < |X| < c \)

BP: every set of \(\mathbb{R} \) possesses the Baire property
Regularity properties on the real line

- **LM**: every set of \mathbb{R} is Lebesgue measurable
- **BP**: every set of \mathbb{R} possesses the Baire property
- **VS**: there exists a selector for a Vitali set
- **In1**: $c < k \ll c$
- **In2**: $\aleph_1 < \aleph_1 + c < \aleph_1 + k$
- **In3**: $c \neq 2^{\aleph_1}$
- **Inc**: \aleph_1 and c are incomparable
- **Wk**: the set of \mathbb{R} can be well-ordered
- **WR**: the set of \mathbb{R} can be well-ordered
- **AC**: there exists a Bernstein set
- **FU**: there exists a free ultrafilter on ω
- **BS**: there exists a Bernstein set
- **Lk**: a set of cardinality k can be linearly ordered
- **LDe**: there exists a selector for Lebesgue decomp.
- **Inc**: there is no set X such that $\aleph_0 < |X| < c$
- **wCH**: there is no set X such that $\aleph_0 < |X| < c$
- **wAC**: there is no set X such that $\aleph_0 < |X| < c$

LM: every set of \mathbb{R} is Lebesgue measurable
BP: every set of \mathbb{R} possesses the Baire property
\textbf{Regularity properties on the real line}

\textbf{LM}: every set of R is Lebesgue measurable
\textbf{BP}: every set of R possess the Baire property
\textbf{¬BS}: there exists a Bernstein set
\textbf{WR}: the set of R can be well-ordered
\textbf{¬AC}: there exists a selector for a Vitali set
\textbf{In1}: $c < k \ll c$
\textbf{In2}: $\aleph_1 < \aleph_1 + c < \aleph_1 + k$
\textbf{In3}: $c \neq 2^\aleph_1$

\textbf{¬In1:} $\aleph_1 \notin \{k \mid k\}$

\textbf{¬In2:} $\aleph_1 \notin \{k \mid k\}$

\textbf{FU}: there exists a free ultrafilter on ω

\textbf{LDe}: there exists a selector for Lebesgue decomp.

\textbf{Lk}: a set of cardinality k can be linearly ordered

\textbf{¬Lk}: a set of cardinality k can not be linearly ordered

\textbf{¬LDe}: there exists a selector for Lebesgue decomp.

\textbf{¬Inc}: there exists a selector for Lebesgue decomp.

\textbf{wCH}: there is no set X such that $\aleph_0 < |X| < c$

\textbf{¬wCH}: there exists a set X such that $\aleph_0 < |X| < c$

\textbf{CH}: $\aleph_1 = c$

\textbf{Inc}: \aleph_1 and c are incomparable

\textbf{BS}: there exists a Bernstein set

\textbf{In1}: $c < k \ll c$

\textbf{In2}: $\aleph_1 < \aleph_1 + c < \aleph_1 + k$

\textbf{In3}: $c \neq 2^\aleph_1$
Theorem 16
If every uncountable set of reals contains a perfect subset, then there is no set X such that $\aleph_0 < |X| < c$, i.e. $\text{PSP} \rightarrow \text{wCH}$.

Theorem 17
If every uncountable set of reals contains a perfect subset, then \aleph_1 and c are incomparable, i.e. $\text{PSP} \rightarrow \text{Inc}$.
Theorem 16
If every uncountable set of reals contains a perfect subset, then there is no set X such that $\aleph_0 < |X| < c$, i.e. $\text{PSP} \rightarrow \text{wCH}$.

Theorem 17
If every uncountable set of reals contains a perfect subset, then \aleph_1 and c are incomparable, i.e. $\text{PSP} \rightarrow \text{Inc}$.
Theorem 16
If every uncountable set of reals contains a perfect subset, then there is no set X such that $\aleph_0 < |X| < c$, i.e. $\text{PSP} \rightarrow \text{wCH}$.

Theorem 17
If every uncountable set of reals contains a perfect subset, then \aleph_1 and c are incomparable, i.e. $\text{PSP} \rightarrow \text{Inc.}$.
Regularity properties on the real line

LM: every set of \mathbb{R} is Lebesgue measurable
BP: every set of \mathbb{R} possesses the Baire property
¬BS: there exists a Bernstein set
¬WR: the set of \mathbb{R} can be well-ordered
VS: there exists a selector for a Vitali set
In1: $c < k \ll c$
In2: $\aleph_1 < \aleph_1 + c < \aleph_1 + k$
In3: $c \neq 2^\aleph_1$
¬Lk: a set of cardinality k can be linearly ordered
¬AC: there exists a selector for a Vitali set
¬FU: there exists a free ultrafilter on ω
¬LDe: there exists a selector for Lebesgue decomp.
¬BS: there exists a Bernstein set
¬AC: there exists a selector for a Vitali set
¬FU: there exists a free ultrafilter on ω
¬LDe: there exists a selector for Lebesgue decomp.
¬Lk: a set of cardinality k can be linearly ordered
PSP: every uncount. set of \mathbb{R} contains a perfect set

CH: $\aleph_1 = c$
In1: $c < k \ll c$
In3: $c \neq 2^\aleph_1$

LD: there exists a selector for Lebesgue decomp.
Lk: a set of cardinality k can be linearly ordered
PSP: every uncount. set of \mathbb{R} contains a perfect set
wCH: there is no set X such that $\aleph_0 < |X| < c$
Negative implications:

- according to Theorem 15

\[\text{wCH} \land \text{WR} \equiv \text{CH} \]

- by K. Gödel constructible universe \(L \) we have a model in which

\[\text{wCH} \not\rightarrow \neg\text{WR}, \ \text{In3} \not\rightarrow \neg\text{WR}, \]

\[\text{wCH} \not\leftrightarrow \text{Inc}, \ \text{In3} \not\leftrightarrow \text{Inc}, \]

\[\text{wCH} \not\leftrightarrow \neg\text{LDe}, \ \text{In3} \not\leftrightarrow \neg\text{LDe}. \]
Negative implications:

- according to Theorem 15

\[\text{wCH} \land \text{WR} \equiv \text{CH} \]

- by K. Gödel constructible universe \(L \) we have a model in which

\[\text{wCH} \not\iff \lnot\text{WR}, \quad \text{In3} \not\iff \lnot\text{WR}, \]

\[\text{wCH} \not\iff \text{Inc}, \quad \text{In3} \not\iff \text{Inc}, \]

\[\text{wCH} \not\iff \lnot\text{LDe}, \quad \text{In3} \not\iff \lnot\text{LDe}. \]
Negative implications:

- according to Theorem 15

\[\text{wCH} \land \text{WR} \equiv \text{CH} \]

- by K. Gödel constructible universe \(\mathbb{L} \) we have a model in which

\[\text{wCH} \not\leftrightarrow \neg \text{WR}, \ \text{In3} \not\leftrightarrow \neg \text{WR}, \]

\[\text{wCH} \not\leftrightarrow \text{Inc}, \ \text{In3} \not\leftrightarrow \text{Inc}, \]

\[\text{wCH} \not\leftrightarrow \neg \text{LDe}, \ \text{In3} \not\leftrightarrow \neg \text{LDe}. \]
Negative implications:

- according to Theorem 15

\[\text{wCH} \wedge \text{WR} \equiv \text{CH} \]

- by K. Gödel constructible universe L we have a model in which

\[\text{wCH} \nleftrightarrow \neg \text{WR}, \ \text{In3} \nleftrightarrow \neg \text{WR}, \]

\[\text{wCH} \nleftrightarrow \text{Inc}, \ \text{In3} \nleftrightarrow \text{Inc}, \]

\[\text{wCH} \nleftrightarrow \neg \text{LDe}, \ \text{In3} \nleftrightarrow \neg \text{LDe}. \]
Negative implications:

- according to Theorem 15

\[w\text{CH} \land WR \equiv CH \]

- by K. Gödel constructible universe \(L \) we have a model in which

\[w\text{CH} \nrightarrow \neg WR, \ \text{In3} \nrightarrow \neg WR, \]

\[w\text{CH} \nrightarrow \text{Inc}, \ \text{In3} \nrightarrow \text{Inc}, \]

\[w\text{CH} \nrightarrow \neg \text{LDe}, \ \text{In3} \nrightarrow \neg \text{LDe}. \]
Negative implications:

- according to Theorem 15

\[\text{wCH} \land \text{WR} \equiv \text{CH} \]

- by K. Gödel constructible universe \(L \) we have a model in which

\[\text{wCH} \nleftrightarrow \neg \text{WR}, \quad \text{In3} \nleftrightarrow \neg \text{WR}, \]

\[\text{wCH} \nleftrightarrow \text{Inc}, \quad \text{In3} \nleftrightarrow \text{Inc}, \]

\[\text{wCH} \nleftrightarrow \neg \text{LDe}, \quad \text{In3} \nleftrightarrow \neg \text{LDe}. \]
Negative implications:

- according to Theorem 15

\[\text{wCH} \land \text{WR} \equiv \text{CH} \]

- by K. Gödel constructible universe \(L \) we have a model in which

\[\text{wCH} \nrightarrow \neg \text{WR}, \ \text{In3} \nrightarrow \neg \text{WR}, \]

\[\text{wCH} \nleftrightarrow \text{Inc}, \ \text{In3} \nleftrightarrow \text{Inc}, \]

\[\text{wCH} \nleftrightarrow \neg \text{LDe}, \ \text{In3} \nleftrightarrow \neg \text{LDe}. \]
The **Axiom of Determinacy AD** states that every two-person games of length ω in which both players choose integers is determined; that is, one of the two players has a winning strategy.

- AD was proposed as an alternative to the Axiom of Choice by J. Mycielski and H. Steinhaus [2], but it is not possible to prove the consistency of $\text{ZF} + \text{AD}$ with respect to ZF,
- the consistency strength of AD is indicated as much high in due to results by Solovay and mainly by T. Jech [4].
The **Axiom of Determinacy AD** states that every two-person games of length ω in which both players choose integers is determined; that is, one of the two players has a winning strategy.

- **AD** was proposed as an alternative to the Axiom of Choice by J. Mycielski and H. Steinhaus [2], but it is not possible to prove the consistency of $\text{ZF} + \text{AD}$ with respect to ZF,
- the consistency strength of **AD** is indicated as much high in due to results by Solovay and mainly by T. Jech [4].
The **Axiom of Determinacy AD** states that every two-person games of length ω in which both players choose integers is determined; that is, one of the two players has a winning strategy.

- **AD** was proposed as an alternative to the Axiom of Choice by J. Mycielski and H. Steinhaus [2], but it is not possible to prove the consistency of $\text{ZF} + \text{AD}$ with respect to ZF,

- the consistency strength of **AD** is indicated as much high in due to results by Solovay and mainly by T. Jech [4].
The **Axiom of Determinacy AD** states that every two-person games of length ω in which both players choose integers is determined; that is, one of the two players has a winning strategy.

- **AD** was proposed as an alternative to the Axiom of Choice by J. Mycielski and H. Steinhaus [2], but it is not possible to prove the consistency of $\text{ZF} + \text{AD}$ with respect to ZF,
- the consistency strength of **AD** is indicated as much high in due to results by Solovay and mainly by T. Jech [4].
Theorem 18 (J. Mycielski, R. Solovay)

If \mathbf{AD} holds true, then

a) wAC, PSP, LM, BP hold true,

b) AC fails,

c) there exists a surjection of $P(\omega)$ onto $P(\omega_1)$, i.e. $2^{\omega_1} < c = 2^{\omega_0}$.
Theorem 18 (J. Mycielski, R. Solovay)

If \textbf{AD} holds true, then

a) $w\text{AC}$, PSP, LM, BP hold true,

b) AC fails,

c) there exists a surjection of $\mathcal{P}(\omega)$ onto $\mathcal{P}(\omega_1)$, i.e.

$$2^{\aleph_1} \ll c = 2^{\aleph_0}.$$
Theorem 18 (J. Mycielski, R. Solovay)

If \(\text{AD} \) holds true, then

a) \(\text{wAC}, \text{PSP}, \text{LM}, \text{BP} \) hold true,

b) \(\text{AC} \) fails,

c) there exists a surjection of \(\mathcal{P}(\omega) \) onto \(\mathcal{P}(\omega_1) \), i.e. \(2^{\aleph_1} \ll c = 2^{\aleph_0} \).
Theorem 18 (J. Mycielski, R. Solovay)

If AD holds true, then

a) \(w\text{AC}, \text{ PSP, LM, BP} \) hold true,

b) AC fails,

c) there exists a surjection of \(P(\omega) \) onto \(P(\omega_1) \), i.e. \(2^{\aleph_1} \ll c = 2^{\aleph_0} \).
Theorem 18 (J. Mycielski, R. Solovay)

If AD holds true, then

a) \(wAC, \; PSP, \; LM, \; BP \) hold true,

b) AC fails,

c) there exists a surjection of \(\mathcal{P}(\omega) \) onto \(\mathcal{P}(\omega_1) \), i.e.
\[2^{\aleph_1} \ll c = 2^{\aleph_0}. \]
Regularity properties on the real line

LM: every set of R is Lebesgue measurable
BP: every set of R possesses the Baire property
¬BS: the set of R can be well-ordered
¬WR: the set of R can be well-ordered

¬AC: there exists a selector for a Vitali set
In1: \(c < k \ll c \)
In2: \(\aleph_1 < \aleph_1 + c < \aleph_1 + k \);
In3: \(c \neq 2^{\aleph_1} \)

In2: \(\aleph_1 < \aleph_1 + c < \aleph_1 + k \);
Inc: \(\aleph_1 \) and \(c \) are incomparable
BS: there exists a Bernstein set
FU: there exists a free ultrafilter on \(\omega \)

AD: there exists a selector for Lebesgue decomp.
PSP: every uncount. set of R contains a perfect set

LDe: there exists a selector for Lebesgue decomp.
Lk: a set of cardinality \(k \) can be linearly ordered

wCH: there is no set \(X \) such that \(\aleph_0 < |X| < c \)

PSP: every uncount. set of R contains a perfect set
BP: every set of R possesses the Baire property
Theorem 18 (J. Mycielski, R. Solovay)

If AD holds true, then

a) wAC, PSP, LM, BP hold true,

b) AC fails,

c) there exists a surjection of $\mathcal{P}(\omega)$ onto $\mathcal{P}(\omega_1)$, i.e. $2^{\aleph_1} \ll c = 2^{\aleph_0}$.

By R. Solovay [2] and by S. Shelah [4] the following theories are equiconsistent

(a) ZFC + IC;\(^1\)
(b) $\text{ZFC + every } \Sigma^1_3\text{-set of reals is Lebesgue measurable}$;
(c) ZF + DC + LM.

\(^1\)IC denote statement “there exists a strongly inaccessible cardinal”, i.e. a limit regular cardinal κ such that for any $\lambda < \kappa$ we have $2^\lambda < \kappa$.

Regularity properties on the real line
Theorem 18 (J. Mycielski, R. Solovay)

If AD holds true, then

a) wAC, PSP, LM, BP hold true,

b) AC fails,

c) there exists a surjection of $\mathcal{P}(\omega)$ onto $\mathcal{P}(\omega_1)$, i.e. $2^{\aleph_1} \ll \mathfrak{c} = 2^{\aleph_0}$.

By R. Solovay [2] and by S. Shelah [4] the following theories are equiconsistent

(a) ZFC + IC;^1

(b) $\text{ZFC + every } \Sigma^1_3\text{-set of reals is Lebesgue measurable;}$

(c) $\text{ZF + DC + LM}.$

1IC denote statement “there exists a strongly inaccessible cardinal”, i.e. a limit regular cardinal κ such that for any $\lambda < \kappa$ we have $2^\lambda < \kappa$.
Regularity properties on the real line

Theorem 18 (J. Mycielski, R. Solovay)

If \(AD \) holds true, then

a) \(wAC, \, PSP, \, LM, \, BP \) hold true,

b) \(AC \) fails,

c) there exists a surjection of \(\mathcal{P}(\omega) \) onto \(\mathcal{P}(\omega_1) \), i.e. \(2^{\aleph_1} \ll c = 2^{\aleph_0} \).

By R. Solovay [2] and by S. Shelah [4] the following theories are equiconsistent

(a) \(ZFC + IC;^1 \)

(b) \(ZFC + \) every \(\Sigma^1_3 \)-set of reals is Lebesgue measurable;

(c) \(ZF + DC + LM \).

1\(IC \) denote statement “there exists a strongly inaccessible cardinal”, i.e. a limit regular cardinal \(\kappa \) such that for any \(\lambda < \kappa \) we have \(2^\lambda \ll \kappa \).
Theorem 18 (J. Mycielski, R. Solovay)

If AD holds true, then

a) \(wAC, \; PSP, \; LM, \; BP \) hold true,

b) AC fails,

c) there exists a surjection of \(\mathcal{P}(\omega) \) onto \(\mathcal{P}(\omega_1) \), i.e.
\[2^{\aleph_1} \ll c = 2^{\aleph_0}. \]

By R. Solovay [2] and by S. Shelah [4] the following theories are equiconsistent

(a) \(\text{ZFC} + \text{IC} \);

(b) \(\text{ZFC} + \) every \(\Sigma^1_3 \)-set of reals is Lebesgue measurable;

(c) \(\text{ZF} + \text{DC} + \text{LM} \).

\[^1 \text{IC} \text{ denote statement } \text{“there exists a strongly inaccessible cardinal”, i.e. a limit regular cardinal } \kappa \text{ such that for any } \lambda < \kappa \text{ we have } 2^{\lambda} < \kappa. \]
Theorem 18 (J. Mycielski, R. Solovay)

If \(\text{AD} \) holds true, then

a) \(\text{wAC}, \text{PSP}, \text{LM}, \text{BP} \) hold true,

b) \(\text{AC} \) fails,

c) there exists a surjection of \(\mathcal{P}(\omega) \) onto \(\mathcal{P}(\omega_1) \), i.e. \(2^{\aleph_1} \ll c = 2^{\aleph_0} \).

By R. Solovay [2] and by S. Shelah [4] the following theories are equiconsistent

(a) \(\text{ZFC} + \text{IC} \);\(^1\)
(b) \(\text{ZFC} + \) every \(\Sigma^1_3 \)-set of reals is Lebesgue measurable;
(c) \(\text{ZF} + \text{DC} + \text{LM} \).

\(^1\)\(\text{IC}\) denote statement “there exists a strongly inaccessible cardinal”, i.e. a limit regular cardinal \(\kappa \) such that for any \(\lambda < \kappa \) we have \(2^{\lambda} \ll \kappa \).
Theorem 19

If wAC holds true then \aleph_1 is a regular cardinal.

- by the Shelah’s argument in his Remark (1) of [4], the theory $ZF + wAC + LM$

is equiconsistent with the previous theories (a)-(c).
- S. Shelah proved that the consistency of ZF implies the consistency of $ZF + wAC + BP$, i.e. the theories
 (d) ZF
 (e) $ZF + wAC + BP$

are equiconsistent.
Theorem 19

If \(wAC \) holds true then \(\aleph_1 \) is a regular cardinal.

- by the Shelah’s argument in his Remark (1) of [4], the theory

\[
ZF + wAC + LM
\]

is equiconsistent with the previous theories (a)-(c).

- S. Shelah proved that the consistency of \(ZF \) implies

the consistency of \(ZF + wAC + BP \), i.e. the theories

(d) \(ZF \)

(e) \(ZF + wAC + BP \)

are equiconsistent.
Theorem 19

If \(w\text{AC} \) holds true then \(\aleph_1 \) is a regular cardinal.

- by the Shelah’s argument in his Remark (1) of [4], the theory \(\text{ZF} + w\text{AC} + \text{LM} \) is equiconsistent with the previous theories (a)-(c).
- S. Shelah proved that the consistency of \(\text{ZF} \) implies the consistency of \(\text{ZF} + w\text{AC} + \text{BP} \), i.e. the theories (d) \(\text{ZF} \) (e) \(\text{ZF} + w\text{AC} + \text{BP} \) are equiconsistent.
Theorem 19

If \mathbf{wAC} holds true then \aleph_1 is a regular cardinal.

- by the Shelah’s argument in his Remark (1) of [4], the theory $\mathbf{ZF + wAC + LM}$ is equiconsistent with the previous theories (a)-(c).
- S. Shelah proved that the consistency of \mathbf{ZF} implies the consistency of $\mathbf{ZF + wAC + BP}$, i.e. the theories

(d) \mathbf{ZF}

(e) $\mathbf{ZF + wAC + BP}$

are equiconsistent.
by Shelah’s model the consistency strength of $\text{ZF} + \text{wAC} + \text{LM}$ is strictly greater than that of $\text{ZF} + \text{wAC} + \text{BP}$,

by Solovay’s model the consistency of $\text{ZF} + \text{wAC} + \text{LM}$ is greater than that of $\text{ZF} + \text{wAC} + \text{PSP}$.

Thus, a natural question arises:

Question

Is the consistency of the existence of an inaccessible cardinal necessary for PSP?

We give a positive answer to this question :)
by Shelah’s model the consistency strength of $\text{ZF} + \text{wAC} + \text{LM}$ is strictly greater than that of $\text{ZF} + \text{wAC} + \text{BP}$,

by Solovay’s model the consistency of $\text{ZF} + \text{wAC} + \text{LM}$ is greater than that of $\text{ZF} + \text{wAC} + \text{PSP}$.

Thus, a natural question arises:

Question

Is consistency of the existence of an inaccessible cardinal necessary for PSP?

We give a positive answer to this question :)
by Shelah’s model the consistency strength of $\text{ZF} + \text{wAC} + \text{LM}$ is strictly greater than that of $\text{ZF} + \text{wAC} + \text{BP}$,

by Solovay’s model the consistency of $\text{ZF} + \text{wAC} + \text{LM}$ is greater than that of $\text{ZF} + \text{wAC} + \text{PSP}$.

Thus, a natural question arises:

Question

Is consistency of the existence of an inaccessible cardinal necessary for PSP?

We give a positive answer to this question :)
by Shelah’s model the consistency strength of $ZF + wAC + LM$ is strictly greater than that of $ZF + wAC + BP$,

by Solovay’s model the consistency of $ZF + wAC + LM$ is greater than that of $ZF + wAC + PSP$.

Thus, a natural question arises:

Question

Is consistency of the existence of an inaccessible cardinal necessary for PSP?

We give a positive answer to this question :)
by Shelah’s model the consistency strength of $\text{ZF} + \text{wAC} + \text{LM}$ is strictly greater than that of $\text{ZF} + \text{wAC} + \text{BP}$,

by Solovay’s model the consistency of $\text{ZF} + \text{wAC} + \text{LM}$ is greater than that of $\text{ZF} + \text{wAC} + \text{PSP}$.

Thus, a natural question arises:

Question

Is consistency of the existence of an inaccessible cardinal necessary for PSP?

We give a positive answer to this question :)
Theorem 20

If \(\text{PSP} \) holds true and \(\aleph_1 \) is a regular cardinal, then \(\aleph_1 \) is an inaccessible cardinal in the constructible universe \(L \).

- the theory \(\text{ZF} + \aleph_1 \text{ is regular} + \text{PSP} \) is equiconsistent with the theories (a)-(c)

Since the theories (d)-(e) are equiconsistent with the theory \(\text{ZF} + w\text{CH} \), we obtain

- the consistency of \(\text{ZF} + w\text{AC} + \text{PSP} \) is strictly greater than that of \(\text{ZF} + w\text{AC} + w\text{CH} \).

S. Shelah [4] showed that Theorem 14 on the Baire Property is not provable in the theory \(\text{ZF} + \text{DC} \).
Theorem 20

If PSP holds true and \aleph_1 is a regular cardinal, then \aleph_1 is an inaccessible cardinal in the constructible universe L.

- the theory $\text{ZF} + \aleph_1$ is regular +PSP is equiconsistent with the theories (a)-(c)

Since the theories (d)-(e) are equiconsistent with the theory $\text{ZF} + \text{wCH}$, we obtain

- the consistency of $\text{ZF} + \text{wAC} + \text{PSP}$ is strictly greater than that of $\text{ZF} + \text{wAC} + \text{wCH}$.

S. Shelah [4] showed that Theorem 14 on the Baire Property is not provable in the theory $\text{ZF} + \text{DC}$.
Theorem 20

If PSP holds true and \aleph_1 is a regular cardinal, then \aleph_1 is an inaccessible cardinal in the constructible universe L.

- the theory $\text{ZF} + \aleph_1$ is regular $+\text{PSP}$ is equiconsistent with the theories (a)-(c)

Since the theories (d)-(e) are equiconsistent with the theory $\text{ZF} + w\text{CH}$, we obtain

- the consistency of $\text{ZF} + w\text{AC} + \text{PSP}$ is strictly greater than that of $\text{ZF} + w\text{AC} + w\text{CH}$.

S. Shelah [4] showed that Theorem 14 on the Baire Property is not provable in the theory $\text{ZF} + \text{DC}$.
Theorem 20

If \(\text{PSP} \) holds true and \(\aleph_1 \) is a regular cardinal, then \(\aleph_1 \) is an inaccessible cardinal in the constructible universe \(\mathbf{L} \).

- the theory \(\mathbf{ZF} + \aleph_1 \) is regular + \(\text{PSP} \) is equiconsistent with the theories (a)-(c)

Since the theories (d)-(e) are equiconsistent with the theory \(\mathbf{ZF} + \text{wCH} \), we obtain

- the consistency of \(\mathbf{ZF} + \text{wAC} + \text{PSP} \) is strictly greater than that of \(\mathbf{ZF} + \text{wAC} + \text{wCH} \).

S. Shelah [4] showed that Theorem 14 on the Baire Property is not provable in the theory \(\mathbf{ZF} + \text{DC} \).
Theorem 20

If PSP holds true and \aleph_1 is a regular cardinal, then \aleph_1 is an inaccessible cardinal in the constructible universe L.

- the theory $\text{ZF} + \aleph_1$ is regular +PSP is equiconsistent with the theories (a)-(c)

Since the theories (d)-(e) are equiconsistent with the theory $\text{ZF} + \text{wCH}$, we obtain

- the consistency of $\text{ZF} + \text{wAC} + \text{PSP}$ is strictly greater than that of $\text{ZF} + \text{wAC} + \text{wCH}$.

S. Shelah [4] showed that Theorem 14 on the Baire Property is not provable in the theory $\text{ZF} + \text{DC}$.
Thus, we get:

- $BP \not\rightarrow Inc$,
- since BP implies $\neg WR$, then $\neg WR \not\leftrightarrow Inc$,
- according to Theorem 15 we get $BP \not\leftrightarrow wCH$,
- by Theorem 16 we know that $PSP \rightarrow wCH$, therefore $BP \not\leftrightarrow PSP$,
- however, according to Theorem 14 we have $BP \not\leftrightarrow LM$.
Thus, we get:

1. $\text{BP} \rightarrow \text{Inc}$,
2. since BP implies $\lnot \text{WR}$, then $\lnot \text{WR} \rightarrow \text{Inc}$,
3. according to Theorem 15 we get $\text{BP} \nrightarrow \text{wCH}$,
4. by Theorem 16 we know that $\text{PSP} \rightarrow \text{wCH}$, therefore $\text{BP} \nrightarrow \text{PSP}$,
5. however, according to Theorem 14 we have $\text{BP} \nrightarrow \text{LM}$.
Thus, we get:

- $\text{BP} \rightarrow \text{Inc}$,
- since BP implies $\neg \text{WR}$, then $\neg \text{WR} \rightarrow \text{Inc}$,
- according to Theorem 15 we get $\text{BP} \nrightarrow \text{wCH}$,
- by Theorem 16 we know that $\text{PSP} \rightarrow \text{wCH}$, therefore $\text{BP} \nrightarrow \text{PSP}$,
- however, according to Theorem 14 we have $\text{BP} \nrightarrow \text{LM}$.
Thus, we get:

- \(BP \not\rightarrow Inc \),
- since \(BP \) implies \(\neg WR \), then \(\neg WR \not\rightarrow Inc \),
- according to Theorem 15 we get \(BP \not\rightarrow wCH \),
- by Theorem 16 we know that \(PSP \rightarrow wCH \), therefore \(BP \not\rightarrow PSP \),
- however, according to Theorem 14 we have \(BP \not\rightarrow LM \).
Thus, we get:

- $\text{BP} \not\rightarrow \text{Inc}$,
- since BP implies $\neg\text{WR}$, then $\neg\text{WR} \not\rightarrow \text{Inc}$,
- according to Theorem 15 we get $\text{BP} \not\rightarrow \text{wCH}$,
- by Theorem 16 we know that $\text{PSP} \not\rightarrow \text{wCH}$, therefore $\text{BP} \not\rightarrow \text{PSP}$,
- however, according to Theorem 14 we have $\text{BP} \not\rightarrow \text{LM}$.
Thus, we get:

- $\text{BP} \not\rightarrow \text{Inc}$,
- since BP implies $\neg \text{WR}$, then $\neg \text{WR} \not\rightarrow \text{Inc}$,
- according to Theorem 15 we get $\text{BP} \not\leftrightarrow \text{wCH}$,
- by Theorem 16 we know that $\text{PSP} \rightarrow \text{wCH}$, therefore $\text{BP} \not\rightarrow \text{PSP}$,
- however, according to Theorem 14 we have $\text{BP} \not\leftrightarrow \text{LM}$.
Thus, we get:

- $\text{BP} \nrightarrow \text{Inc}$,
- since BP implies $\lnot \text{WR}$, then $\lnot \text{WR} \nrightarrow \text{Inc}$,
- according to Theorem 15 we get $\text{BP} \nrightarrow \text{wCH}$,
- by Theorem 16 we know that $\text{PSP} \rightarrow \text{wCH}$, therefore $\text{BP} \nrightarrow \text{PSP}$,
- however, according to Theorem 14 we have $\text{BP} \nrightarrow \text{LM}$.
Thus, we get:

- $\text{BP} \not\rightarrow \text{Inc}$,
- since BP implies $\neg \text{WR}$, then $\neg \text{WR} \not\rightarrow \text{Inc}$,
- according to Theorem 15 we get $\text{BP} \not\rightarrow \text{wCH}$,
- by Theorem 16 we know that $\text{PSP} \not\rightarrow \text{wCH}$, therefore $\text{BP} \not\rightarrow \text{PSP}$,
- however, according to Theorem 14 we have $\text{BP} \not\rightarrow \text{LM}$.
Thus, we get:

- \(\text{BP} \rightarrow \text{Inc} \),
- since \(\text{BP} \) implies \(\neg \text{WR} \), then \(\neg \text{WR} \rightarrow \text{Inc} \),
- according to Theorem 15 we get \(\text{BP} \leftrightarrow \text{wCH} \),
- by Theorem 16 we know that \(\text{PSP} \rightarrow \text{wCH} \), therefore \(\text{BP} \leftrightarrow \text{PSP} \),
- however, according to Theorem 14 we have \(\text{BP} \leftrightarrow \text{LM} \).
Regularity properties on the real line

Diagram in which none of the indicated implications is provable in the theory $\textbf{ZF} + \textbf{DC}$

$\neg\text{AC}_2$, Inc, In3

$\neg\text{AC}$

wAC

AD

LM

PSP

BP

$\neg\text{BS}$

$\neg\text{CH}$

$\neg\text{VS}$

$\neg\text{FU}$

$\neg\text{Lk}$

$\neg\text{LDe}$

$\neg\text{Wk}$

$\neg\text{WR}$

CH: $\aleph_1 = c$

In1: $c < k \ll c$

In3: $c \neq 2^{\aleph_1}$

In1

$\aleph_1 < \aleph_1 + c < \aleph_1 + k$;

Inc: \aleph_1 and c are incomparable

BS: there exists a Bernstein set

FU: there exists a free ultrafilter on ω

WR: the set of R can be well-ordered

VS: there exists a selector for a Vitali set

wCH: there is no set X such that $\aleph_0 < |X| < c$

LDe: there exists a selector for Lebesgue decomp.

Lk: a set of cardinality k can be linearly ordered

PSP: every uncount. set of R contains a perfect set

LM: every set of R is Lebesgue measurable

BP: every set of R possessest the Baire property
Theorem 21

If there is no selector for the Lebesgue decomposition and \aleph_1 is a regular cardinal, then \aleph_1 is an inaccessible cardinal in the constructible universe L.

Since \aleph_1 is not inaccessible in L in the Shelah's above mentioned model, we obtain

- $\text{BP} \not\rightarrow \neg\text{LDe}$,
- $\text{LDe} \not\rightarrow \text{WR}$.
- the next result was mentioned by J. Mycielski [1]

Theorem 21

If there is no selector for the Lebesgue decomposition and \(\aleph_1 \) is a regular cardinal, then \(\aleph_1 \) is an inaccessible cardinal in the constructible universe \(L \).

Since \(\aleph_1 \) is not inaccessible in \(L \) in the Shelah’s above mentioned model, we obtain

- \(\text{BP} \not\implies \neg \text{LDe} \),
- \(\text{LDe} \not\implies \text{WR} \).
- the next result was mentioned by J. Mycielski [1]

Theorem 21

If there is no selector for the Lebesgue decomposition and \aleph_1 is a regular cardinal, then \aleph_1 is an inaccessible cardinal in the constructible universe L.

Since \aleph_1 is not inaccessible in L in the Shelah's above mentioned model, we obtain

- $\text{BP} \not\rightarrow \neg\text{LDe}$,
- $\text{LDe} \not\rightarrow \text{WR}$.
- the next result was mentioned by J. Mycielski [1]

Theorem 21

If there is no selector for the Lebesgue decomposition and \aleph_1 is a regular cardinal, then \aleph_1 is an inaccessible cardinal in the constructible universe L.

Since \aleph_1 is not inaccessible in L in the Shelah's above mentioned model, we obtain

- $\text{BP} \nleftrightarrow \neg\text{LDe}$,
- $\text{LDe} \nleftrightarrow \text{WR}$.
- the next result was mentioned by J. Mycielski [1]

Theorem 21

If there is no selector for the Lebesgue decomposition and \(\aleph_1 \) is a regular cardinal, then \(\aleph_1 \) is an inaccessible cardinal in the constructible universe \(L \).

Since \(\aleph_1 \) is not inaccessible in \(L \) in the Shelah’s above mentioned model, we obtain

- \(BP \nleftrightarrow \neg LDe \),
- \(LDe \nleftrightarrow WR \).
- the next result was mentioned by J. Mycielski [1]

Theorem 21

If there is no selector for the Lebesgue decomposition and \(\aleph_1 \) is a regular cardinal, then \(\aleph_1 \) is an inaccessible cardinal in the constructible universe \(\mathbf{L} \).

Since \(\aleph_1 \) is not inaccessible in \(\mathbf{L} \) in the Shelah’s above mentioned model, we obtain

- \(\text{BP} \not\leftrightarrow \neg\text{LDe} \),
- \(\text{LDe} \not\leftrightarrow \text{WR} \).
Diagram in which none of the indicated implications is provable in the theory $\text{ZF} + \text{DC}$
A topological space $\langle X, \mathcal{O} \rangle$ is a Fréchet space iff \(\overline{A} = \text{scI}(A) = \{ \lim_{n \to \infty} x_n : (\forall n) x_n \in A \} \) for every set $A \subseteq X$.

Theorem (H. Herrlich)

wAC holds true if and only if the real line is a Fréchet space.

\(c < \kappa \rightarrow (\aleph_1, c \text{ are incomparable}) \lor (\aleph_1 < \aleph_1 + c < \aleph_1 + \kappa) \)

i.e. $\text{In1} \rightarrow \text{Inc} \lor \text{In2}$

J. Mycielski’s statement:

\(\neg Lk \rightarrow \text{In4}, \)

\(\text{In4} \rightarrow \aleph_1 < \aleph_1 + c < \aleph_1 + \kappa, \)

\(c < \kappa \rightarrow (c < 2^{\aleph_1}) \lor \text{In4}, \text{i.e. In1} \rightarrow \text{In3} \lor \text{In4}. \)
A topological space \(\langle X, \mathcal{O} \rangle \) is a Fréchet space iff \(\overline{A} = \text{scl}(A) = \{ \lim_{n \to \infty} x_n : (\forall n) x_n \in A \} \) for every set \(A \subseteq X \).

Theorem (H. Herrlich)

\(\text{wAC} \) holds true if and only if the real line is a Fréchet space.

1. \(c < \ell \rightarrow (\aleph_1, c \text{ are incomparable}) \lor (\aleph_1 < \aleph_1 + c < \aleph_1 + \ell) \)

i.e. \(\text{In1} \rightarrow \text{Inc} \lor \text{In2} \)

J. Mycielski’s statement:

1. \(\neg Lk \rightarrow \text{In4} \),
2. \(\text{In4} \rightarrow \aleph_1 < \aleph_1 + c < \aleph_1 + \ell \),
3. \(c < \ell \rightarrow (c < 2^{\aleph_1}) \lor \text{In4} \), i.e. \(\text{In1} \rightarrow \text{In3} \lor \text{In4} \).
A topological space \(\langle X, \mathcal{O} \rangle \) is a Fréchet space iff
\[\overline{A} = \text{scl}(A) = \{ \lim_{n \to \infty} x_n : (\forall n) x_n \in A \} \] for every set \(A \subseteq X \).

Theorem (H. Herrlich)

\textbf{wAC} holds true if and only if the real line is a Fréchet space.

\[c < k \to (\aleph_1, c \text{ are incomparable}) \lor (\aleph_1 < \aleph_1 + c < \aleph_1 + k) \]
i.e. \(\text{In1} \to \text{Inc} \lor \text{In2} \)

J. Mycielski’s statement:

\textbf{In4:}

\[2^{\aleph_1} < k \lor (2^{\aleph_1} \geq k) \land \neg (2^{\aleph_1} \geq k + \aleph_1) \land \aleph_1 + k < 2^{\aleph_1} + k \]

\[\neg \text{Lk} \to \text{In4}, \]

\[\text{In4} \to \aleph_1 < \aleph_1 + c < \aleph_1 + \kappa, \]

\[c < \kappa \to (c < 2^{\aleph_1}) \lor \text{In4}, \] i.e. \(\text{In1} \to \text{In3} \lor \text{In4} \).
A topological space $\langle X, \mathcal{O} \rangle$ is a Fréchet space iff
$$\overline{A} = \text{scI}(A) = \{\lim_{n \to \infty} x_n : (\forall n) x_n \in A\}$$
for every set $A \subseteq X$.

Theorem (H. Herrlich)

wAC holds true if and only if the real line is a Fréchet space.

- $c < \mathfrak{c} \rightarrow (\mathfrak{c} < \mathfrak{c}, \ c \text{ are incomparable}) \lor (\mathfrak{c} < \mathfrak{c} + c < \mathfrak{c} + \mathfrak{c})$
 - i.e. $\text{In1} \rightarrow \text{Inc} \lor \text{In2}$

J. Mycielski’s statement:

- $\neg \text{Lk} \rightarrow \text{In4},$
- $\text{In4} \rightarrow \mathfrak{c} < \mathfrak{c} + c < \mathfrak{c} + \mathfrak{c},$
- $c < \mathfrak{c} \rightarrow (c < 2^\mathfrak{c}) \lor \text{In4}$, i.e. $\text{In1} \rightarrow \text{In3} \lor \text{In4}$.
A topological space \(\langle X, \mathcal{O} \rangle \) is a Fréchet space iff
\[\overline{A} = \text{scI}(A) = \{ \lim_{n \to \infty} x_n : (\forall n) x_n \in A \} \]
for every set \(A \subseteq X \).

Theorem (H. Herrlich)

\(w\text{AC} \) holds true if and only if the real line is a Fréchet space.

\[c < \ell \rightarrow (\aleph_1, c \text{ are incomparable}) \lor (\aleph_1 < \aleph_1 + c < \aleph_1 + \ell) \]

i.e. \(\text{ln1} \rightarrow \text{lnC} \lor \text{ln2} \)

J. Mycielski’s statement:

ln4:

\[2^{\aleph_1} < \ell \lor (\neg (2^{\aleph_1} \geq \ell)) \land \neg (2^{\aleph_1} \geq \ell + \aleph_1) \land \aleph_1 + \ell < 2^{\aleph_1} + \ell) \]

\[\neg \text{Lk} \rightarrow \text{ln4}, \]

\[\text{ln4} \rightarrow \aleph_1 < \aleph_1 + c < \aleph_1 + \ell, \]

\[c < \ell \rightarrow (c < 2^{\aleph_1}) \lor \text{ln4}, \text{ i.e. ln1} \rightarrow \text{ln3} \lor \text{ln4}. \]
A topological space \(\langle X, \mathcal{O} \rangle \) is a Fréchet space iff
\[
\overline{A} = \text{scl}(A) = \{\lim_{n \to \infty} x_n : (\forall n) x_n \in A\}
\] for every set \(A \subseteq X \).

Theorem (H. Herrlich)

\(\text{wAC} \) holds true if and only if the real line is a Fréchet space.

- \(c < \ell \rightarrow (\aleph_1, c \text{ are incomparable}) \lor (\aleph_1 < \aleph_1 + c < \aleph_1 + \ell) \)

 i.e. \(\text{In1} \rightarrow \text{Inc} \lor \text{In2} \)

J. Mycielski’s statement:

\text{In4}:

\[
2^{\aleph_1} < \ell \lor (\neg (2^{\aleph_1} \geq \ell) \land \neg (2^{\aleph_1} \geq \ell + \aleph_1) \land \aleph_1 + \ell < 2^{\aleph_1} + \ell)
\]

- \(\neg \text{Lk} \rightarrow \text{In4} \)
- \(\text{In4} \rightarrow \aleph_1 < \aleph_1 + c < \aleph_1 + \ell \)
- \(c < \ell \rightarrow (c < 2^{\aleph_1}) \lor \text{In4}, \text{i.e. In1} \rightarrow \text{In3} \lor \text{In4} \).
A topological space $\langle X, \mathcal{O} \rangle$ is a Fréchet space iff

$$\overline{A} = \operatorname{scl}(A) = \{\lim_{n \to \infty} x_n : (\forall n) x_n \in A\}$$

for every set $A \subseteq X$.

Theorem (H. Herrlich)

\mathbf{wAC} holds true if and only if the real line is a Fréchet space.

- $c < \aleph \rightarrow (\aleph_1, c \text{ are incomparable}) \lor (\aleph_1 < \aleph_1 + c < \aleph_1 + \aleph)$

 i.e. $\text{In1} \rightarrow \text{Inc} \lor \text{In2}$

J. Mycielski’s statement:

In4:

$$2^{\aleph_1} < \aleph \lor (\neg(2^{\aleph_1} \geq \aleph) \land \neg(2^{\aleph_1} \geq \aleph + \aleph_1) \land \aleph_1 + \aleph < 2^{\aleph_1} + \aleph)$$

- $\neg \text{Lk} \rightarrow \text{In4}$,

- $\neg \text{In4} \rightarrow \aleph_1 < \aleph_1 + c < \aleph_1 + \aleph$,

- $c < \aleph \rightarrow (c < 2^{\aleph_1}) \lor \text{In4}$, i.e. $\text{In1} \rightarrow \text{In3} \lor \text{In4}$.
A topological space \(\langle X, \mathcal{O} \rangle \) is a Fréchet space iff
\[
\overline{A} = \text{scl}(A) = \{\lim_{n \to \infty} x_n : (\forall n) x_n \in A\} \text{ for every set } A \subseteq X.
\]

Theorem (H. Herrlich)

\(\text{wAC} \) holds true if and only if the real line is a Fréchet space.

\[
\bullet \text{ c } < \kappa \rightarrow (\aleph_1, \ c \text{ are incomparable}) \lor (\aleph_1 < \aleph_1 + c < \aleph_1 + \kappa)
\]

i.e. \(\text{ln1} \rightarrow \text{lnC} \lor \text{ln2} \)

J. Mycielski’s statement:

ln4:

\[
2^{\aleph_1} < \kappa \lor \left(\neg (2^{\aleph_1} \geq \kappa) \land \neg (2^{\aleph_1} \geq \kappa + \aleph_1) \land \aleph_1 + \kappa < 2^{\aleph_1} + \kappa \right)
\]

\[
\bullet \neg \text{Lk} \rightarrow \text{ln4},
\]

\[
\bullet \text{ln4} \rightarrow \aleph_1 < \aleph_1 + c < \aleph_1 + \kappa,
\]

\[
\bullet \text{ c } < \kappa \rightarrow (\text{ c } < 2^{\aleph_1}) \lor \text{ln4}, \text{ i.e. ln1 } \rightarrow \text{ln3} \lor \text{ln4}.
\]
References

References

Regularity properties on the real line

References

Sierpiński W., *Démonstration de l’égalité* $2^m - m = 2^m$ *pour les nombres cardinaux transfinis*, Fund. Math. **34** (1947), 113–118.

