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II. PFA and automorphisms

using the tricks to study autohomeomorphisms

Fix a function Φ : P(N) 7→ P(N) which is a lifting of a mod fin
homomorphism: (dually N∗ ←f N∗, Φ(X ) =∗ f−1(X ∗))

Φ(X ) ∪ Φ(Y ) =∗ Φ(X ∪ Y ); Φ(X ) ∩ Φ(Y ) =∗ Φ(X ∩ Y ); Φ(∅) = ∅

as in the OCA discussion, P(N) is given the topology with
[s; n] = {X ⊂ N : X ∩ n = s} being the basic clopen sets

say that I ∈ triv(Φ) if there is an hI ∈ NI such that Φ(a) =∗ hI [a]
for all a ⊂ I

note that hI is continuous as a map on P(I)

if there is a continuous lifting then Φ is trivial.



II. PFA and automorphisms

using the tricks to study autohomeomorphisms

Fix a function Φ : P(N) 7→ P(N) which is a lifting of a mod fin
homomorphism: (dually N∗ ←f N∗, Φ(X ) =∗ f−1(X ∗))

Φ(X ) ∪ Φ(Y ) =∗ Φ(X ∪ Y ); Φ(X ) ∩ Φ(Y ) =∗ Φ(X ∩ Y ); Φ(∅) = ∅

as in the OCA discussion, P(N) is given the topology with
[s; n] = {X ⊂ N : X ∩ n = s} being the basic clopen sets

say that I ∈ triv(Φ) if there is an hI ∈ NI such that Φ(a) =∗ hI [a]
for all a ⊂ I

note that hI is continuous as a map on P(I)

if there is a continuous lifting then Φ is trivial.



II. PFA and automorphisms

using the tricks to study autohomeomorphisms

Fix a function Φ : P(N) 7→ P(N) which is a lifting of a mod fin
homomorphism: (dually N∗ ←f N∗, Φ(X ) =∗ f−1(X ∗))

Φ(X ) ∪ Φ(Y ) =∗ Φ(X ∪ Y ); Φ(X ) ∩ Φ(Y ) =∗ Φ(X ∩ Y ); Φ(∅) = ∅

as in the OCA discussion, P(N) is given the topology with
[s; n] = {X ⊂ N : X ∩ n = s} being the basic clopen sets

say that I ∈ triv(Φ) if there is an hI ∈ NI such that Φ(a) =∗ hI [a]
for all a ⊂ I

note that hI is continuous as a map on P(I)

if there is a continuous lifting then Φ is trivial.



II. PFA and automorphisms

using the tricks to study autohomeomorphisms

Fix a function Φ : P(N) 7→ P(N) which is a lifting of a mod fin
homomorphism: (dually N∗ ←f N∗, Φ(X ) =∗ f−1(X ∗))

Φ(X ) ∪ Φ(Y ) =∗ Φ(X ∪ Y ); Φ(X ) ∩ Φ(Y ) =∗ Φ(X ∩ Y ); Φ(∅) = ∅

as in the OCA discussion, P(N) is given the topology with
[s; n] = {X ⊂ N : X ∩ n = s} being the basic clopen sets

say that I ∈ triv(Φ) if there is an hI ∈ NI such that Φ(a) =∗ hI [a]
for all a ⊂ I

note that hI is continuous as a map on P(I)

if there is a continuous lifting then Φ is trivial.



II. PFA and automorphisms

using the tricks to study autohomeomorphisms

Fix a function Φ : P(N) 7→ P(N) which is a lifting of a mod fin
homomorphism: (dually N∗ ←f N∗, Φ(X ) =∗ f−1(X ∗))

Φ(X ) ∪ Φ(Y ) =∗ Φ(X ∪ Y ); Φ(X ) ∩ Φ(Y ) =∗ Φ(X ∩ Y ); Φ(∅) = ∅

as in the OCA discussion, P(N) is given the topology with
[s; n] = {X ⊂ N : X ∩ n = s} being the basic clopen sets

say that I ∈ triv(Φ) if there is an hI ∈ NI such that Φ(a) =∗ hI [a]
for all a ⊂ I

note that hI is continuous as a map on P(I)

if there is a continuous lifting then Φ is trivial.



II. PFA and automorphisms

adding a Cohen real to a Borel lifting F

Suppose F is a Borel lifting of automorphism Φ (continuous on
dense Gδ X )

Let g1, g2 be generics for the poset {[s; n] : s ⊂ n ∈ N}

Then F (g1) and F (g2) are defined, but Φ(gi) are not;

∃[s1; n], [s2; n] 
 (F (g1) ? F (g2))∆F (g1 ? g2) ⊂ n
where ? is one of {∩,∪,∆,−}
also (∃ñ > n) ∀s, t ⊂ n (and extend s1, s2 with s1∆s2 ⊂ n)
[s1; n], [s2; n] 
 F (s ∪ g1−n)− ñ = F (t ∪ g1−n)− ñ

otherwise meeting countably many dense sets, including some
to get inside dense Gδ set X , we find v1, v2 ⊂ N yielding, e.g.
Φ(v1) ? Φ(v2) =∗ F (v1) ? F (v2) 6=∗ F (v1 ? v2) =∗ Φ(v1 ? v2)
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also (∃ñ > n) ∀s, t ⊂ n (and extend s1, s2 with s1∆s2 ⊂ n)
[s1; n], [s2; n] 
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 F (s ∪ g1−n)− ñ = F (t ∪ g1−n)− ñ
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also (∃ñ > n) ∀s, t ⊂ n (and extend s1, s2 with s1∆s2 ⊂ n)
[s1; n], [s2; n] 
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II. PFA and automorphisms

completely additive implies trivial

Now in the extension: by continuity for a ∈ X

Φ(a) =∗ F1(a) = limm F1((a ∩m) ∪ gi −m) and
F1(a) = limm F1((a ∩m) ∪ (g1 ? g2)−m)

and for a, b ∈ X
Φ(a ? b) =∗ Φ(a) ? Φ(b) =∗ F1(a) ? F1(b) = F1(a ? b)

little bit easy exercise, (∀x ⊂ N), there are a, b ∈ X such that
x = a∆b,

hence F1 has a unique continuous extension, F̃ , to P(N), and
this is a pure lifting

now define h(i) ∈ F̃ ({i}) for a ∈ X and check that h induces Φ
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II. PFA and automorphisms

Cohen forcing and σ-Borel automorphisms

Theorem: let Φ be a lifting of a mod fin homomorphism which
has no Borel lifting, then adding a Cohen real will not add a
continuous lifting for Φ � V ∩ P(N).

(skipping) proof: Assume that F : P(N) 7→ P(N) is a continuous
function (after forcing with 2<ω) and that F (X ) =∗ Φ(X ) for all
X ∈ P(N).
Put X ∈ Xp,n providing p 
 F (X ) \ n = Φ(X ) \ n.
Find p, n and s ⊂ n such that Xp,n is dense in [s; n]

Let Y ∈ [s; n] ∩ V and let {Xk : k ∈ ω} ⊂ Xp,n ∩ [s; n] converge
to Y . Then p 
 F (Y ) = limk F (Xk ) =∗ Φ(Y ), hence F (Y ) ∈ V .

Thus, Φs(X ) = Φ(s ∪ (X \ n)) is a continuous lifting for the
same homomorphism.
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Cohen forcing and σ-Borel automorphisms

Theorem: let Φ be a lifting of a mod fin homomorphism which
has no Borel lifting, then adding a Cohen real will not add a
continuous lifting for Φ � V ∩ P(N).

more Borel map and Cohen connection:

If Ẏ is a Cohen (i.e. P = {[s; n] : s ⊂ n ∈ N}) name of ⊂ N,
then there is a Borel map (continuous on a dense Gδ) FẎ
such that, in the extension, FẎ (g) = valg(Ẏ )

AND, Lemma there are x ⊂ a ⊂ N, N \ a /∈ triv(Φ)
such that 
 FẎ (x ∪ (g \ a)) ∩ Φ(a) 6=∗ Φ(x)

i.e. 
Px,a Ẏ ∩ Φ(a) 6=∗ Φ(x)
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 FẎ (x ∪ (g \ a)) ∩ Φ(a) 6=∗ Φ(x)

i.e. 
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II. PFA and automorphisms

Velickovic also proved σ-Borel implies Borel

there is quite a tricky step to this theorem which seems to
simplify if we again throw Cohen forcing at it.

Assume that {Fn : n ∈ ω} is a family of Borel functions on P(N)
such that for all X ⊂ N, there is an n such that Φ(X ) = Fn(X ).

Apply above Lemma to obtain x0 ⊂ a0 ⊂ N with N \ a0 /∈ triv(Φ),

and 
 F0(x0 ∪ (g \ a0)) ∩ Φ(a0) 6=∗ Φ(x0)

this hands us countably many dense sets that we must protect
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II. PFA and automorphisms

σ-Borel, Borel, continuous are all the same

Claim: (there is) x0 such that for comeager many v ⊂ b0,
F0(x0 ∪ v) ∩ Φ(a0) 6=∗ Φ(x0).

P(b0)

P(a0)x0

v = F0(x0 ∪ v) ∩ Φ(a0)

otherwise, let g be
P(b0)-generic, and set H(x) =
F0(x ∪ g) ∩ Φ(a0) and we have
Cohen added a continuous lifting
for Φ � P(a0)

repeat this, obtaining xk ⊂ ak ⊂ bk−1 so that Φ(xk ) 6=∗
Fk (x0 ∪ · · · xk ∪ v) ∩ Φ(ak ) for comeager many v ⊂ bk
= bk−1\ak . Also carefully ensure that v =

⋃
j>k xj lands you in

the appropriate comeager sets. Then Φ(v) 6=∗ Fk (v) for all k .
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II. PFA and automorphisms

Shelah-Steprans Q and A; Step 1

More Cohen forcing connections.

Lemma 1 again: Let Ẏ be a P = [N]<ω-name of a subset of N
and Φ be a homomorphism. Let Ẏ ∈ M ≺ H(θ) be countable
and let D be the set of dense subsets of P. Let b not in triv(Φ).

For x ⊂ a ⊂ b, Px ,a = {p ∈ P : p ∩ a = x ∩max(p)}. We
assume b is one of the “many” sets b so that for all x ⊂ a ⊂ b,
D ∩ Px ,a is dense in Px ,a for all D ∈ D ∩M.

If g is P-generic, then gx ,a = x ∪ (g \ a) is generic for Px ,a.

In V [g], we know that FẎ is Borel on P(a). and that there are
x ⊂ a ⊂ b with b \ a /∈ triv(Φ)

such that 1 
Px,a Φ(x) 6=∗ Ẏgx,a ∩ Φ(a).



II. PFA and automorphisms

Shelah-Steprans Q and A; Step 1

More Cohen forcing connections.
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Lemma 1 again: Let Ẏ be a P = [N]<ω-name of a subset of N
and Φ be a homomorphism. Let Ẏ ∈ M ≺ H(θ) be countable
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II. PFA and automorphisms

Shelah-Steprans Q and A: Step 2− ω1

recursively construct A = {aξ ⊃ xξ : ξ ∈ ω1} as above, so that
A = {aξ : ξ ∈ ω1} is mod fin increasing and xα ∩ aξ =∗ xξ for
ξ < α, and N \ aα /∈ triv(Φ)
Define Qα ⊂ [N]<ω × [α]<ω by

(q, J) ∈ Qα implies (xξ ∩ aη)∆xη ⊂ max q for ξ < η ∈ J
and ordered (so as to mimic Pxξ,aξ

for all ξ < α)
(p, H) < (q, J) implies
(p\max(q)) ∩ aξ = xξ ∩ (max(q), max(p)] for all ξ ∈ J .

Simultaneously be selecting an increasing chain (♦) of
countable elementary submodels so that Qα ∈ Mα and the
choice of aα ensures all dense D ⊂ Qα from Mα remain dense
in Qα+1. (at limits there’s a P-ideal issue)

Also ensure that for all Ẏ ∈ Mα which are Qα-names,
Ẏ gxα,aα ∩ Φ(aα) 6=∗ Φ(xα).
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II. PFA and automorphisms

what does this get us?

One of the roles the models Mα is to ensure that Qω1 (or QA) is
ccc (easy-ish ♦ argument).

Thus if Ẏ is a nice Qω1-name of a subset of N, there is an α
such that Ẏ ∈ Mα.

Let G ⊂ Qω1 be generic and let g =
⋃
{p : ∃H (p, H) ∈ G}. For

each α ∈ ω1, there is a pα so that (pα, {α}) ∈ G, and with
pα ⊂ nα we have that (g ∩ aα)∆xα ⊂ nα.

The choice of aα ⊃ xα and the fact that g =∗ xα ∪ (g \ aα) is
sufficiently (Qα)xα,aα-generic, we have that
Ẏg ∩ Φ(aα) 6=∗ Φ(xα).

All this adds up to {cα = Φ(xα), dα = Φ(aα\xα) : α ∈ ω1} is a
freezable gap (while {xα, (aα\xα)} is split by g).
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Thus if Ẏ is a nice Qω1-name of a subset of N, there is an α
such that Ẏ ∈ Mα.
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Thus if Ẏ is a nice Qω1-name of a subset of N, there is an α
such that Ẏ ∈ Mα.
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II. PFA and automorphisms

I know this is taking a while

pulling it all back via PFA, there is a sequence
{aα ⊃ xα : α ∈ ω1} and a set X ⊂ N such that X ∩ aα =∗ xα for
all α, but, there is no set Y such that Y ∩ F (aα) =∗ F (xα).

so it must fail. which means triv(Φ) 6= ∅

in any event,
Theorem: if we are stuck in choosing aα ⊃ xα, it is because
triv(Φ) is ccc over fin and 
Qα

Φ�{aβ : β < α}⊥ ∩ V = J is
σ-Borel. (hence trivial on each b ∈ J )

[Velickovic] σ-Borel plus trivial on each member of a P-ideal J
implies there is a single h inducing Φ on each member of J .
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[Velickovic] σ-Borel plus trivial on each member of a P-ideal J
implies there is a single h inducing Φ on each member of J .



II. PFA and automorphisms

non-trivial embeddings of N∗

now we’d like to note the important theorem of
[Farah] PFA implies that if K ⊂ N∗ is homeomorphic to N∗, then
the interior of K is clopen (= A∗) and K \ A∗ is ccc over fin.

Let f be a homeomorphism from N∗ to K . Define the dual
homomorphism Φ by Φ(X ) ⊂ N is such that
Φ(X )∗ = f−1(X ∗ ∩ K ).

N∗

K

N∗

f

X ∗ Φ(X )∗
Y ∗ Φ(Y )∗

Since X ∗ ∩ ∂K 6= ∅ means
that X /∈ triv(Φ), we have
that ∂K is ccc over fin which
shows that int(K ) is clopen
(i.e. regular closed sets do
not have ccc over fin bound-
ary)



II. PFA and automorphisms

some known consequences of trivial on ccc over fin

N∗ does not map onto (ω × ω + 1)∗ (let alone not being
homeomorphic)

the measure algebra does not embed in P(N)/fin

still open: if N∗ maps onto compact ED X , must X be
separable?

R∗ does not map onto the separable continuum: the
Stone-Cech compactification of the long repeating topologist’s
sine curve (the closure of the graph of sin(1/(x − bxc)))
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II. PFA and automorphisms

PFA resolves the 2-to-1 mapping question

Let f be a 2-to-1 map from N∗ onto a space K .

Let I be those
I ⊂ N such that f � I∗ is locally 1-to-1 and f [I∗] open in K .

By MA we are able to show that K is nowhere ccc and that for
each open U ⊂ K , there is a b ⊂ N such that f � b∗ is 1-to-1
into U.

Each Gδ contained in f [a∗] ∩ f [(N \ a)∗] is contained in interior.

Proof: Let
⋂

n Un be the Gδ. May assume Un+1 ⊂ Un. Choose
zn ∈ Un \ f [a∗] (wlog) for all n. Thus f−1({zn}n) is a discrete set
and its closure maps 2-to-1 onto the closure of {zn}n. It follows
that the limit points of {zn} while in

⋂
n Un are not in f [a∗].
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II. PFA and automorphisms

clopen copies of N∗ in K

Lemma 2: for each open U ⊂ K , there is an I ∈ I such that
f [I∗] ⊂ U. hence I is non-empty.

We use the Shelah-Steprans Q and A method.

Given any U ⊂ K , we can choose disjoint family {Uα : α ∈ ω1}
of open subsets of U. For each α choose Wα ⊂Wα ⊂ Uα.

Next find aα ⊂ N such that f−1(Wα) ⊂ a∗α and a∗α ∩ f−1(K \ Uα)
is empty. Thus f [(N \ aα)∗] is disjoint from Wα.

Fix any infinite bα ⊂ aα such that f [b∗α] ⊂Wα and f � b∗α is
1-to-1. If f [b∗α] has any interior, we have succeeded. So, we
assume instead, that for all α, f [b∗α] is nowhere dense.
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II. PFA and automorphisms

Before continuing, we ask if there is some such selection for
which there is a set A ⊂ N such that A ∩ bα =∗ ∅ and
cα = A ∩ aα still satisfies that f [c∗α] ⊃ f [b∗α]. If so, make this
selection instead.

For each α then, there is a closed set Kα ⊂ c∗α = (aα \ bα)∗

such that f [Kα] = f [b∗α]

i.e. there is a homomorphism Hα from P(cα) onto P(bα).

Following the Shelah-Steprans method, we can force with <ω12
and then construct a sequence {cα, dα : α ∈ ω1}, so that the
poset Qω1 is ccc and we obtain a gap from
{Hα(dα), Hα(cα \ dα) : α ∈ ω1}.
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II. PFA and automorphisms

This gives us a set X (forced by Qω1) satisfying that
X ∩ cα =∗ dα for all α. We are sure that there are uncountably
many α such that X ∩ bα is not mod finite equal to Hα(dα).
By symmetry, we may assume that b̃α = Hα(dα) \ X is infinite.
By the definition of Hα, it follows that f [d∗α] ⊃ f [b̃∗α] and that X
does separate the family of such dα’s and the b̃α’s. This
means that we were able to choose A as above, and that we
may assume that X ⊂ A.

We have the gap {Hα(dα), bα \ Hα(dα) : α ∈ ω1}, which implies
there is a point w in

⋃
α(Hα(dα))∗∩

⋃
α(bα \ Hα(dα))∗ ⊂ (N\A)∗

f [(A ∩ X )∗] ⊃ f [
⋃

α(Hα(dα))∗] and
f [(A \ X )∗] ⊃ f [

⋃
α(bα \ Hα(dα))∗].

That means f (w) has 3 points in its preimage!
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non-empty Gδ’s have non-empty interior

Next Lemma: K has the property that non-empty Gδ ’s have
non-empty interior. (uses Farah’s theorem)

Let {Un}n be the sequence of open sets such that Un+1 ⊂ Un.
For each n, we have some (bn ∪ cn) ∈ I such that
f [b∗n] = f [c∗n] ⊂ Un \ Un+1 and is a clopen subset of K .

For each n, f−1(Un) is an open set in N∗ which contains the
closure of

⋃
k≥n(bk ∪ ck )∗. Thus we can arrange that(⋃

k≥n(bk ∪ ck )
)∗

is contained in f−1(Un) for each n.

If U = K \ f [(N \
⋃

n bn)
∗] ⊂

⋂
n Un is not empty then we are

done.

o/w, set b =
⋃

n bn and notice that f � b∗ must be 1-to-1 (since
f [(N \ b)∗] ⊃ f [b∗]).
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By Farah’s theorem, the canonical embedding given by f−1 ◦ f
from b∗ into (N \ b)∗ will have the form a∗ ∪ S where S is some
nowhere dense set. Since c∗n is contained in this image for
each n, it follows that cn ⊂∗ a for each n. Choose any infinite
c ⊂ a such that c ∩ cn is finite for each n. It follows that there is
a b̃ ⊂ b such that f [b̃∗] = f [c∗] ⊂

⋂
n Un and again we have

demonstrated that
⋂

n Un contains an open set.

Then we use the CH * Cohen * OCA trick to finish as follows.

Let x ∈ N∗ be any point witnessing that f is not locally 1-to-1.

To save time, just assert that using non-empty Gδ ’s have
non-empty interior in K , we can construct a sequence
{aα : α ∈ ω1} ⊂ I converging to x
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Probably skip the construction of {aα : α ∈ ω1}

Fix any E ∈ x such that f (x) ∈ f [(N \ E)∗]. If there were any Gδ

of K containing f (x) and contained in f [E∗] ∩ f [(N \ E)∗], then f
would be locally 1-to-1 at x .

Suppose we are given any countable A ⊂ x , we may by
enlarging A assume that for each a ∈ A, there is an ã ∈ A such
that f [ã∗] ∩ f [(E \ a)∗] is empty.
K \

⋃
a∈A f [(E \ a)∗] is a Gδ containing f (x) and so can not be

contained in f [(N \ E)∗].
And since it has dense interior, there is a b ∈ I such that
f [b∗] ⊂ U. It is easily checked that b ≺ A.

This completes the proof that given countable A from x , there
is a b ≺ A such that b ∈ I.
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now we finish the proof

Give the sequence {aα : α ∈ ω1} ⊂ I converging to x , there
are mappings hα : aα 7→ aα such that h2

α = id and hα(n) 6= n.
(i.e. hα induces f−1 ◦ f ), then for all uncountable I ⊂ ω1,

⋃
α∈I hα

is not 1-to-1 on any member of x .

Force with 3<N thus adding a partition C0, C1, C2
(α, β) ∈ R (per OCA) if there are i ∈ C0 ∩ aα, j ∈ C1 ∩ aβ so that
hα(i) = hβ(j) ∈ C2.

{ C2 ∩ hα(aα ∩ C0) , C2 ∩ hα(aα ∩ C1) : α ∈ ω1}
forms a gap, and if w ∈ C∗

2 is in common closure, there are
x ∈ C∗

0 and y ∈ C∗
1 such that f (x) = f (w) = f (y)
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