Moron Maps and subspaces of \mathbb{N}^*

what you need to know if you want to work on \mathbb{N}^*

and you should!

Alan Dow

Department of Mathematics
University of North Carolina Charlotte

winter school 2010
Suppose that $f : \mathbb{N}^* \mapsto K$ is precisely 2-to-1 (distinct from ≤ 2-to-1). What can then be said of K and f (how \mathbb{N}^*-like is K?)
Connecting Theme

Suppose that $f : \mathbb{N}^* \mapsto K$ is precisely 2-to-1 (distinct from ≤ 2-to-1). What can then be said of K and f (how \mathbb{N}^*-like is K?)

What are the results, what are the methods needed, and what are the connected questions along the way?
Suppose that $f : \mathbb{N}^* \mapsto K$ is precisely 2-to-1 (distinct from \leq 2-to-1). What can then be said of K and f (how \mathbb{N}^*-like is K?)

What are the results, what are the methods needed, and what are the connected questions along the way?

History to this question (of R. Levy): ?Glazer? and van Douwen’s maximal space
Suppose that \(f : \mathbb{N}^* \rightarrow K \) is precisely 2-to-1 (distinct from \(\leq 2\)-to-1). What can then be said of \(K \) and \(f \) (how \(\mathbb{N}^* \)-like is \(K \)?)

What are the results, what are the methods needed, and what are the connected questions along the way?

History to this question (of R. Levy): ?Glazer? and van Douwen’s maximal space

\(E \) is a vD space if there is a 1-to-1 map \(f : \mathbb{N} \rightarrow E \) such that the extension \(f = f^\beta : \beta\mathbb{N} \rightarrow \beta E \) is \(\leq 2\)-to-1; and such a space exists. And \(\beta E \) can be embedded into \(\beta\mathbb{N} \) so that \(f \) is a retract.
[vD] for each $y \in \beta E$, $|f^{-1}(y)| = 1$ iff y is a far point of E (not a limit of any countable (closed) discrete set).
2-to-1 maps

[vD] for each \(y \in \beta E \), \(|f^{-1}(y)| = 1 \) iff \(y \) is a **far point** of \(E \) (not a limit of any countable (closed) discrete set).

Question 1 Does every countable space have a far point? Does every vD space?
2-to-1 maps

[vD] for each \(y \in \beta E, \ |f^{-1}(y)| = 1 \) iff \(y \) is a far point of \(E \) (not a limit of any countable (closed) discrete set).

Question 1 Does every countable space have a far point? Does every vD space?

Unfortunately, even if \(E \) had no far points, \(f \upharpoonright \mathbb{N}^* \) is still 1-to-1 at the points of \(f^{-1}(E) \). MA_{ctble} implies all countable spaces have far points.
[vD] for each $y \in \beta E$, $|f^{-1}(y)| = 1$ iff y is a far point of E (not a limit of any countable (closed) discrete set).

Question 1 Does every countable space have a far point? Does every vD space?

Unfortunately, even if E had no far points, $f \upharpoonright \mathbb{N}^*$ is still 1-to-1 at the points of $f^{-1}(E)$. MA$_{ctble}$ implies all countable spaces have far points.

we could ask many questions about vD spaces, but the question is about 2-to-1 maps and images of \mathbb{N}^* (not of $\beta \mathbb{N}$).
2-to-1 maps

[^D] for each \(y \in \beta E \), \(|f^{-1}(y)| = 1 \) iff \(y \) is a **far point** of \(E \) (not a limit of any countable (closed) discrete set).

Question 1 Does every countable space have a far point? Does every vD space?

Unfortunately, even if \(E \) had no far points, \(f \restriction \mathbb{N}^* \) is still 1-to-1 at the points of \(f^{-1}(E) \). MA\text{ctble} implies all countable spaces have far points.

we could ask many questions about vD spaces, but the question is about 2-to-1 maps and images of \(\mathbb{N}^* \) (not of \(\beta \mathbb{N} \)). e.g. **Question 2** if \(\mathbb{N}^* \) maps \(\leq 2\text{-to-1} \) onto \(K \subset \mathbb{N}^* \), does the map lift to a \(\leq 2\text{-to-1} \) map on(to) \(\beta \mathbb{N} \)?
Levy’s questions: Let $f : \mathbb{N}^* \leftrightarrow K$ be 2-to-1.

[Levy \implies] countable discrete subsets of K have closures homeomorphic to $\beta \mathbb{N}$. Hence K has weight \mathfrak{c}.
Levy’s questions: Let $f : \mathbb{N}^* \mapsto K$ be 2-to-1

[Levy \vdash] countable discrete subsets of K have closures homeomorphic to $\beta\mathbb{N}$. Hence K has weight \mathfrak{c}.

1. is K homeomorphic to \mathbb{N}^*?
Levy’s questions: Let \(f : \mathbb{N}^* \hookrightarrow K \) be 2-to-1

[Levy ⊢] countable discrete subsets of \(K \) have closures homeomorphic to \(\beta\mathbb{N} \). Hence \(K \) has weight \(c \).

1. is \(K \) homeomorphic to \(\mathbb{N}^* \)?
2. is \(f \) locally 1-to-1, i.e. \(\mathbb{N}^* \oplus \mathbb{N}^* \hookrightarrow \mathbb{N}^* \)
Levy’s questions: Let $f : \mathbb{N}^* \leftrightarrow K$ be 2-to-1

[Levy \vdash] countable discrete subsets of K have closures homeomorphic to $\beta\mathbb{N}$. Hence K has weight \mathfrak{c}.

1. is K homeomorphic to \mathbb{N}^*?
2. is f locally 1-to-1, i.e. $\mathbb{N}^* \oplus \mathbb{N}^* \rightarrow \mathbb{N}^*$
3. is f somewhere 1-to-1 (not irreducible)
Levy’s questions: Let $f : \mathbb{N}^* \hookrightarrow K$ be 2-to-1

[Levy \vdash] countable discrete subsets of K have closures homeomorphic to $\beta\mathbb{N}$. Hence K has weight \mathfrak{c}.

1. is K homeomorphic to \mathbb{N}^*?
2. is f locally 1-to-1, i.e. $\mathbb{N}^* \oplus \mathbb{N}^* \hookrightarrow \mathbb{N}^*$
3. is f somewhere 1-to-1 (not irreducible)
4. is K non-separable, non-ccc?
Levy’s questions: Let $f : \mathbb{N}^* \leftrightarrow K$ be 2-to-1

[Levy \vdash] countable discrete subsets of K have closures homeomorphic to $\beta\mathbb{N}$. Hence K has weight \mathfrak{c}.

1. is K homeomorphic to \mathbb{N}^*?
2. is f locally 1-to-1, i.e. $\mathbb{N}^* \oplus \mathbb{N}^* \leftrightarrow \mathbb{N}^*$
3. is f somewhere 1-to-1 (not irreducible)
4. is K non-separable, non-ccc?
5. are countable sets C^*-embedded?
Levy’s questions: Let $f : \mathbb{N}^* \mapsto K$ be 2-to-1

[Levy \vdash] countable discrete subsets of K have closures homeomorphic to $\beta\mathbb{N}$. Hence K has weight \mathfrak{c}.

1. is K homeomorphic to \mathbb{N}^*?
2. is f locally 1-to-1, i.e. $\mathbb{N}^* \oplus \mathbb{N}^* \mapsto \mathbb{N}^*$
3. is f somewhere 1-to-1 (not irreducible)
4. is K non-separable, non-ccc?
5. are countable sets C^*-embedded?

Item 3 is our starting point for investigation.
Could f be irreducible?

For each $a \subset \mathbb{N}$,

$$f[a^*] \cap f[(\mathbb{N} \setminus a)^*] \subset K$$

is useful to consider
Could f be irreducible?

For each $a \subset \mathbb{N}$,

$f[a^*] \cap f[(\mathbb{N} \setminus a)^*] \subset K$ is useful to consider

pull this back to \mathbb{N}^*:

Define $J_a = a^* \cap f^{-1}(f[(\mathbb{N} \setminus a)^*])$.

J_a is homeomorphic to $J_{\mathbb{N}\setminus a}$ (via $f^{-1} \circ f$); and both to $f[a^*] \cap f[(\mathbb{N} \setminus a)^*] \subset K$.
Could f be irreducible?

For each $a \subset \mathbb{N}$,

$f[a^*] \cap f[(\mathbb{N} \setminus a)^*] \subset K$ is useful to consider

pull this back to \mathbb{N}^*:

Define $J_a = a^* \cap f^{-1}(f[(\mathbb{N} \setminus a)^*])$.

J_a is homeomorphic to $J_{\mathbb{N} \setminus a}$ (via $f^{-1} \circ f$); and both to $f[a^*] \cap f[(\mathbb{N} \setminus a)^*] \subset K$.

If f is irreducible, each are nowhere dense.

then \{ $J_a : a \in \mathcal{P}(\mathbb{N})$ \} is a covering of \mathbb{N}^* by nwd sets, $n(\mathbb{N}^*) \leq \aleph$.
Could \(f \) be irreducible?

For each \(a \subset \mathbb{N} \),
\[
 f[a^*] \cap f[(\mathbb{N} \setminus a)^*] \subset K
\]
is useful to consider

pull this back to \(\mathbb{N}^* \):

Define \(J_a = a^* \cap f^{-1}(f[(\mathbb{N} \setminus a)^*]) \).

\(J_a \) is homeomorphic to \(J_{\mathbb{N} \setminus a} \) (via \(f^{-1} \circ f \)); and both to
\[
 f[a^*] \cap f[(\mathbb{N} \setminus a)^*] \subset K.
\]

If \(f \) is irreducible, each are nowhere dense.

then \(\{ J_a : a \in \mathcal{P}(\mathbb{N}) \} \) is a covering of \(\mathbb{N}^* \) by nwd sets, \(n(\mathbb{N}^*) \leq c \)

this connects to studied questions about covering \(\mathbb{N}^* \) by nwd sets
For example
For example

Fact: if vD spaces have “lots” of far points, then J_A is a discrete weak P-set of Z
For example

Fact: if vD spaces have “lots” of far points, then J_A is a discrete weak P-set of Z

Question 3 Can \mathbb{N}^* be covered by (discrete) [weak] P-sets?
For example

Fact: if vD spaces have “lots” of far points, then J_A is a discrete weak P-set of Z

Question 3 Can \mathbb{N}^* be covered by (discrete) [weak] P-sets? for weak P-sets, I only know "NO" if CH
For example

Fact: if vD spaces have “lots” of far points, then J_A is a discrete weak P-set of Z

Question 3 Can \mathbb{N}^* be covered by (discrete) [weak] P-sets? for weak P-sets, I only know "NO" if CH

Question 4 Con(MA + no P-set cover) but PFA or MA?
Back to 2-to-1: the CH story is very elegant

There is a dense open $U_0 \subset K$ such that f is locally 1-to-1 on $f^{-1}[U_0]$ (stronger than somewhere 1-to-1)
Back to 2-to-1: the CH story is very elegant

There is a dense open $U_0 \subset K$ such that f is locally 1-to-1 on $f^{-1}[U_0]$ (stronger than somewhere 1-to-1)

E.g. put $a \in \mathcal{I}_f$ if f is 2-to-1 and locally 1-to-1 on $a^*; a = b \cup c$, $f[b^*] = f[c^*] = K \setminus f[(\mathbb{N} \setminus a)^*]$
Back to 2-to-1: the CH story is very elegant

There is a dense open $U_0 \subset K$ such that f is locally 1-to-1 on $f^{-1}[U_0]$ (stronger than somewhere 1-to-1)

e.g. put $a \in \mathcal{I}_f$ if f is 2-to-1 and locally 1-to-1 on a^*; $a = b \cup c$,

$f[b^*] = f[c^*] = K \setminus f[(\mathbb{N} \setminus a)^*]$

we would say \textit{trivially} 2-to-1 on a^*
Back to 2-to-1: the CH story is very elegant

There is a dense open $U_0 \subset K$ such that f is locally 1-to-1 on $f^{-1}[U_0]$ (stronger than somewhere 1-to-1)

e.g. put $a \in \mathcal{I}_f$ if f is 2-to-1 and locally 1-to-1 on $a^*; a = b \cup c,$
$f[b^*] = f[c^*] = K \setminus f[(\mathbb{N} \setminus a)^*]$
we would say *trivially* 2-to-1 on a^*

Set $K_1 = K \setminus U_0$ and $X_1 = f^{-1}[K_1]$, hence $f : X_1 \mapsto K_1$ is 2-to-1 (and repeat)
Back to 2-to-1: the CH story is very elegant

There is a dense open $U_0 \subset K$ such that f is locally 1-to-1 on $f^{-1}[U_0]$ (stronger than somewhere 1-to-1)

e.g. put $a \in I_f$ if f is 2-to-1 and locally 1-to-1 on a^*; $a = b \cup c$, $f[b^*] = f[c^*] = K \setminus f[(\mathbb{N} \setminus a)^*]$

we would say *trivially* 2-to-1 on a^*

Set $K_1 = K \setminus U_0$ and $X_1 = f^{-1}[K_1]$, hence $f : X_1 \mapsto K_1$ is 2-to-1 (and repeat)

think of \mathbb{N}^* as $A_0 \oplus X_1 B_0$, each $A_0 \setminus X_1$ and $B_0 \setminus X_1$ mapping 1-to-1 onto U_0 (hence essentially to each other)
Back to 2-to-1: the CH story is very elegant

There is a dense open \(U_0 \subset K \) such that \(f \) is locally 1-to-1 on \(f^{-1}[U_0] \) (stronger than somewhere 1-to-1)

e.g. put \(a \in \mathcal I_f \) if \(f \) is 2-to-1 and locally 1-to-1 on \(a^* \); \(a = b \cup c \), \(f[b^*] = f[c^*] = K \setminus f[(\mathbb N \setminus a)^*] \)
we would say trivially 2-to-1 on \(a^* \)

Set \(K_1 = K \setminus U_0 \) and \(X_1 = f^{-1}[K_1] \), hence \(f : X_1 \mapsto K_1 \) is 2-to-1 (and repeat)

think of \(\mathbb N^* \) as \(A_0 \oplus_{X_1} B_0 \), each \(A_0 \setminus X_1 \) and \(B_0 \setminus X_1 \) mapping 1-to-1 onto \(U_0 \) (hence essentially to each other)

need a picture
Back to 2-to-1: the CH story is very elegant

There is a dense open $U_0 \subset K$ such that f is locally 1-to-1 on $f^{-1}[U_0]$ (stronger than somewhere 1-to-1)

e.g. put $a \in I_f$ if f is 2-to-1 and locally 1-to-1 on a^*; $a = b \cup c$, $f[b^*] = f[c^*] = K \setminus f[(\mathbb{N} \setminus a)^*]$

we would say trivially 2-to-1 on a^*

Set $K_1 = K \setminus U_0$ and $X_1 = f^{-1}[K_1]$, hence $f : X_1 \mapsto K_1$ is 2-to-1 (and repeat)

think of \mathbb{N}^* as $A_0 \oplus_{X_1} B_0$, each $A_0 \setminus X_1$ and $B_0 \setminus X_1$ mapping 1-to-1 onto U_0 (hence essentially to each other)

need a picture

similarly there is $U_1 \subset K_1$ and $A_1 \oplus_{X_2} B_1$ with $X_2 = f^{-1}[K_2 = (K_1 \setminus U_1)]$
\[U_0 \approx A_0 \setminus X_1 \]

\[X_1 = A_1 \cup B_1 \]

\[\text{if, e.g. } K_2 = \emptyset \]

\[\text{i.e. } U_1 = K_1 \]

\[\text{pick clopen set } W \subset N^* \text{ such that } W \cap X_1 = A_1 \]

\[\text{K is Parovicenko can be shown } \vdash K_n \text{IS empty for some } n \in \omega \]

\[\text{can all this happen?} \]

\[\text{THUS CH implies } K \approx N^* \]
0. Introduction

I. CH

\[U_0 \approx A_0 \setminus X_1 \]

if, e.g. \(K_2 = \emptyset \)

i.e. \(U_1 = K_1 \)

\[X_1 = A_1 \cup B_1 \]
\[X_1 \approx A_1 \cup B_1 \]

\[U_0 \approx A_0 \setminus X_1 \]

If, e.g., \(K_2 = \emptyset \)

i.e. \(U_1 = K_1 \)

Pick clopen set \(W \subset \mathbb{N}^* \) such that \(W \cap X_1 = A_1 \)
0. Introduction

I. CH

\[A_0 \approx A_0 \setminus X_1 \]

if, e.g. \(K_2 = \emptyset \)

i.e. \(U_1 = K_1 \)

pick clopen set \(W \subset \mathbb{N}^* \) such that \(W \cap X_1 = A_1 \)

\(K \setminus f[W] \) can be made clopen;

etc, etc, \(K \) is Parovicianko

can be shown
I. CH

\[U_0 \approx A_0 \setminus X_1 \]

if, e.g. \(K_2 = \emptyset \)

i.e. \(U_1 = K_1 \)

pick clopen set \(W \subset \mathbb{N}^* \) such that \(W \cap X_1 = A_1 \)

\(K \setminus f[W] \) can be made clopen;

etc, etc, \(K \) is Parovicenko

\(\vdash K_n \) IS empty for some \(n \in \omega \)
$U_0 \approx A_0 \setminus X_1$

if, e.g. $K_2 = \emptyset$

i.e. $U_1 = K_1$

pick clopen set $W \subset \mathbb{N}^*$ such that $W \cap X_1 = A_1$

$K \setminus f[W]$ can be made clopen;

etc, etc, K is Parovicenko can be shown

$\vdash K_n$ IS empty for some $n \in \omega$
0. Introduction

I. CH

\[
A_0 \cong A_0 \setminus X_1
\]

if, e.g. \(K_2 = \emptyset \)

i.e. \(U_1 = K_1 \)

pick clopen set \(W \subset \mathbb{N}^* \) such that \(W \cap X_1 = A_1 \)

\(K \setminus f[W] \) can be made clopen;

etc, etc, \(K \) is Parovicenko

can be shown

\(\vdash K_n \) IS empty for some \(n \in \omega \)

\[
\text{THUS CH implies } K \cong \mathbb{N}^*
\]
tie-points and propeller points

Say that $x \in \mathbb{N}^*$ is a tie-point if there are closed sets A, B covering \mathbb{N}^* and $\{x\} = A' \cap B'$; denote this as $\mathbb{N}^* = A \oplus_x B$.

I do not know if it's the same to ask for x such that there is an involution f on \mathbb{N}^* with $\{x\} = \text{fix}(f)$; but I think it is interesting to investigate possible "values" for $\text{fix}(f)$.

We could further measure $\tau(x) \geq k$ by increasing the number of wings.
tie-points and propeller points

Say that $x \in \mathbb{N}^*$ is a tie-point if there are closed sets A, B covering \mathbb{N}^* and $\{x\} = A' \cap B'$; denote this as $\mathbb{N}^* = A \oplus_x B$.

We could further measure $\tau(x) \geq k$ by increasing the number of wings.
tie-points and propeller points

Say that $x \in \mathbb{N}^*$ is a tie-point if there are closed sets A, B covering \mathbb{N}^* and $\{x\} = A' \cap B'$; denote this as $\mathbb{N}^* = A \oplus_x B$.

We could further measure $\tau(x) \geq k$ by increasing the number of wings.

say that x is a propeller point (?symmetric tie-point?) if $\mathbb{N}^* = A \oplus_x B$ and there is an autohomeomorphism h such that $\{x\} = \text{fix}(h)$ and $h[A] = B$ (i.e. h spins the propeller)
tie-points and propeller points

Say that $x \in \mathbb{N}^*$ is a tie-point if there are closed sets A, B covering \mathbb{N}^* and $\{x\} = A' \cap B'$; denote this as $\mathbb{N}^* = A \oplus_x B$.

We could further measure $\tau(x) \geq k$ by increasing the number of wings

say that x is a propeller point (symmetric tie-point?) if $\mathbb{N}^* = A \oplus_x B$ and there is an autohomeomorphism h such that $\{x\} = \text{fix}(h)$ and $h[A] = B$ (i.e. h spins the propeller)

if x_1, x_2 are propeller points, then there is a 2-to-1 f on \mathbb{N}^* such that $K \approx A_1 \oplus_{x_2}^{x_1} B_2$, where
tie-points and propeller points

Say that \(x \in \mathbb{N}^* \) is a tie-point if there are closed sets \(A, B \) covering \(\mathbb{N}^* \) and \(\{x\} = A' \cap B' \); denote this as \(\mathbb{N}^* = A \oplus_x B \).

We could further measure \(\tau(x) \geq k \) by increasing the number of wings

say that \(x \) is a propeller point (symmetric tie-point?) if \(\mathbb{N}^* = A \oplus_x B \) and there is an autohomeomorphism \(h \) such that \(\{x\} = \text{fix}(h) \) and \(h[A] = B \) (i.e. \(h \) spins the propeller)

if \(x_1, x_2 \) are propeller points, then there is a 2-to-1 \(f \) on \(\mathbb{N}^* \) such that \(K \approx A_1 \oplus_{x_1}^{x_1} B_2 \), where
\(\mathbb{N}^* = A_1 \oplus_{x_1} B_1 \) and \(\mathbb{N}^* = A_2 \oplus_{x_2} B_2 \) witness the propellers
tie-points and propeller points

Say that $x \in \mathbb{N}^*$ is a tie-point if there are closed sets A, B covering \mathbb{N}^* and $\{x\} = A' \cap B'$; denote this as $\mathbb{N}^* = A \oplus_x B$.

We could further measure $\tau(x) \geq k$ by increasing the number of wings

say that x is a propeller point (symmetric tie-point?) if $\mathbb{N}^* = A \oplus_x B$ and there is an autohomeomorphism h such that $\{x\} = \text{fix}(h)$ and $h[A] = B$ (i.e. h spins the propeller)

if x_1, x_2 are propeller points, then there is a 2-to-1 f on \mathbb{N}^* such that $K \approx A_1 \oplus_{x_1}^{x_2} B_2$, where $\mathbb{N}^* = A_1 \oplus_{x_1} B_1$ and $\mathbb{N}^* = A_2 \oplus_{x_2} B_2$ witness the propellers

I do not know if it’s the same to ask for x such that there is an involution f on \mathbb{N}^* with $\{x\} = \text{fix}(f)$; but I think it is interesting to investigate possible “values” for $\text{fix}(f)$
propellers under CH and many copies of \mathbb{N}^*

Under CH, every point x of \mathbb{N}^* is a tie-point such that $\mathbb{N}^* = A \oplus_x B$ with, in addition, each of $A \approx B \approx \mathbb{N}^*$ (regular closed copies of \mathbb{N}^*);
propellers under CH and many copies of \mathbb{N}^*

Under CH, every point x of \mathbb{N}^* is a tie-point such that
$\mathbb{N}^* = A \oplus_x B$ with, in addition, each of $A \approx B \approx \mathbb{N}^*$ (regular
closed copies of \mathbb{N}^*); x is a propeller point iff x is a P-point.
propellers under CH and many copies of \mathbb{N}^*

Under CH, every point x of \mathbb{N}^* is a tie-point such that $\mathbb{N}^* = A \oplus_x B$ with, in addition, each of $A \approx B \approx \mathbb{N}^*$ (regular closed copies of \mathbb{N}^*); x is a propeller point iff x is a P-point.

for any compact 0-dim’l space X of weight $\leq c$, (e.g. $X = \omega + 1$), $(\omega \times X)^*$ is homeomorphic to \mathbb{N}^*
propellers under CH and many copies of \mathbb{N}^*

Under CH, every point x of \mathbb{N}^* is a tie-point such that

$\mathbb{N}^* = A \oplus_x B$ with, in addition, each of $A \approx B \approx \mathbb{N}^*$ (regular closed copies of \mathbb{N}^*); x is a propeller point iff x is a P-point.

for any compact 0-dim’l space X of weight $\leq c$, (e.g. $X = \omega + 1$),

$(\omega \times X)^*$ is homeomorphic to \mathbb{N}^*

using $E = \{2n : n \in \omega\}$ and $O = \omega \setminus E$,
propellers under CH and many copies of \mathbb{N}^*

Under CH, every point x of \mathbb{N}^* is a tie-point such that $\mathbb{N}^* = A \oplus_x B$ with, in addition, each of $A \approx B \approx \mathbb{N}^*$ (regular closed copies of \mathbb{N}^*); x is a propeller point iff x is a P-point.

for any compact 0-dim’l space X of weight $\leq c$, (e.g. $X = \omega + 1$), $(\omega \times X)^*$ is homeomorphic to \mathbb{N}^*

using $E = \{2n : n \in \omega\}$ and $O = \omega \setminus E$, we see that setting $A = (\omega \times (E \cup \{\omega\}))^*$ and $B = (\omega \times (O \cup \{\omega\}))^*$
propellers under CH and many copies of \mathbb{N}^*

Under CH, every point x of \mathbb{N}^* is a tie-point such that $\mathbb{N}^* = A \oplus_x B$ with, in addition, each of $A \approx B \approx \mathbb{N}^*$ (regular closed copies of \mathbb{N}^*); x is a propeller point iff x is a P-point.

for any compact 0-dim’l space X of weight $\leq c$, (e.g. $X = \omega + 1$), $(\omega \times X)^*$ is homeomorphic to \mathbb{N}^*

using $E = \{2n : n \in \omega\}$ and $O = \omega \setminus E$, we see that setting $A = (\omega \times (E \cup \{\omega\}))^*$ and $B = (\omega \times (O \cup \{\omega\}))^*$ show that $\mathbb{N}^* \approx (\omega \times \{\omega\})^* \approx A \oplus_{\mathbb{N}^*} B$
propellers under CH and many copies of \mathbb{N}^*

Under CH, every point x of \mathbb{N}^* is a tie-point such that $\mathbb{N}^* = A \oplus_x B$ with, in addition, each of $A \approx B \approx \mathbb{N}^*$ (regular closed copies of \mathbb{N}^*); x is a propeller point iff x is a P-point.

for any compact 0-dim’l space X of weight $\leq c$, (e.g. $X = \omega + 1$), $(\omega \times X)^*$ is homeomorphic to \mathbb{N}^*

using $E = \{2n : n \in \omega\}$ and $O = \omega \setminus E$, we see that setting $A = (\omega \times (E \cup \{\omega\}))^*$ and $B = (\omega \times (O \cup \{\omega\}))^*$

show that $\mathbb{N}^* \approx (\omega \times \{\omega\})^* \approx A \oplus_{\mathbb{N}^*} B$

with \mathbb{N}^* as a propeller set, hence $K_2 \neq \emptyset$ (and iterate)
propellers under CH and many copies of \mathbb{N}^*

Under CH, every point x of \mathbb{N}^* is a tie-point such that $\mathbb{N}^* = A \oplus_x B$ with, in addition, each of $A \approx B \approx \mathbb{N}^*$ (regular closed copies of \mathbb{N}^*); x is a propeller point iff x is a P-point.

for any compact 0-dim’l space X of weight $\leq c$, (e.g. $X = \omega + 1$), $(\omega \times X)^* \text{ is homeomorphic to } \mathbb{N}^*$

using $E = \{2n : n \in \omega\}$ and $O = \omega \setminus E$, we see that setting $A = (\omega \times (E \cup \{\omega\}))^*$ and $B = (\omega \times (O \cup \{\omega\}))^*$ show that $\mathbb{N}^* \approx (\omega \times \{\omega\})^* \approx A \oplus_{\mathbb{N}^*} B$

with \mathbb{N}^* as a propeller set, hence $K_2 \neq \emptyset$ (and iterate)

also for any ultrafilter $\mathcal{U} \in \mathbb{N}^*$, considering $(\omega \times \omega + 1)^*_\mathcal{U}$ (the \mathcal{U}-limits in the growth) exemplifies there is a propeller point
propellers under CH and many copies of \mathbb{N}^*

Under CH, every point x of \mathbb{N}^* is a tie-point such that
$\mathbb{N}^* = A \oplus_x B$ with, in addition, each of $A \approx B \approx \mathbb{N}^*$ (regular closed copies of \mathbb{N}^*); x is a propeller point iff x is a P-point.

for any compact 0-dim’l space X of weight $\leq \kappa$, (e.g. $X = \omega + 1$),
$(\omega \times X)^*$ is homeomorphic to \mathbb{N}^*

using $E = \{2n : n \in \omega\}$ and $O = \omega \setminus E$, we see that setting
$A = (\omega \times (E \cup \{\omega\}))^*$ and $B = (\omega \times (O \cup \{\omega\}))^*$
show that $\mathbb{N}^* \approx (\omega \times \{\omega\})^* \approx A \oplus_{\mathbb{N}^*} B$
with \mathbb{N}^* as a propeller set, hence $K_2 \neq \emptyset$ (and iterate)

also for any ultrafilter $\mathcal{U} \in \mathbb{N}^*$, considering $(\omega \times \omega + 1)^*_{\mathcal{U}}$ (the \mathcal{U}-limits in the growth) exemplifies there is a propeller point

my best guess for a $K \not\approx \mathbb{N}^*$ is to have propeller points
$\mathbb{N}^* = A_i \oplus_{x_i} B_i$ so that $A_1 \not\approx \mathbb{N}^*$ and/or $A_1 \oplus_{x_2} B_2 \not\approx \mathbb{N}^*$
some PFA tricks; tie-points; and regular closed sets

Can there be tie-points? and if there are, can $A \approx \mathbb{N}^*$?
some PFA tricks; tie-points; and regular closed sets

Can there be tie-points? and if there are, can $A \approx \mathbb{N}^*$?

Major open problem: **Question 5** If f embeds \mathbb{N}^* into \mathbb{N}^*, is there a lifting from $\beta \mathbb{N}$ to $\beta \mathbb{N}$?
Can there be tie-points? and if there are, can $A \approx \mathbb{N}^*$?

Major open problem: **Question 5** If f embeds \mathbb{N}^* into \mathbb{N}^*, is there a lifting from $\beta\mathbb{N}$ to $\beta\mathbb{N}$?

an ideal $\mathcal{I} \subset \mathcal{P}(\mathbb{N})$ is **ccc over fin** if there is no uncountable almost disjoint family in \mathcal{I}^+;
some PFA tricks; tie-points; and regular closed sets

Can there be tie-points? and if there are, can $A \approx \mathbb{N}^*$?

Major open problem: **Question 5** If f embeds \mathbb{N}^* into \mathbb{N}^*, is there a lifting from $\beta \mathbb{N}$ to $\beta \mathbb{N}$?

an ideal $\mathcal{I} \subset \mathcal{P}(\mathbb{N})$ is *ccc over fin* if there is no uncountable almost disjoint family in \mathcal{I}^+;

similarly a closed set $K \subset \mathbb{N}^*$ can be said to be ccc over fin if there is no uncountable family of disjoint clopen subsets of \mathbb{N}^* each hitting K (this is more general than requiring that K is contained in a ccc space)
the CH, Cohen + OCA tricks
the CH, Cohen + OCA tricks

Let \mathcal{I}, \mathcal{J} etc. be families from $\mathcal{P}(\mathbb{N})$
the CH, Cohen + OCA tricks

Let \mathcal{I}, \mathcal{J} etc. be families from $\mathcal{P}(\mathbb{N})$

CH trick $<_{\omega_1 \omega_2} \vdash$ if every \aleph_1-sized subcollection has a nice extension, then so must \mathcal{I}, \mathcal{J} (in each “proper” extension)
the CH, Cohen + OCA tricks

Let \mathcal{I}, \mathcal{J} etc. be families from $\mathcal{P}(\mathbb{N})$

CH trick $<\omega_1 \omega_2 \models$ if every \aleph_1-sized subcollection has a nice extension, then so must \mathcal{I}, \mathcal{J} (in each “proper” extension)

[Farah?] $<\omega_2 \models$ usually no harm done but might be useful
the CH, Cohen + OCA tricks

Let \mathcal{I}, \mathcal{J} etc. be families from $\mathcal{P}(\mathbb{N})$

CH trick $<\omega_1 \omega_2 \vdash$ if every \aleph_1-sized subcollection has a nice extension, then so must \mathcal{I}, \mathcal{J} (in each “proper” extension)

[Farah?] $<\omega_2 \vdash$ usually no harm done but might be useful

OCA trick: If $\mathbb{X} \subset \mathcal{P}(\mathbb{N})$ and $R \subset [\mathcal{P}(\mathbb{N})]^2$ is open [often simply $x \cap y \neq \emptyset$], and if $\neg \exists \mathbb{X} = \bigcup_n \mathbb{X}_n$ such that $\bigcup_n [X_n]^2 \cap R$ is empty,
the CH, Cohen + OCA tricks

Let \mathcal{I}, \mathcal{J} etc. be families from $\mathcal{P}(\mathbb{N})$

CH trick $\langle \omega_1, \omega_2 \rangle \models$ if every \aleph_1-sized subcollection has a nice extension, then so must \mathcal{I}, \mathcal{J} (in each “proper” extension)

[Farah?] $\langle \omega_2 \rangle \models$ usually no harm done but might be useful

OCA trick: If $\mathcal{X} \subset \mathcal{P}(\mathbb{N})$ and $R \subset [\mathcal{P}(\mathbb{N})]^2$ is open [often simply $x \cap y \neq \emptyset$], and if $\neg \exists \mathcal{X} = \bigcup_n \mathcal{X}_n$ such that $\bigcup_n [\mathcal{X}_n]^2 \cap R$ is empty, then there is a proper poset \mathbb{Q}_R forcing an R-homogeneous $\{x_\alpha : \alpha \in \omega_1\} \subset \mathcal{X}$.
the CH, Cohen + OCA tricks

Let I, J etc. be families from $\mathcal{P}(\mathbb{N})$

CH trick $\prec_{\omega_1 \omega_2}$ if every \aleph_1-sized subcollection has a nice extension, then so must I, J (in each “proper” extension)

[Farah?] \prec_{ω_2} usually no harm done but might be useful

OCA trick: If $X \subset \mathcal{P}(\mathbb{N})$ and $R \subset [\mathcal{P}(\mathbb{N})]^2$ is open [often simply $x \cap y \neq \emptyset$], and if $\neg \exists X = \bigcup_n X_n$ such that $\bigcup_n [X_n]^2 \cap R$ is empty, then there is a proper poset Q_R forcing an R-homogeneous $\{X_\alpha : \alpha \in \omega_1\} \subset X$. so, by PFA, such a sequence actually exists
the CH, Cohen + OCA tricks

Let \mathcal{I}, \mathcal{J} etc. be families from $\mathcal{P}(\mathbb{N})$

CH trick $<\omega_1 \omega_2 \models$ if every \aleph_1-sized subcollection has a nice extension, then so must \mathcal{I}, \mathcal{J} (in each “proper” extension)

[Farah?] $<\omega_2 \models$ usually no harm done but might be useful

OCA trick: If $\mathbf{X} \subset \mathcal{P}(\mathbb{N})$ and $R \subset [\mathcal{P}(\mathbb{N})]^2$ is open [often simply $x \cap y \neq \emptyset$], and if $\neg \exists \mathbf{X} = \bigcup_n X_n$ such that $\bigcup_n [X_n]^2 \cap R$ is empty, then there is a proper poset \mathbb{Q}_R forcing an R-homogeneous
\[
\{x_\alpha : \alpha \in \omega_1\} \subset \mathbf{X}.
\]
so, by PFA, such a sequence actually exists

e.g. if $x_\alpha = (I_\alpha, J_\alpha) \in \mathcal{I} \times \mathcal{J}$ with $I_\alpha \cap J_\alpha = \emptyset$, and for $\alpha \neq \beta$, $(I_\alpha \cap J_\beta) \cup (J_\alpha \cap I_\beta) \neq \emptyset$,
the CH, Cohen + OCA tricks

Let \mathcal{I}, \mathcal{J} etc. be families from $\mathcal{P}(\mathbb{N})$

CH trick $<^{\omega_1} \omega_2 \models$ if every \aleph_1-sized subcollection has a nice extension, then so must \mathcal{I}, \mathcal{J} (in each “proper” extension)

[Farah?] $<^{\omega_2} \models$ usually no harm done but might be useful

OCA trick: If $\mathbb{X} \subset \mathcal{P}(\mathbb{N})$ and $R \subset [\mathcal{P}(\mathbb{N})]^2$ is open [often simply $x \cap y \neq \emptyset$], and if $\neg \exists \mathbb{X} = \bigcup_n \mathbb{X}_n$ such that $\bigcup_n [\mathbb{X}_n]^2 \cap R$ is empty, then there is a proper poset \mathbb{Q}_R forcing an R-homogeneous

$\{x_\alpha : \alpha \in \omega_1\} \subset \mathbb{X}$. so, by PFA, such a sequence actually exists

e.g. if $x_\alpha = (I_\alpha, J_\alpha) \in \mathcal{I} \times \mathcal{J}$ with $I_\alpha \cap J_\alpha = \emptyset$, and for $\alpha \neq \beta$, $(I_\alpha \cap J_\beta) \cup (J_\alpha \cap I_\beta) \neq \emptyset$, then $\bigcup_\alpha I_\alpha^* \cap \bigcup_\alpha J_\alpha^* \neq \emptyset$
gaps and such

OCA trick: If $X \subset \mathcal{P}(\mathbb{N})$ and $R \subset [\mathcal{P}(\mathbb{N})]^2$ is open [often simply $x \cap y \neq \emptyset$], and if $\neg \exists X = \bigcup_n X_n$ such that $\bigcup_n [X_n]^2 \cap R$ is empty, then there is a proper poset Q_R forcing an R-homogeneous $\{ x_\alpha : \alpha \in \omega_1 \} \subset X$. so, by PFA, such a sequence actually exists
gaps and such

OCA trick: If $X \subset \mathcal{P}(\mathbb{N})$ and $R \subset [\mathcal{P}(\mathbb{N})]^2$ is open [often simply $x \cap y \neq \emptyset$], and if $\neg \exists X = \bigcup_n X_n$ such that $\bigcup_n [X_n]^2 \cap R$ is empty, then there is a proper poset Q_R forcing an R-homogeneous $\{x_\alpha : \alpha \in \omega_1\} \subset X$. So, by PFA, such a sequence actually exists.

e.g. if $x_\alpha = (I_\alpha, J_\alpha) \in \mathcal{I} \times \mathcal{J}$ with $I_\alpha \cap J_\alpha = \emptyset$, and for $\alpha \neq \beta$, $(I_\alpha \cap J_\beta) \cup (J_\alpha \cap I_\beta) \neq \emptyset$, then $\bigcup_\alpha I^*_\alpha \cap \bigcup_\alpha J^*_\alpha \neq \emptyset$
gaps and such

OCA trick: If $X \subset \mathcal{P}(\mathbb{N})$ and $R \subset [\mathcal{P}(\mathbb{N})]^2$ is open [often simply $x \cap y \neq \emptyset$], and if $\neg \exists X = \bigcup_n X_n$ such that $\bigcup_n [X_n]^2 \cap R$ is empty, then there is a proper poset \mathbb{Q}_R forcing an R-homogeneous
\[\{ x_\alpha : \alpha \in \omega_1 \} \subset X. \]
so, by PFA, such a sequence actually exists

e.g. if $x_\alpha = (I_\alpha, J_\alpha) \in \mathcal{I} \times \mathcal{J}$ with $I_\alpha \cap J_\alpha = \emptyset$, and for $\alpha \neq \beta$, $(I_\alpha \cap J_\beta) \cup (J_\alpha \cap I_\beta) \neq \emptyset$, then $\overline{\bigcup_\alpha I_\alpha^*} \cap \overline{\bigcup_\alpha J_\alpha^*} \neq \emptyset$

CH trick plus OCA trick implies no (ω_2, κ)-gaps for $\kappa \notin \{1, \omega\}$
gaps and such

OCA trick: If $X \subset \mathcal{P}(\mathbb{N})$ and $R \subset [\mathcal{P}(\mathbb{N})]^2$ is open [often simply $x \cap y \neq \emptyset$], and if $\neg \exists X = \bigcup_n X_n$ such that $\bigcup_n [X_n]^2 \cap R$ is empty, then there is a proper poset \mathbb{Q}_R forcing an R-homogeneous

$\{x_\alpha : \alpha \in \omega_1\} \subset X$. so, by PFA, such a sequence actually exists

e.g. if $x_\alpha = (I_\alpha, J_\alpha) \in I \times J$ with $I_\alpha \cap J_\alpha = \emptyset$, and for $\alpha \neq \beta$, $(I_\alpha \cap J_\beta) \cup (J_\alpha \cap I_\beta) \neq \emptyset$, then $\overline{\bigcup_\alpha I_*} \cap \overline{\bigcup_\alpha J_*} \neq \emptyset$

CH trick plus OCA trick implies no (ω_2, κ)-gaps for $\kappa \notin \{1, \omega\}$

or if each $x_\alpha = h_\alpha : \mathbb{N} \leftrightarrow \mathbb{N}$ is a partial function and $h_\alpha \cup h_\beta$ is not a function for $\alpha \neq \beta$, then there is no common mod finite extension
gaps and such

OCA trick: If $X \subset \mathcal{P}(\mathbb{N})$ and $R \subset [\mathcal{P}(\mathbb{N})]^2$ is open [often simply $x \cap y \neq \emptyset$], and if $\neg \exists X = \bigcup_n X_n$ such that $\bigcup_n [X_n]^2 \cap R$ is empty, then there is a proper poset Q_R forcing an R-homogeneous $\{x_\alpha : \alpha \in \omega_1\} \subset X$. so, by PFA, such a sequence actually exists

e.g. if $x_\alpha = (I_\alpha, J_\alpha) \in \mathcal{I} \times \mathcal{J}$ with $I_\alpha \cap J_\alpha = \emptyset$, and for $\alpha \neq \beta$, $(I_\alpha \cap J_\beta) \cup (J_\alpha \cap I_\beta) \neq \emptyset$, then $\bigcup_\alpha I_\alpha^* \cap \bigcup_\alpha J_\alpha^* \neq \emptyset$

CH trick plus OCA trick implies no (ω_2, κ)-gaps for $\kappa \notin \{1, \omega\}$

or if each $x_\alpha = h_\alpha : \mathbb{N} \rightarrow \mathbb{N}$ is a partial function and $h_\alpha \cup h_\beta$ is not a function for $\alpha \neq \beta$, then there is no common mod finite extension

so if \mathcal{H} is a coherent family of functions and $\{\text{dom}(h) : h \in \mathcal{H}\}$ is a P_{ω_2}-ideal, then THERE IS a common mod finite extension
forcing a gap from Shelah-Steprans

Start with PFA, use the CH trick to pass to the forcing extension by $\langle \omega_1, \omega_2 \rangle$. This leaves $\mathcal{P}(\mathbb{N})$ unchanged.
forcing a gap from Shelah-Steprans

Start with PFA, use the CH trick to pass to the forcing extension by $<\omega_1\omega_2$. This leaves $\mathcal{P}(\mathbb{N})$ unchanged.

let Q be a ccc poset of cardinality ω_1 and $\{\dot{Y}_\alpha : \alpha \in \omega_1\}$ enumerate all (nice) Q-names of subsets of \mathbb{N}.
forcing a gap from Shelah-Steprans

Start with PFA, use the CH trick to pass to the forcing extension by $<\omega_1\omega_2$. This leaves $\mathcal{P}(\mathbb{N})$ unchanged.

let Q be a ccc poset of cardinality ω_1 and $\{\dot{Y}_\alpha : \alpha \in \omega_1\}$ enumerate all (nice) Q-names of subsets of \mathbb{N}.

inductively (or otherwise) choose $\{(c_\alpha, d_\alpha) : \alpha \in \omega_1\} \subseteq V \cap \mathcal{P}(\mathbb{N})$, so that, for $\beta < \alpha$, $\models Q \dot{Y}_\beta \cap (c_\alpha \cup d_\alpha) \neq^* c_\alpha$ (if possible: make them \subset^* increasing)
forcing a gap from Shelah-Steprans

Start with PFA, use the CH trick to pass to the forcing extension by $<\omega_1\omega_2$. This leaves $\mathcal{P}(\mathbb{N})$ unchanged.

let Q be a ccc poset of cardinality ω_1 and $\{\dot{Y}_\alpha : \alpha \in \omega_1\}$ enumerate all (nice) Q-names of subsets of \mathbb{N}.

inductively (or otherwise) choose $\{(c_\alpha, d_\alpha) : \alpha \in \omega_1\} \subset V \cap \mathcal{P}(\mathbb{N})$, so that, for $\beta < \alpha$, $\models_Q \dot{Y}_\beta \cap (c_\alpha \cup d_\alpha) \neq^* c_\alpha$
(if possible: make them \subset^* increasing)

then in the extension by Q, $(\alpha, \beta) \in R$ providing $(c_\alpha \cap d_\beta) \cup (d_\alpha \cap c_\beta) \neq \emptyset$ satisfies that $[X']^2 \cap R$ is not empty for all uncountable $X' \subset X = \omega_1$
forcing a gap from Shelah-Steprans

Start with PFA, use the CH trick to pass to the forcing extension by \(<\omega_1 \omega_2 \). This leaves \(\mathcal{P}(\mathbb{N}) \) unchanged.

let \(Q \) be a ccc poset of cardinality \(\omega_1 \) and \(\{ \dot{Y}_\alpha : \alpha \in \omega_1 \} \) enumerate all (nice) \(Q \)-names of subsets of \(\mathbb{N} \).

inductively (or otherwise) choose \(\{ (c_\alpha, d_\alpha) : \alpha \in \omega_1 \} \subset V \cap \mathcal{P}(\mathbb{N}) \), so that, for \(\beta < \alpha \), \(\Vdash_Q \dot{Y}_\beta \cap (c_\alpha \cup d_\alpha) \neq^* c_\alpha \) (if possible: make them \(\subset^* \) increasing)

then in the extension by \(Q \), \((\alpha, \beta) \in R \) providing \((c_\alpha \cap d_\beta) \cup (d_\alpha \cap c_\beta) \neq \emptyset \) satisfies that \([X']^2 \cap R \) is not empty for all uncountable \(X' \subset X = \omega_1 \) thus this is a freezable gap: no \(Y \) such that \(Y \cap (c_\alpha \cup d_\alpha) =^* c_\alpha \) for all \(\alpha \).
ccc over fin boundaries; per 2-points and embeddings

Theorem: [PFA] boundaries of regular closed subsets are not ccc over fin
ccc over fin boundaries; per 2-points and embeddings

Theorem: [PFA] boundaries of regular closed subsets are not ccc over fin

Remark: CH implies every closed nowhere dense set is a boundary of a regular closed set
ccc over fin boundaries; per 2-points and embeddings

Theorem: [PFA] boundaries of regular closed subsets are not ccc over fin

Let $A \subset \mathbb{N}^*$ be regular closed.
Theorem: [PFA] boundaries of regular closed subsets are not ccc over fin.

Let \(A \subseteq \mathbb{N}^* \) be regular closed. So \(I \cup J \) is dense, where \(a \in I \) if \(a^* \subset A \) and \(b \in J \) if \(b^* \cap A = \emptyset \).
Theorem: [PFA] boundaries of regular closed subsets are not ccc over fin

Let $A \subset \mathbb{N}^*$ be regular closed. so $\mathcal{I} \cup \mathcal{J}$ is dense, where $a \in \mathcal{I}$ if $a^* \subset A$ and $b \in \mathcal{J}$ if $b^* \cap A = \emptyset$

Lemma: ∂A is ccc over fin implies \mathcal{I} and \mathcal{J} are P-ideals
Theorem: [PFA] boundaries of regular closed subsets are not ccc over fin

Let $A \subset \mathbb{N}^*$ be regular closed. so $\mathcal{I} \cup \mathcal{J}$ is dense, where $a \in \mathcal{I}$ if $a^* \subset A$ and $b \in \mathcal{J}$ if $b^* \cap A = \emptyset$

Lemma: ∂A is ccc over fin implies \mathcal{I} and \mathcal{J} are P-ideals

let $\{a_n : n \in \omega\} \subset \mathcal{I}$ be pairwise disjoint;
Theorem: [PFA] boundaries of regular closed subsets are not ccc over fin

Let $A \subset \mathbb{N}^*$ be regular closed. so $\mathcal{I} \cup \mathcal{J}$ is dense, where $a \in \mathcal{I}$ if $a^* \subset A$ and $b \in \mathcal{J}$ if $b^* \cap A = \emptyset$

Lemma: ∂A is ccc over fin implies \mathcal{I} and \mathcal{J} are P-ideals

let $\{a_n : n \in \omega\} \subset \mathcal{I}$ be pairwise disjoint;

for each $g \in \mathbb{N}^\omega$, let $L_g = \bigcup_n a_n \cap g(n)$.
Theorem: [PFA] boundaries of regular closed subsets are not ccc over fin

Let $A \subset \mathbb{N}^*$ be regular closed. so $I \cup J$ is dense, where $a \in I$ if $a^* \subset A$ and $b \in J$ if $b^* \cap A = \emptyset$

Lemma: ∂A is ccc over fin implies I and J are P-ideals

let $\{a_n : n \in \omega\} \subset I$ be pairwise disjoint;

for each $g \in \mathbb{N}^\omega$, let $L_g = \bigcup_n a_n \cap g(n)$.

since ∂A is ccc over fin there is an $f \in \mathbb{N}^\omega$ so that $\partial A \cap (L_g \setminus L_f)^*$ is empty for all $g \in \mathbb{N}^\omega$
Theorem: [PFA] boundaries of regular closed subsets are not ccc over fin

Let $A \subset \mathbb{N}^\ast$ be regular closed. so $\mathcal{I} \cup \mathcal{J}$ is dense, where $a \in \mathcal{I}$ if $a^* \subset A$ and $b \in \mathcal{J}$ if $b^* \cap A = \emptyset$

Lemma: ∂A is ccc over fin implies \mathcal{I} and \mathcal{J} are P-ideals

LET \{a_n : n \in \omega\} \subset \mathcal{I}$ be pairwise disjoint;

for each $g \in \mathbb{N}^\omega$, let $L_g = \bigcup_n a_n \cap g(n)$.

since ∂A is ccc over fin there is an $f \in \mathbb{N}^\omega$ so that $\partial A \cap (L_g \setminus L_f)^*$ is empty for all $g \in \mathbb{N}^\omega$

so pick, for each g, $h_g : L_g \setminus L_f \mapsto 2$ so that $h_g^{-1}(0) \in \mathcal{I}$ and $h_g^{-1}(1) \in \mathcal{J}$.
\(\mathcal{I} \) and \(\mathcal{J} \) are P-ideals
\(\mathcal{I} \) and \(\mathcal{J} \) are P-ideals

we just picked, for each \(g \), \(h_g : L_g \setminus L_f \mapsto 2 \) so that \(h_g^{-1}(0) \in \mathcal{I} \) and \(h_g^{-1}(1) \in \mathcal{J} \).
\(\mathcal{I} \) and \(\mathcal{J} \) are P-ideals

we just picked, for each \(g \), \(h_g : L_g \setminus L_f \to 2 \) so that \(h_g^{-1}(0) \in \mathcal{I} \) and \(h_g^{-1}(1) \in \mathcal{J} \).

the \(L_g \)'s range over a \(P_{\omega_2} \)-ideal so
\(\mathcal{I} \) and \(\mathcal{J} \) are P-ideals

we just picked, for each \(g \), \(h_g : L_g \setminus L_f \mapsto 2 \) so that \(h_g^{-1}(0) \in \mathcal{I} \) and \(h_g^{-1}(1) \in \mathcal{J} \).

the \(L_g \)'s range over a \(P_{\omega_2} \)-ideal so

let \(h : \mathbb{N} \setminus L_f \mapsto 2 \) mod finite extend \(h_g \) for all \(g \in \mathbb{N}^\omega \)

ccc argument we’ll see later
\(\mathcal{I}\) and \(\mathcal{J}\) are P-ideals

we just picked, for each \(g\), \(h_g : L_g \setminus L_f \mapsto 2\) so that \(h_g^{-1}(0) \in \mathcal{I}\) and \(h_g^{-1}(1) \in \mathcal{J}\).

the \(L_g\)'s range over a \(P_{\omega_2}\)-ideal so

let \(h : \mathbb{N} \setminus L_f \mapsto 2\) mod finite extend \(h_g\) for all \(g \in \mathbb{N}^{\omega}\)
ccc argument we’ll see later

with \(b = h^{-1}(1)\) and \(J \subset \omega\) such that \(b \cap a_n\) is infinite for each \(n\),
we have that \(\partial A \cap (b \cap \bigcup_{n \in J} a_n)^*\) is not empty;
since ccc over fin implies such a \(J\) must be finite, we finish that each of \(\mathcal{I}\) and \(\mathcal{J}\) are P-ideals
now is time for CH * Cohen * OCA trick

we continue with proof that ∂A is not ccc over \text{fin}
now is time for CH * Cohen * OCA trick

we continue with proof that ∂A is not ccc over fin

let $\{a_\alpha, b_\alpha : \alpha \in \omega_1\}$ be disjoint pairs from $\mathcal{I} \times \mathcal{J}$ chosen so as to be cofinal.
now is time for $\text{CH} \ast \text{Cohen} \ast \text{OCA}$ trick

we continue with proof that ∂A is not ccc over fin

let $\{a_\alpha, b_\alpha : \alpha \in \omega_1\}$ be disjoint pairs from $\mathcal{I} \times \mathcal{J}$ chosen so as to be cofinal.

the technique (again, later) produces a proper poset collection of names 1-to-1 $\check{\rho} : 2^{<\omega} \mapsto \mathbb{N}$ and

$\{\alpha(f, \xi) : \xi \in \omega_1, f \in V \cap 2^\omega\} \subset \omega_1$
now is time for CH * Cohen * OCA trick

we continue with proof that ∂A is not ccc over fin

let $\{a_\alpha, b_\alpha : \alpha \in \omega_1\}$ be disjoint pairs from $\mathcal{I} \times \mathcal{J}$ chosen so as to be cofinal.

the technique (again, later) produces a proper poset collection of names 1-to-1 $\dot{\rho} : 2^{<\omega} \rightarrow \mathbb{N}$ and

$\{\alpha(f, \xi) : \xi \in \omega_1, f \in V \cap 2^\omega\} \subset \omega_1$

so that $\exists n = n(f, \xi, \eta), k = k(f, \xi, \eta)$ satisfying

$$\dot{\rho}(f \upharpoonright k) = n \in (a_\alpha(f, \xi) \cap b_\alpha(f, \eta)) \cup (a_\alpha(f, \eta) \cap b_\alpha(f, \xi))$$
now is time for CH * Cohen * OCA trick

we continue with proof that \(\partial A \) is not ccc over \(\text{fin} \)

let \(\{a_\alpha, b_\alpha : \alpha \in \omega_1\} \) be disjoint pairs from \(\mathcal{I} \times \mathcal{J} \) chosen so as to be cofinal.

the technique (again, later) produces a proper poset collection of names 1-to-1 \(\dot{\rho} : 2^{<\omega} \rightarrow \mathbb{N} \) and
\[
\{\alpha(f, \xi) : \xi \in \omega_1, f \in V \cap 2^\omega\} \subset \omega_1
\]
so that \(\exists n = n(f, \xi, \eta), k = k(f, \xi, \eta) \) satisfying
\[
\dot{\rho}(f \upharpoonright k) = n \in (a_\alpha(f, \xi) \cap b_\alpha(f, \eta)) \cup (a_\alpha(f, \eta) \cap b_\alpha(f, \xi))
\]

set \(C_f = \{\rho(f \upharpoonright k) : k \in \omega\} \subset \mathbb{N} \), and \(\Gamma_f = \{\alpha(f, \xi) : \xi \in \omega_1\} \)
continued
fix any “generic” filter meeting ω_1-many dense subsets of this iteration of proper posets, so as to have some uncountable $\mathcal{F} \subset 2^{<\omega}$ and $\{(a_\alpha, b_\alpha) : \alpha \in \omega_1\} \subset \mathcal{I} \times \mathcal{J}$, and values for $\alpha(f, \xi), n(f, \xi, \eta), k(f, \xi, \eta)$ for all $f \in \mathcal{F}$ and $\xi \in \omega_1$.
fix any “generic” filter meeting ω_1-many dense subsets of this iteration of proper posets, so as to have some uncountable $\mathcal{F} \subset 2^{<\omega}$ and $\{ (a_\alpha, b_\alpha) : \alpha \in \omega_1 \} \subset \mathcal{I} \times \mathcal{J}$, and values for $\alpha(f, \xi), n(f, \xi, \eta), k(f, \xi, \eta)$ for all $f \in \mathcal{F}$ and $\xi \in \omega_1$.

so that for $f \in \mathcal{F}$, $\xi \neq \eta \in \omega_1$,

$$\rho(f \upharpoonright k) = n \in (a_{\alpha(f, \xi)} \cap b_{\alpha(f, \eta)}) \cup (a_{\alpha(f, \eta)} \cap b_{\alpha(f, \xi)})$$
fix any “generic” filter meeting ω_1-many dense subsets of this iteration of proper posets, so as to have some uncountable $F \subset 2^{<\omega}$ and $\{(a_\alpha, b_\alpha) : \alpha \in \omega_1\} \subset I \times J$, and values for $\alpha(f, \xi), n(f, \xi, \eta), k(f, \xi, \eta)$ for all $f \in F$ and $\xi \in \omega_1$.

so that for $f \in F$, $\xi \neq \eta \in \omega_1$,

$$\rho(f \upharpoonright k) = n \in (a_{\alpha(f, \xi)} \cap b_{\alpha(f, \eta)}) \cup (a_{\alpha(f, \eta)} \cap b_{\alpha(f, \xi)})$$

we obtain that $C_f^* \cap \partial A$ is non-empty for all $f \in F$ because

$$\partial A \supset \bigcup_{\alpha \in \Gamma_f} (a_\alpha \cap C_f)^* \cap \bigcup_{\alpha \in \Gamma_f} (b_\alpha \cap C_f)^* \neq \emptyset$$
okay, we freeze a gap
okay, we freeze a gap

we have the gap \(\{a_\alpha, b_\alpha : \alpha \in \omega_1\} \); mod finite increasing and \(a_\alpha \cap b_\alpha \) empty. (enough that \(a_\alpha \)'s increase)
okay, we freeze a gap

we have the gap \{a_\alpha, b_\alpha : \alpha \in \omega_1\}; mod finite increasing and \(a_\alpha \cap b_\alpha\) empty. (enough that \(a_\alpha\)'s increase)

a pair \((\rho, H) \in Q\) if there is an \(n\) with \(\rho : 2^{<n} \leftrightarrow 1 \rightarrow \omega \rightarrow \mathbb{N}\), and \(H \in [\omega_1]^{<\omega}\) is such that

for each \(\alpha \neq \beta \in H\), and each \(t \in 2^n\), there is a \(k < n\) with \(\rho(t \upharpoonright k) \in (a_\alpha \cap b_\beta) \cup (a_\beta \cap b_\alpha)\)
okay, we freeze a gap

we have the gap \{a_\alpha, b_\alpha : \alpha \in \omega_1\}; mod finite increasing and \(a_\alpha \cap b_\alpha\) empty. (enough that \(a_\alpha\)'s increase)

a pair \((\rho, H) \in Q\) if there is an \(n\) with \(\rho : 2^{<n} \overset{1 \leftrightarrow 1}{\rightarrow} \mathbb{N}\), and \(H \in [\omega_1]^{<\omega}\) is such that

for each \(\alpha \neq \beta \in H\), and each \(t \in 2^n\), there is a \(k < n\) with \(\rho(t \upharpoonright k) \in (a_\alpha \cap b_\beta) \cup (a_\beta \cap b_\alpha)\)

assume \(\{(\rho, H_\xi) : \xi \in \omega_1\} \subset Q\); and that \(H_\xi \cap H_\eta = H\) for all \(\xi \neq \eta \in \omega_1\); and pairwise "isomorphic"

set \(A_\xi = \bigcap_{\alpha \in H_\xi \setminus H} a_\alpha\) and \(B_\xi = \bigcap_{\alpha \in H_\xi \setminus H} b_\alpha\)
okay, we freeze a gap

we have the gap \(\{a_\alpha, b_\alpha : \alpha \in \omega_1\} \); mod finite increasing and \(a_\alpha \cap b_\alpha \) empty. (enough that \(a_\alpha \)'s increase)

a pair \((\rho, H) \in Q \) if there is an \(n \) with \(\rho : 2^{<n} \rightarrow 1 \ \mathbb{N} \), and
\(H \in [\omega_1]^{<\omega} \) is such that

for each \(\alpha \neq \beta \in H \), and each \(t \in 2^n \), there is a \(k < n \) with
\(\rho(t \upharpoonright k) \in (a_\alpha \cap b_\beta) \cup (a_\beta \cap b_\alpha) \)

assume \(\{(\rho, H_\xi) : \xi \in \omega_1\} \subset Q \); and that \(H_\xi \cap H_\eta = H \) for all \(\xi \neq \eta \in \omega_1 \); and pairwise “isomorphic”

set \(A_\xi = \bigcap_{\alpha \in H_\xi \setminus H} a_\alpha \) and \(B_\xi = \bigcap_{\alpha \in H_\xi \setminus H} b_\alpha \) Let \(l_0 = J_0 = \omega_1 \), \(S_0 = \{i : \exists \omega^1 \xi \in l_0 \ i \in A_\xi\} \) and \(T_0 = \{i : \exists \omega^1 \eta \in J_0 \ i \in B_\xi\} \)
okay, we freeze a gap

we have the gap \(\{ a_\alpha, b_\alpha : \alpha \in \omega_1 \} \); mod finite increasing and \(a_\alpha \cap b_\alpha \) empty. (enough that \(a_\alpha \)'s increase)

a pair \((\rho, H) \in Q \) if there is an \(n \) with \(\rho : 2^{<n} \to \omega \), and \(H \in [\omega_1]^{<\omega} \) is such that

for each \(\alpha \neq \beta \in H \), and each \(t \in 2^n \), there is a \(k < n \) with
\(\rho(t \upharpoonright k) \in (a_\alpha \cap b_\beta) \cup (a_\beta \cap b_\alpha) \)

assume \(\{ (\rho, H_\xi) : \xi \in \omega_1 \} \subset Q; \) and that \(H_\xi \cap H_\eta = H \) for all \(\xi \neq \eta \in \omega_1; \) and pairwise “isomorphic”

set \(A_\xi = \bigcap_{\alpha \in H_\xi \setminus H} a_\alpha \) and \(B_\xi = \bigcap_{\alpha \in H_\xi \setminus H} b_\alpha \). Let \(l_0 = J_0 = \omega_1 \), \(S_0 = \{ i : \exists \omega_1 \xi \in l_0 \ i \in A_\xi \} \) and \(T_0 = \{ i : \exists \omega_1 \eta \in J_0 \ i \in B_\xi \} \)

there is \(i_0 \in S_0 \cap T_0; \) set \(l_1 = \{ \xi \in l_0 : i_0 \in A_\xi \} \);
\(J_1 = \{ \eta \in J_0 : i_0 \in B_\eta \} \)
okay, we freeze a gap

we have the gap \(\{a_\alpha, b_\alpha : \alpha \in \omega_1\} \); mod finite increasing and \(a_\alpha \cap b_\alpha \) empty. (enough that \(a_\alpha \)'s increase)

a pair \((\rho, H) \in Q\) if there is an \(n \) with \(\rho : 2^{<n} \rightarrow^{1} \mathbb{N} \), and \(H \in [\omega_1]^{<\omega} \) is such that

for each \(\alpha \neq \beta \in H \), and each \(t \in 2^n \), there is a \(k < n \) with \(\rho(t \upharpoonright k) \in (a_\alpha \cap b_\beta) \cup (a_\beta \cap b_\alpha) \)

assume \(\{(\rho, H_\xi) : \xi \in \omega_1\} \subset Q \); and that \(H_\xi \cap H_\eta = H \) for all \(\xi \neq \eta \in \omega_1 \); and pairwise “isomorphic”

set \(A_\xi = \bigcap_{\alpha \in H_\xi \setminus H} a_\alpha \) and \(B_\xi = \bigcap_{\alpha \in H_\xi \setminus H} b_\alpha \) Let \(l_0 = J_0 = \omega_1 \), \(S_0 = \{i : \exists \omega_1 \xi \in l_0 \ i \in A_\xi\} \) and \(T_0 = \{i : \exists \omega_1 \eta \in J_0 \ i \in B_\xi\} \)

there is \(i_0 \in S_0 \cap T_0 \); set \(l_1 = \{\xi \in l_0 : i_0 \in A_\xi\} \);
\(J_1 = \{\eta \in J_0 : i_0 \in B_\eta\} \) repeat \(2^n \) times getting \(\{i_t\}_{t \in 2^n} \)