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I. Cardinal Arithmetic

U. Abraham and M. Magidor

1. Introduction

Cardinal arithmetic is the study of rules and properties of arithmetic op-
erations mainly on infinite cardinal numbers. Since sums and products are
trivial in the sense that

m + n = m · n = max{m,n}

holds for infinite cardinals, cardinal arithmetic refers mainly to exponenti-
ation mn. If M is a set of cardinality m and [M ]n is the collection of all
subsets of M of cardinality n, then mn is equal to the cardinality of [M ]n.
Thus exponentiation is intimately connected with the power-set operation
and hence lies at the heart of set theory. Classical and basic properties of
cardinal arithmetic can be found, for example, in the Levy [12] and Jech [8]
textbooks (the latter contains more advanced material). The aim of this in-
troduction is to mention some elementary results and to put our chapter in
its context—not to give a historical introduction to the subject of cardinal
arithmetic, for which the reader is referred to these textbooks, to [7], and
to [9] for a more general perspective.

A theorem of Zermelo generalizing a result of J. König says that if 〈κi |
i ∈ I〉 and 〈λi | i ∈ I〉 are sequences of cardinals such that κi < λi holds for
every i ∈ I, then

Σi∈Iκi < Πi∈Iλi.

A theorem of Bukovský and of Hechler says that if µ is a singular cardinal
and the values 2γ for cardinals γ < µ stabilize, then 2µ = 2γ0 , where γ0 < µ
is such that 2γ0 = 2γ for all γ0 ≤ γ < µ.

Building on earlier results (of Hausdorff, Tarski, Bernstein and others)
Bukovský (1965) and Jech show how cardinal exponentiation can be com-
puted from the gimel function (which takes κ to κcf(κ)). Applications of
Solovay and Easton of the forcing method of Cohen (1963) show that for
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6 I. Cardinal Arithmetic

regular cardinals κ there is no restriction on 2κ except that which follows
from the Zermelo–König theorem, namely that cf(2κ) > κ (see [8] Chapter
3 for details). Thus the question about the possible values of κcf(κ) is most
interesting from our point of view when κ is a singular cardinal. It was
evident that it is much harder to apply the forcing method to singular car-
dinals. Involving large cardinals, work of Prikry and of Silver showed that it
is possible for a strong limit singular cardinal µ to satisfy 2µ > µ+ in some
generic extension. Using large cardinals Magidor proved the consistency of
ℵω being the first cardinal κ for which 2κ > κ+ holds. For a long time
it was believed that large cardinal and more complex applications of the
forcing method should yield greater flexibility for values of the power-set of
singular cardinals. A first indication that there are possible limitations was
the theorem of Silver (1974): If κ is a singular cardinal with uncountable
cofinality and if 2δ = δ+ for all cardinals δ < κ, then 2κ = κ+. This result
paved the way for further investigations by Galvin and Hajnal (1975). A
representative result of their work is the following: If ℵδ is a strong limit
singular cardinal with uncountable cofinality, then

2ℵδ < ℵ(|δ|cf(δ))+ .

For example, if ℵω1 is a strong limit cardinal, then

2ℵω1 < ℵ(2ℵ1 )+ .

The method of proof of these results relied in an essential way on the as-
sumption that cf(δ) > ℵ0. Shelah (1978) was able to prove similar results
for singular cardinals with countable cofinality. For example, if ℵω is a
strong limit cardinal, then

2ℵω < ℵ(2ℵ0 )+ . (I.1)

In a series of papers, culminating in his book [14], Shelah developed a pow-
erful theory with many applications, the pcf theory, which changed our view
of cardinal arithmetic. A remarkable result of this theory is the following.
If ℵω is a strong limit cardinal then

2ℵω < ℵω4 . (I.2)

If 2ℵ0 ≤ ℵ2, then (I.1) is a better bound than (I.2), but in general, since
(2ℵ0)+ can be arbitrarily high, ω4 seems to be a firmer bound.

The major definition in pcf theory is the set pcf(A) of possible cofinalities
defined for every set A of regular cardinals as the collection of all cofinalities
of ultraproducts ΠA/D with ultrafilters D over A. This basic and rather
simple definition appears in many places and is the basis of a very fruitful
investigation. It is a basic definition also in the sense that while the power-
set can be easily changed by forcing, it is very hard to change pcf(A).



2. Elementary definitions 7

Our aim in this chapter is to give a self-contained development of pcf
theory and to present some of its important applications to cardinal arith-
metic. Unless stated otherwise, all theorems and results in this chapter are
due to Shelah.

The fullest development of the pcf theory is in Shelah’s book [14], and the
interested reader can access newer articles (and the survey paper “Analytical
Guide”) in the archive maintained at Rutgers University.

In addition to this material, we have profited from expository papers
(Burke–Magidor [2], Jech [7], and unpublished notes by Hajnal), and in
particular a recently published book [6] which is very detailed, complete
and carefully written.

The authors wish to thank Maxim R. Burke, Matt Foreman, Stefan
Geschke, John Krueger, Klaas Pieter Hart, Donald Monk, and Martin Weese
for valuable corrections and improvements of earlier versions.

2. Elementary definitions

An ideal over a set A is a collection I ⊆ P(A) such that (1) I is closed under
subsets, that is, X ∈ I and Y ⊆ X implies Y ∈ I, and (2) I is closed under
finite unions, that is, X1, X2 ∈ I imply X1 ∪X2 ∈ I (and thus the union of
any finite sequence of members of I is in I). If A 6∈ I, then I is said to be
proper. We do not require that ideals be proper (see the definition of J<λ

in section 3.1).
The dual notion, that of a filter, is also used in this chapter. A collection

F ⊆ P(A) is a filter over A if (1) F is closed under supersets, that is, X ∈ F
and X ⊆ Y ⊆ A imply Y ∈ F , and (2) F is closed under finite intersections.
However, usually a filter is proper, that is ∅ 6∈ F .

If I is an ideal over A, then I∗ = {X ⊆ A | A \X ∈ I} is its dual filter.
Sets belonging to an ideal are intuitively “small” or “null”, whereas those of
a filter are “big” or “of measure one”. If I is an ideal over A, then subsets
of A not in I are called “positive”, and the collection of positive sets is
denoted I+.

I+ = {X ⊆ A | X 6∈ I}.

We shall deal in this section with functions from a fixed, infinite set A
into the ordinals. The class of these ordinal functions is denoted OnA. If
f, g ∈ OnA, then f ≤ g means that f(a) ≤ g(a) for all a ∈ A, and similarly
f < g means that f(a) < g(a) for all a ∈ A (this is called the everywhere
dominance ordering).

If F ⊂ OnA is a set, then the supremum function h = sup F is defined
on A by

h(a) = sup{f(a) | f ∈ F}.
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If f, g ∈ OnA, then we define

<(f, g) = {a ∈ A | f(a) < g(a)},

and similarly
≤(f, g) = {a ∈ A | f(a) ≤ g(a)}.

and
=(f, g) = {a ∈ A | f(a) = g(a)}.

If I is an ideal over A, then we define a relation ≤I over OnA by

f ≤I g iff {a ∈ A | g(a) < f(a)} ∈ I.

In general, for any relation R on the ordinals, we define RI over OnA by

f RI g iff {a ∈ A | ¬(f(a) R g(a))} ∈ I.

That is, the set of exceptions to the relation is null. In this way <I and
=I are defined over OnA. We remark that ≤I is weaker than “<I or =I”.
Note that ≤I is a quasi-ordering, and that <I is irreflexive (if I is a proper
ideal) and transitive.

The notations X ⊆I Y and X =I Y are also used for subsets X, Y ⊆ A,
in the obvious meaning. For example, X ⊆I Y iff X \ Y ∈ I.

For a filter F over A, the dual definitions f <F g, f ≤F g etc. will be
used as well. For example, f <F g means that {a ∈ A | f(a) < g(a)} ∈ F .
If F is the dual of an ideal I, then <F and <I are the same relation of
course.

Products of sets

Suppose that A is an index set and S = 〈Sa | a ∈ A〉 is a sequence of
non-empty sets of ordinals. Then the product, denoted ΠS or Πa∈A Sa, is
defined as

ΠS = {f | f ∈ OnA and ∀a ∈ A f(a) ∈ Sa}.
In particular, if h : A → On is any ordinal function defined on A, then

Πh (or Πa∈A h(a)) denotes the set of all ordinal functions f defined on A
such that f(a) ∈ h(a) for all a ∈ A.

If A is a set of cardinals, then ΠA (or Πa∈A a) denotes the set of all
ordinal functions f defined on A such that f(a) ∈ a for all a ∈ A. That is,
ΠA is Πh where h(a) = a is the identity function on A.

For an ideal I over A, the relations <I , ≤I , and =I are defined on Πh,
and the reduced product Πh/I consisting of all =I equivalence classes is
obtained. If g ∈ OnA, then we may write (somewhat informally) g ∈ Πh/I
rather than [g] ∈ Πh/I, that is Πh/I is considered as a class of functions
rather than equivalence classes.
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For a filter F over A, the reduced product Πh/F is defined in a similar
way.

A sequence of functions f = 〈fξ | ξ < λ〉 in ΠA is said to be <I -increasing
if ξ1 < ξ2 implies that fξ1 <I fξ2 . For typographical reasons we also say
that f is I-increasing, or “increasing modulo I” instead of <I -increasing. A
sequence is a function, and if fξ denotes a value of that function then the
sequence itself is denoted f , not f̄ or F .

Partial orderings

We say that (P,≤P ) is a quasi-ordering iff ≤P is a reflexive and transitive
relation on P . A strict partial ordering is a transitive and irreflexive relation
<P on P . In this chapter we consider both the quasi-ordering ≤I and the
strict partial ordering <I , defined on ordinal valued functions. A typical
example is P = Πh with the orderings <I and ≤I where h ∈ OnA is such
that h(a) > 0 is a limit ordinal for every a ∈ A. Thus every function in P
is <I bounded by another function there (for every f ∈ Πh, f <I f + 1,
where f + 1 is the function taking a to f(a) + 1). So our setting is a
structure (P,<P ,≤P ) where <P is a strict partial ordering, and ≤P is a
quasi-ordering. The following properties of (P, <P ,≤P ) are obvious for our
typical example:

P1 a <P b or a = b implies a ≤P b, but this implication is not necessarily
reversible.

P2 If a <P b ≤P c or a ≤P b <P c, then a <P c.

P3 There is no <P maximal member: for every p ∈ P there exists some
p′ ∈ P with p <P p′.

The following definitions apply whenever P is a set or a class, <P is a strict
partial ordering, and ≤P a quasi-ordering on P .

A collection B ⊆ P is said to be cofinal in P iff for all x ∈ P there is
some y ∈ B with x ≤P y. B is <P -cofinal if ∀x ∈ P∃y ∈ B(x <P y). If
B is cofinal and p ∈ P , then we can first find p′ ∈ P such that p <P p′

(by property P3 above) and then find y ∈ B such that p′ ≤P y. Then
p <P y. Thus we can replace ≤P with <P in the definition of “cofinal”. The
cofinality, cf(P,≤P ), of the partial ordering set is the smallest cardinality
of a cofinal subset. (Again cf(P,<P ) is similarly defined and these two
cardinals are equal if properties P1–P3 above hold.) This cardinal needs
not be regular, if the ordering is not total (linear). We say that (P,<P )
has “true” cofinality if it has a totally ordered subset B ⊆ P that is cofinal.
In this case the cofinality of B itself, and hence of P , is a regular cardinal.
Observe that if (P, <) has a linear cofinal subset whose order-type is a
regular cardinal λ, then λ is the cofinality of P (because no cofinal subset of
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P is of smaller cardinality, even if non-linear subsets are considered). When
(P, <P ) has true cofinality, we write

tcf (P, <P ) = λ

to express both the fact that a totally ordered cofinal set exists, and that λ
is the minimal cardinality of such a cofinal set.

In cases (when P3 above is not assumed) that (P,≤P ) has a greatest
element, then the cofinality of P is defined to be 1 and its true cofinality
is also 1, but since we assume that there are no <P maximal elements the
cofinality and true cofinality (when it exists) are always infinite cardinals.

The following observation was made by Pouzet. For any infinite cardinal
λ, tcf (P,<P ) = λ if and only if the following conditions hold:

1. (P, <P ) has a cofinal set of size λ.

2. (P, <P ) is λ-directed: any set X ⊆ P of size < λ has an upper bound
in (P, <P ).

It follows that if tcf(P,<P ) = λ and G ⊆ P is any cofinal subset, then
tcf G = λ as well.

A sequence 〈pξ | ξ < λ〉 of members of P is defined to be persistently
cofinal iff

∀h ∈ P ∃ξ0 < λ ∀ξ (ξ0 ≤ ξ < λ =⇒ h <P pξ). (I.3)

Clearly every <P increasing and cofinal sequence is persistently cofinal. If
〈pξ | ξ < λ〉 is persistently cofinal and pξ ≤P p′ξ for every ξ < λ, then
〈p′ξ | ξ < λ〉 is persistently cofinal as well.

If (P,≤P ) is a quasi-ordering and X ⊆ P , then an upper bound of X is
some a ∈ P such that x ≤P a for all x ∈ X. If a is an upper bound of X
and a ≤P a′ for every upper bound a′ ∈ P of X, then we say that a is a least
upper bound of X. We say that an upper bound a of X is a minimal upper
bound if there is no upper bound a′ of X such that a′ ≤P a ∧ ¬(a ≤P a′).

Suppose that (P, <P ,≤P ) is as above and X ⊆ P is such that for every
x ∈ X there is x′ ∈ X with x <P x′ (for example X is an increasing
sequence in <P ). Then a ∈ P is an exact upper bound of X iff

1. a is a least upper bound of X, and

2. X is cofinal in {p ∈ P | p <P a}. Namely p <P a implies ∃x ∈
X(p ≤P x).

Exercises are natural places to stop and think, but it is not an absolute
requirement to solve them on first encounter. In fact, they often become
easy with later material.
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2.1 Exercise. Let λ > |A| be a regular cardinal, and f = 〈fξ | ξ < λ〉 an
increasing sequence of functions in OnA in the < ordering (of everywhere
dominance). Then f has an exact upper bound h and cf(h(a)) = λ for every
a ∈ A. In fact sup f is the required upper bound.

We repeat the definitions given above, for (OnA, <I ,≤I) where I is a
proper ideal over A. So, if F ⊂ OnA then

h ∈ OnA is an upper bound of F iff f ≤I h for every f ∈ F.

A function h is a least upper bound of F if it is an upper bound and
h ≤I h′ for every upper bound h′ ∈ OnA of F . Here, the notions of least
upper bound and minimal upper bound coincide.

If h ∈ OnA and h(a) = 0 for some a ∈ A, then Πh = ∅. So, to avoid
triviality h(a) > 0 is assumed for all a ∈ A, whenever the expression Πh is
used. Hence if I is an ideal over A then every g ∈ OnA such that g <I h is =I

equivalent to some function in Πh. In fact, we shall usually consider reduced
products Πh/I for functions h such that h(a) > 0 is always a limit ordinal,
and hence every function in Πh is <-bounded (everywhere dominated) by
some function in Πh.

Suppose that F is a (non-empty) set of functions in OnA such that for
every f ∈ F there exists some f ′ ∈ F with f <I f ′. Then h ∈ OnA is
an exact upper bound of F if h is a least upper bound of F and for every
g <I h there is some f ∈ F with g <I f (namely F is cofinal in the lower
<I cone determined by h). Actually it is not necessary to require that h is
a least upper bound of F since this follows from the assumptions that h is
an upper bound of F and F is cofinal in Πh/I. Thus if F ⊆ Πh/I then h
is an exact upper bound of F iff F is cofinal in Πh/I.

If h is an exact upper bound of F and A0 ∈ I+ then h ¹ A0 is an exact
upper bound of 〈f ¹ A0 | f ∈ F 〉 with respect to the proper ideal I ∩P(A0).

If h is an exact upper bound of F with respect to some ideal I over A
and J ⊇ I is a larger ideal over A, then h is an exact upper bound of F
modulo J as well.

The definition of “true cofinality” of a reduced product is so important
for the pcf theory that we restate it for this case.

2.2 Definition. We say that tcf(Πh/I) = λ iff λ is a regular cardinal and
there exists a <I -increasing sequence f = 〈fξ | ξ < λ〉 in Πh that is cofinal
in Πh/I.

Projections

We shall often encounter the following situation.

1. A is a non-empty set of indices, and S = 〈Sa | a ∈ A〉 is a sequence
of sets of ordinals. The sup of S function is defined on A by taking
a ∈ A to sup Sa.
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2. An ordinal function f ∈ OnA is given that is bounded by the sup of S,
namely f(a) < sup Sa for every a ∈ A.

Then we define the projection of f onto ΠS, denoted proj(f, S), as the
function f+ ∈ ΠS defined by

f+(a) = min(Sa \ f(a)).

So f+(a) = f(a) in case f(a) ∈ Sa, and otherwise f+(a) is the least ordinal
in Sa above f(a). (There is such an ordinal by our assumption.) It is clear
that f+ is the least function in ΠS that bounds f , and that f1 ≤ f2 implies
f+
1 ≤ f+

2 .
We shall apply projections in the presence of an ideal I over A. If f ∈

OnA is any function, not necessarily bounded by sup of S, we define f+ =
proj(f, S) as follows. For a ∈ A such that f(a) < sup Sa, we define f+(a) =
min(Sa \ f(a)) as before, and for a ∈ A such that f(a) ≥ sup Sa we define
f+(a) = 0. Clearly, f1 =I f2 implies that f+

1 =I f+
2 . It follows, in case

f <I sup S, that f+ is the ≤I -least function in Πa∈A Sa that ≤I -bounds f ,
up to =I equivalence.

Given an ideal I over a set A and an ordinal function h ∈ OnA, we are
interested in the existence and value of the true cofinality of Πh/I. Our first
step is to reduce this question to ultraproducts of regular cardinals, and we
can proceed as follows. Choose for every a ∈ A a cofinal set S(a) ⊆ h(a)
of order-type cf(h(a)). By our assumption that h(a) > 0 is always a limit,
non-zero ordinal, the order type of S(a) is a regular infinite cardinal. Then
the collections Πh and Πa∈A S(a) are cofinally equivalent. That is for every
f ∈ Πh there is g ∈ ΠS with f ≤ g (namely it projection), and vice versa.

Next, Πa∈A S(a) is isomorphic to Πa∈A |S(a)| = Πa∈Acf(h(a)). This
is also the case when an ideal I over A is introduced and the relation
≤I is considered. Then Πh/I has the same cofinality and true cofinal-
ity as Πa∈A cf(h(a))/I. Hence it suffices to consider reduced products
Πa∈A k(a)/I of functions k such that k(a) are infinite regular cardinals.
As the following lemma shows, in some cases we may even take k to be
one-to-one.

2.3 Lemma. Suppose that c : A → Regular Cardinals is a function and
B = {c(a) | a ∈ A} is its range. Suppose I is any ideal over A, and J is its
Rudin-Keisler projection on B defined by

X ∈ J iff X ⊆ B and c−1X ∈ I,

where c−1X = {a ∈ A | c(a) ∈ X}. Then there is an order-preserving
isomorphism h : ΠB/J → Πa∈A c(a)/I defined by h([e]J) = [e ◦ c]I , for
every e ∈ ΠB. If |A| < min B, then

tcf(ΠB/J) = tcf(Πa∈A c(a)/I) (I.4)
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in the sense that existence of the true cofinality for one of ΠB/J and Πc/I
implies existence for the other poset as well, and these cofinalities are equal.

Proof. For every e ∈ ΠB define ē ∈ Πc by ē(a) = e(c(a)). That is, ē = e ◦ c.
Then e1 =J e2 iff ē1 =I ē2, and e1 <J e2 iff ē1 <I ē2. Thus h([e]J) = ē/I
induces an isomorphism from ΠB/J into Πc/I. Hence tcf (ΠB/J) is the
same as the true cofinality of

G = {h([e]J) | e ∈ ΠB}

in <I . If |A| < min B, then G will be shown to be cofinal in Πc/I and this
implies (I.4). (In general, if G is any cofinal subset of a partial ordering
(P,<P ), then G and P have the same true cofinality.)

Now G is cofinal in Πc/I, because any g ∈ Πc is bounded by f̄ where
f ∈ ΠB is defined by

f(b) = sup{g(a) | a ∈ A and c(a) = b}.

The fact that |A| < b is used here to deduce that this supremum is below
the regular cardinal b ∈ B, and hence that f ∈ ΠB. Since f̄/I ∈ G, G is
cofinal in Πc. a

To see how this lemma is applied, suppose that λ is a regular cardinal
and f = 〈fξ | ξ < λ〉 is a <I increasing sequence of functions fξ ∈ OnA.
Then (as we have said) h ∈ OnA is an exact upper bound of f iff f is cofinal
in Πh/I. In this case it follows that tcf(Πh/I) = λ and hence that the true
cofinality of Πa∈A cf(h(a)) is λ. Let B = {cf(h(a)) | a ∈ A} be the set of
cofinalities of the range of h. The preceding lemma shows that λ is the true
cofinality of a reduced product of B, if |A| < cf(h(a)) for every a ∈ A.

2.1. Existence of exact upper bounds

An important piece of the pcf theory is the determination of conditions
that ensure the existence of exact upper bounds. Recall that an exact
upper bound of a <I -increasing sequence 〈fξ | ξ < λ〉 of functions in OnA

is a function g ∈ OnA that bounds every fξ in the ≤I relation and satisfies
the additional requirement that if d <I g then d <I fξ for some ξ < λ.
The following and Definition 2.8 are central in our presentation of the pcf
theory.

2.4 Definition. [Strongly increasing] Suppose that I is an ideal over A and
f = 〈fξ | ξ ∈ L〉 is a <I -increasing sequence of functions fξ ∈ OnA, where
L is a set of ordinals. Then f is said to be strongly increasing if there are
null sets Zξ ∈ I, for ξ ∈ L, such that whenever ξ1 < ξ2 are in L

a ∈ A \ (Zξ1 ∪ Zξ2) =⇒ fξ1(a) < fξ2(a).
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2.5 Exercise. An even stronger property would be to require that there
are null sets Zξ ∈ I for ξ ∈ L such that whenever ξ1 < ξ2

a ∈ A \ Zξ2 → fξ1(a) < fξ2(a).

Prove that a sequence f = 〈fξ | ξ ∈ L〉 satisfies this stronger property iff
for every ξ ∈ L

sup{fα + 1 | α ∈ L ∩ ξ} ≤I fξ. (I.5)

(Recall that f + 1 is the function that takes x to f(x) + 1.)

2.6 Exercise. Let I be an ideal over A, λ > |A| be a regular cardinal, and
f = 〈fξ | ξ < λ〉 be a <I increasing sequence of functions in OnA. Then the
following conditions are equivalent:

1. f contains a strongly increasing subsequence of length λ.

2. f has an exact upper bound h such that cf(h(a)) = λ for (I-almost)
all a ∈ A.

3. f is cofinally equivalent to some < (i.e. everywhere) increasing se-
quence of length λ.

Hint. If f (or a subsequence) is strongly increasing, let Zξ ∈ I be the
null sets associated with fξ and define

h(a) = sup{fξ(a) | a 6∈ Zξ}.

Prove that h is an exact upper bound as required to prove that 1 implies 2.
Since |A| < λ, it is obvious that 2 implies 3. (For every a ∈ A choose

a cofinal subset of h(a) of order-type λ, and let dξ be the “flat” function
which assigns to dξ(a) the ξth point in the h(a) cofinal subset.)

To prove that 3 implies 1, use the following lemma.

2.7 Lemma. (The sandwich argument) Suppose that d = 〈dξ | ξ ∈ λ〉 is
strongly increasing and fξ ∈ OnA is such that

dξ <I fξ ≤I dξ+1 for every ξ ∈ λ.

Then 〈fξ | ξ ∈ λ〉 is also strongly increasing.

Proof. Let Zξ ∈ I be the null sets that affirm that the sequence d is strongly
increasing. For every fξ, sandwiched between dξ and dξ+1, there exists
Wξ ∈ I such that

dξ(a) < fξ(a) ≤ dξ+1(a) for all a ∈ A \Wξ.



2. Elementary definitions 15

Define Zξ = Wξ ∪Zξ ∪Zξ+1. Then Zξ ∈ I, and if ξ1 < ξ2 then for every
a ∈ A \ (Zξ1 ∪ Zξ2)

fξ1(a) ≤ dξ1+1(a) ≤ dξ2(a) < fξ2(a).

a
2.8 Definition. Suppose that I is an ideal over a set A, λ is a regular
cardinal, and f = 〈fξ | ξ ∈ λ〉 is a <I -increasing sequence of functions
fξ ∈ OnA. For any regular cardinal κ such that κ ≤ λ the following crucial
property of κ (and f etc.) is denoted (∗)κ:

(∗)κ Whenever X ⊆ λ is unbounded, then for some X0 ⊆ X
of order type κ, 〈fξ | ξ ∈ X0〉 is strongly increasing.

Thus (∗)κ is some kind of a partition relation, saying that any unbounded
subsequence 〈fξ | ξ ∈ X〉 contains a strongly increasing subsequence of
length κ. Clearly (∗)κ implies (∗)κ′ for all regular κ′ < κ.

2.9 Exercise. 1. Assume κ < λ. Prove that (∗)κ holds iff the set of
ordinals δ ∈ λ with cf(δ) = κ and such that 〈fξ | ξ ∈ X0〉 is strongly
increasing for some unbounded set X0 ⊆ δ is stationary in λ.

2. Use the Erdos-Rado theorem (2κ)+ → (κ+)2κ to prove that if λ ≥
(2|A|)+ and f is a <I increasing sequence of functions as above, of
length λ, then (∗)|A|+ holds.

Hint for 2. For i < j, if there exists some a ∈ A such that fi(a) > fj(a),
then define c(i, j) = a for such an a. Otherwise define c(i, j) = −1. The
homogeneous set must be of color −1, and (∗)|A|+ can be derived by taking
a subsequence.

We shall give (in Lemma 2.19) conditions that ensure property (∗)κ (with-
out any assumptions on 2κ), but meanwhile the following lemma and theo-
rem explain the main use of (∗)κ.

2.10 Definition (Bounding projection). Suppose that I is an ideal over A,
λ is a regular cardinal, and f = 〈fξ | ξ < λ〉 is a <I -increasing sequence of
functions in OnA. Let κ ≤ λ be any regular cardinal. We say that f has
the bounding projection property for κ if whenever S = 〈S(a) | a ∈ A〉 with
S(a) ⊂ On and |S(a)| < κ is such that the sequence f is <I -bounded by the
function sup of S, then there exists ξ < λ such that f+

ξ = proj(fξ, 〈Sa | a ∈
A〉) is an upper bound of f in the <I relation. (Recall that sup of S(a) =
supS(a) for all a ∈ A.)

2.11 Exercise. 1. If f = 〈fξ | ξ < λ〉 has the bounding projection
property for κ and f ′ = 〈f ′ξ | ξ < λ〉 is such that f ′ξ =I fξ for every ξ,
then f ′ too has the bounding projection property for κ.
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2. A seemingly weaker property is obtained by requiring that the sup of S
map <-bounds (i.e. everywhere) each fξ. Prove that these two defin-
itions are equivalent.

2.12 Lemma (The bounding projection lemma). Suppose that I is an ideal
over A, λ > |A| is a regular cardinal, and f = 〈fξ | ξ < λ〉 is a <I-increasing
sequence satisfying (∗)κ for a regular cardinal κ such that |A| < κ ≤ λ. Then
f satisfies the bounding projection property for κ.

Later on, we shall see that (∗)κ is, in fact, equivalent to the bounding
projection property for κ (see Theorem 2.15 for an exact formulation).

Proof. Suppose that the lemma is false and S is a counter-example, and
we shall obtain a contradiction. By changing each fξ on an I set, we do
not spoil the (∗)κ property, and we may assume that fξ(a) < sup Sa for all
a ∈ A (here Sa = S(a)). Then define

f+
ξ = proj(fξ, 〈Sa | a ∈ A〉).

Since f+
ξ is not a <I -upper bound, there exists ξ′ < λ such that ≤(f+

ξ , fξ′) ∈
I+. That is f+

ξ (a) ≤ fξ′(a) for an I-positive set of a ∈ A. Hence <(f+
ξ , fξ′′) ∈ I+

for every ξ′′ above ξ′. This enables the definition of an unbounded set X ⊆ λ
such that

if ξ, ξ′ ∈ X and ξ < ξ′ then <(f+
ξ , fξ′) ∈ I+.

Since (∗)κ holds, there exists a set X0 ⊆ X of order-type κ such that
〈fξ | ξ ∈ X0〉 is strongly increasing. Let Zξ ∈ I for ξ ∈ X0 be as in the
definition of strong increase (2.4).

For every ξ ∈ X0 let ξ′ = minX0 \ (ξ + 1) be the successor of ξ in X0,
and pick

aξ ∈ <(f+
ξ , fξ′) \ (Zξ ∪ Zξ′).

As κ > |A|, we may find a single a ∈ A such that a = aξ for a subset X1 of
X0 of cardinality κ. Now for ξ1 < ξ2 in X1

f+
ξ1

(a) < fξ′1(a) ≤ fξ2(a) ≤ f+
ξ2

(a).

(The first inequality is a consequence of aξ1 ∈ <(f+
ξ1

, fξ′1), the second follows
from ξ′1 ≤ ξ2 and the fact that

a = aξ1 = aξ2 ∈ A \ (Zξ′1 ∪ Zξ2),

and the third inequality is obvious from the definition of f+
ξ2

.)
But now f+

ξ (a) ∈ Sa turns out to be strictly increasing with ξ ∈ X1,
which is absurd since |Sa| < κ. a
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2.13 Theorem (Exact upper bounds). Suppose that I is an ideal over A,
λ > |A|+ is a regular cardinal, and f = 〈fξ | ξ ∈ λ〉 is a <I-increasing
sequence of functions in OnA that satisfies the bounding projection property
for |A|+. Then f has an exact upper bound.

Proof. Assume the |A|+ bounding projection property for a sequence f
that is <I -increasing of length a regular cardinal λ > |A|+. We shall prove
first that there exists a minimal upper bound to f , and then prove that
this bound is necessarily an exact upper bound. Seeking a contradiction,
suppose that f has no minimal upper bound. So for every h ∈ OnA, if h is
an upper bound to the sequence f then it is not a minimal upper bound,
and there is another upper bound h′ ∈ OnA to f such that h′ ≤ h and
<(h′, h) ∈ I+.

We shall define by induction on α < |A|+ a sequence Sα = 〈Sα(a) | a ∈
A〉 of sets of ordinals satisfying |Sα(a)| ≤ |A|, and such that:

1. The sequence of functions f is bounded by the map a 7→ sup Sα(a).
So, the projections can always be defined.

2. The sets Sα(a) are increasing with α: if α < β then Sα(a) ⊆ Sβ(a)
for every a ∈ A. For a limit ordinal δ, Sδ(a) =

⋃
α<δ Sα(a).

To define S0, we pick a function h0 that bounds f and define S0(a) =
{h0(a)}.

Suppose that Sα = 〈Sα(a) | a ∈ A〉 has been defined. Since the bounding
projection property for |A|+ holds and the cardinality of Sα(a) is ≤ |A|,
there exists some ξ = ξ(α) < λ such that hα = proj(fξ, S

α) is an upper
bound of f . It follows for every ξ′ satisfying ξ ≤ ξ′ < λ that hα =I

proj(fξ′ , S
α).

Since hα is not a minimal upper bound, there exists an upper bound u
to the sequence f such that u ≤ hα and

<(u, hα) ∈ I+.

Define Sα+1(a) = Sα(a) ∪ {u(a)}. Then proj(fξ, S
α+1) =I u for all ξ(α) ≤

ξ < λ.
Now let ξ < λ be a fixed ordinal greater than every ξ(α) for α < |A|+

(recall that λ is a regular cardinal above |A|+). Consider the functions
Hα = proj(fξ, S

α) for α < |A|+. Since fξ is above fξ(α), Hα =I hα. Thus
<(Hα+1,Hα) ∈ I+. Since α1 < α2 < |A|+ implies that Sα1(a) ⊆ Sα2(a)
for all a ∈ A, the sequence of projections 〈Hα | α < |A|+〉 thus obtained
satisfies the following property:

If α1 < α2 < |A|+, then Hα2 ≤ Hα1 and <(Hα2 ,Hα1) ∈ I+.
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Yet this is impossible and leads immediately to a contradiction. For every
α < |A|+ pick some a ∈ A such that Hα+1(a) < Hα(a). Then the same
fixed a ∈ A is picked for an unbounded set of indices α ∈ |A|+. Yet as the
functions Hα are ≤-decreasing, this yields an infinite strictly descending
sequence of ordinals! a

Now that the existence of a minimal upper-bound is established, the
following lemma concludes the theorem.

2.14 Lemma. Suppose that I is an ideal over A, λ is a regular cardinal,
and f = 〈fξ | ξ ∈ λ〉 is a <I-increasing sequence of functions in OnA that
satisfies the bounding projection property for κ = 3. Let h be a minimal
upper bound of f . Then h is an exact upper bound.

Proof. Assume that f satisfies the bounding projection property for 3, and
h is a minimal upper bound of f . Suppose that g ∈ OnA is such that g <I h.
We must find fξ in the sequence f with g <I fξ. For simplicity, and without
loss of generality, we can assume that g(a) < h(a) for all a ∈ A.

Define Sa = {g(a), h(a)} for every a ∈ A. The bounding projection
property implies the existence of ξ < λ for which f+

ξ = proj(fξ, 〈Sa | a ∈ A〉)
is an upper bound of the sequence f . We shall prove that g <I fξ as
required. Observe that

f+
ξ =I h (I.6)

or else f+
ξ (a) = g(a) < h(a) for a positive set of a’s in A. But then f+

ξ is
an upper-bound of f that is smaller than the minimal upper bound h on a
positive set of indices, and this is impossible. Hence (I.6). Yet, for every a
such that f+

ξ (a) = h(a), g(a) < fξ(a) follows from the fact that g(a) ∈ Sa.
Thus g <I fξ. This proves the lemma. a

The bounding projection lemma 2.12 and the exact upper bounds theo-
rem 2.13 show together that a <I -increasing sequence of length a regular
cardinal λ > |A|+ and which satisfies (∗)|A|+ has necessarily an exact upper
bound h. As we shall see in the following theorem it can be deduced that

∀a ∈ A cf(h(a)) ≥ |A|+.

2.15 Theorem. Suppose that I is an ideal over A, λ > |A|+ is a regular
cardinal, and f = 〈fξ | ξ ∈ λ〉 is a <I-increasing sequence of functions
in OnA. Then for every regular cardinal κ such that |A|+ ≤ κ ≤ λ the
following are equivalent.

1. (∗)κ holds for f .

2. f satisfies the bounding projection property for κ.
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3. The sequence f has an exact upper bound g for which

{a ∈ A | cf(g(a)) < κ} ∈ I.

Proof. Let κ be a regular cardinal such that |A|+ ≤ κ ≤ λ. Implication
1 =⇒ 2 was proved in Lemma 2.12, and so we next establish 2 =⇒ 3 .

Since f satisfies the bounding projection property for some cardinal that
is ≥ |A|+, it satisfies the bounding projection property for |A|+. Theorem
2.13 above implies that f has an exact upper bound g. This exact upper
bound is determined up to =I , and we may assume that g(a) is never 0 or
a successor ordinal (recall that the sequence f is <I -increasing).

Suppose that P = {a ∈ A | cf(g(a)) < κ} ∈ I+, in contradiction to
3. Choose, for every a ∈ P , S(a) ⊆ g(a) cofinal in g(a) and such that
order-type(S(a)) < κ. For a ∈ A \ P define S(a) = {g(a)}. Then the
bounding projection property for κ gives some ξ < λ such that the projec-
tion

f+
ξ = proj(fξ, 〈S(a) | a ∈ A〉)

is an upper bound of f in Πa∈A S(a). But this is impossible since f+
ξ ¹ P <

g ¹ P (everywhere on P ) is in contradiction to our assumption that g is the
≤I -minimal upper bound of f .

We now proceed with 3 =⇒ 1 . Suppose that g is an exact upper
bound for f such that cf(g(a)) ≥ κ for all a ∈ A (change g on a null set if
necessary). Choose S(a) ⊆ g(a) cofinal in g(a), closed, and with order type
cf(g(a)). So order-type(S(a)) ≥ κ. We prove that (∗)κ holds. Assuming
that X ⊆ λ is unbounded, we shall find X0 ⊆ X of order-type κ over which
f is strongly increasing. For this we intend to define by induction on α < κ
a function hα ∈ Πa∈A S(a) = ΠS and an index ξ(α) ∈ X such that

1. hα <I fξ(α) <I hα+1.

2. The sequence 〈hα | α < κ〉 is < increasing (increasing everywhere).
And hence it is certainly strongly increasing.

Then the sandwich argument (Lemma 2.7) will show that {fξ(α) | α < κ}
is strongly increasing.

The functions hα are defined as follows.

1. h0 ∈ Πa∈A S(a) is any function.

2. If δ < κ is a limit ordinal, then define

hδ = sup{hα | α < δ}.
That is

hδ(a) =
⋃
{hα(a) | α < δ}

for every a ∈ A. Since each S(a) has regular order type ≥ κ, and as
δ < κ, clearly hδ ∈ Πa∈A S(a).
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3. If hα ∈ Πa∈A S(a) is defined then it is bounded by g (since S(a) ⊆
g(a)) and hence (as g is an exact upper bound) hα <I fξ for some ξ ∈
X, which we denote ξ(α). Now let f+

ξ(α) = proj(fξ(α), S) be the pro-
jection function, and define hα+1 ∈ ΠS so that hα+1 > sup{hα, f+

ξ(α)}.

Thus hα+1 > hα and since fξ(α) ≤I f+
ξ(α) we have

hα <I fξ(α) <I hα+1, for every α. (I.7)

Hence
X0 = {ξ(α) | α ∈ κ} ⊆ X

is an increasing enumeration, and it is an evidence for (∗)κ (by the sandwich
argument and since 〈hα | α < κ〉 is strongly increasing). a

We shall give in Lemma 2.19 below a useful condition on f from which
(∗)κ follows. But first we need a combinatorial theorem.

2.16 Definition. If S ⊆ λ is a stationary set, then a club guessing sequence
is a sequence 〈Cδ | δ ∈ S〉, where each Cδ ⊆ δ is closed unbounded in δ,
such that for every closed unbounded D ⊆ λ there exists some δ ∈ S with
Cδ ⊆ D.

We shall use the notation Sλ
κ = {δ ∈ λ | cf(δ) = κ}. Clearly for regular

infinite cardinals κ < λ, Sλ
κ is stationary in λ.

2.17 Theorem (Club Guessing). For every regular cardinal κ, if λ is a
cardinal such that cf(λ) ≥ κ++, then any stationary set S ⊆ Sλ

κ has a club-
guessing sequence 〈Cδ | δ ∈ S〉 (such that Cδ ⊆ δ is closed unbounded of
order type κ).

Proof. We shall prove this for uncountable κ’s, though the theorem holds
for κ = ℵ0 as well.

Let S ⊆ Sλ
κ be any stationary set. Fix a sequence C = 〈Cδ | δ ∈ S〉 such

that Cδ ⊆ δ is closed unbounded of order type κ, for every δ ∈ S. If E ⊆ λ
is any closed unbounded set, define

C | E = 〈Cδ ∩ E | δ ∈ S ∩ E′〉.

Here E′ = {δ ∈ E | E ∩ δ is unbounded in δ} is the set of accumulation
points of E. Clearly E′ ⊆ E is closed unbounded. The sequence C | E is
defined on S ∩E′ in order to ensure that Cδ ∩E is closed unbounded in δ.

We claim that for some closed unbounded set E ⊆ λ, C | E is club-
guessing. (The theorem demands a sequence defined on every δ ∈ S, but
this is trivially obtained once a guessing sequence is defined on a closed
unbounded set intersected with S.)



2. Elementary definitions 21

To prove this claim, assume that it is false, and for every closed un-
bounded set E ⊆ λ there is some closed unbounded set DE ⊆ λ not guessed
by C | E. That is, for every δ ∈ S ∩ E′

Cδ ∩ E 6⊆ DE .

So we can define a decreasing (under inclusion) sequence of closed un-
bounded sets Eα ⊆ λ for α < κ+ by induction on α as follows.

1. E0 = λ.

2. If γ < κ+ is a limit ordinal, and Eα for α < γ are already defined, let
Eγ =

⋂{Eα | α < γ}. Clearly Eγ ⊆ λ is closed unbounded.

3. If Eα is defined, then Eα+1 = (Eα∩DEα)′. So for every δ ∈ S∩Eα+1,
Cδ ∩ Eα 6⊆ Eα+1.

Let E =
⋂{Eα | α < κ+}. Again E ⊆ λ is closed unbounded because

cf(λ) > κ+.
Now we get the contradiction. Take any δ ∈ S ∩ E. There exists some

α < κ+ such that Cδ ∩E = Cδ ∩Eα (since the sets Eα are decreasing in ⊆
and Cδ has cardinality κ). So Cδ ∩Eα = Cδ ∩Eα′ for every α′ > α, and in
particular for α′ = α + 1. But as δ ∈ S ∩ Eα+1, Cδ ∩ Eα 6⊆ Eα+1. a
2.18 Exercise. 1. Club guessing is a relative of the diamond principle

which gives much stronger guessing properties. For example, prove
that ♦+

ω2
implies a sequence 〈Cδ | δ ∈ Sω2

ω1
〉 with Cδ closed unbounded

in δ such that, for every closed unbounded set E ⊆ ω2, there exists a
closed unbounded set D ⊆ ω2 such that for every δ ∈ Sω2

ω1
∩D, Cδ is

almost contained in E (i.e. except a bounded set). Prove that it is
not possible to have full guessing at a closed unbounded set. That is,
it is not possible to require that Cδ ⊆ E for every δ ∈ Sω2

ω1
∩D.

2. Prove the club-guessing theorem for κ = ℵ0 as well.

Hint. For S ⊆ Sλ
ℵ0

fix C = 〈Cδ | δ ∈ S〉 where each Cδ is an ω-
sequence unbounded in δ. For every closed unbounded set E ⊆ λ
define the “gluing to E” sequence C | E = 〈C∗δ | δ ∈ S ∩ E∗〉 by

C∗δ (n) = max(E ∩ (Cδ(n) + 1)).

Try to prove that for some club E ⊆ λ, C | E is club guessing. Have
enough patience for ω1 trials.

Club guessing is used in the following lemma which produces sequences
that satisfy (∗)κ.

2.19 Lemma. Suppose that
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1. I is a proper ideal over A.

2. κ and λ are regular cardinals such that κ++ < λ.

3. f = 〈fξ | ξ < λ〉 is a sequence of length λ of functions in OnA that is
<I-increasing and satisfies the following requirement:

For every δ < λ with cf(δ) = κ++ there is a closed unbounded set
Eδ ⊆ δ such that for some δ′ ≥ δ in λ

sup{fα | α ∈ Eδ} <I fδ′ . (I.8)

Then (∗)κ holds for f .

Proof. Let S = Sκ++

κ be the stationary subset of κ++ consisting of all
ordinals with cofinality κ. Fix a club-guessing sequence on S: 〈Cα | α ∈ S〉.
So for every α ∈ S, Cα ⊆ α is closed unbounded, of order type κ, and for
every closed unbounded set C ⊆ κ++ there is δ ∈ S such that Cδ ⊆ C.

Now let U ⊆ λ be an unbounded set, and we shall find X0 ⊆ U of order
type κ such that 〈fξ | ξ ∈ X0〉 is strongly increasing. For this we first define
an increasing and continuous sequence 〈ξ(i) | i < κ++〉 ⊂ λ of order-type
κ++ by the following recursive procedure.

We start with an arbitrary ξ(0). For i limit, ξ(i) = sup{ξ(k) | k < i}.
Suppose for some i < κ++ that {ξ(k) | k ≤ i} has been defined.
For every α ∈ S define

hα = sup{fξ(k) | k ≤ i ∧ k ∈ Cα}. (I.9)

Then ask: is there an ordinal σ > ξ(i) below λ such that hα <I fσ? If the
answer is positive, let σα be the least such σ < λ, and, if negative, let σα

be ξ(i) + 1.
Since λ > κ++ is regular, we can define

ξ(i + 1) > sup{σα | α ∈ S} with ξ(i + 1) ∈ U.

It follows, in case the answer for hα is positive, that

hα <I fξ(i+1).

Finally D = {ξ(k) | k ∈ κ++} is closed and has order type κ++. Let
δ = sup D. Then D is closed unbounded in δ < λ, and cf(δ) = κ++. By
assumption there is a closed unbounded set Eδ ⊆ δ such that (I.8) holds.
Thus for some fδ′

sup{fξ | ξ ∈ Eδ} <I fδ′ . (I.10)

Observe that D ∩ Eδ is closed unbounded in δ, and thus C = {i ∈ κ++ |
ξ(i) ∈ Eδ} is closed unbounded. Hence for some α ∈ S, Cα ⊆ C. So (I.10)
implies that

sup{fξ(i) | i ∈ Cα} <I fδ′ . (I.11)
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Let Nα ⊆ Cα be the set of non-accumulation points of Cα, that is those
i ∈ Cα for which Cα∩ i is bounded in i. We shall prove that {fξ(i) | i ∈ Nα}
is strongly increasing. Since ξ(i + 1) ∈ U for every i, the sandwich lemma
(2.7) gives a strongly increasing subsequence of {fα | α ∈ U} of order-type
κ.

Claim. For every i < j both in Cα

sup{fξ(k) | k ≤ i ∧ k ∈ Cα} <I fξ(j). (I.12)

Proof of the claim. Recall how fξ(i+1) was defined. We considered (I.9)
and asked if hα is <I dominated by some fσ. The answer was positive, since
fδ′ is such a bound. Hence the claim and the lemma follow. a
2.20 Exercise. Let κ and λ be regular cardinals with κ++ < λ, and let
F be any function with dom(F ) ⊆ [λ]<κ and such that F (X) ∈ λ for
X ∈ dom(F ). Suppose that for every δ ∈ Sλ

κ++ there exists a closed un-
bounded set Eδ ⊆ δ such that [Eδ]<κ ⊆ dom(F ). Then the following set S
is stationary: the set of all ordinal α ∈ Sλ

κ for which there exists a closed
unbounded set D ⊆ α with the property that, for any a < b both in D,
F ({d ∈ D | d ≤ a}) < b.

A typical application of Lemma 2.19 is the following

2.21 Theorem. Suppose that I is a proper ideal over a set of regular car-
dinals A, and λ is a regular cardinal such that ΠA/I is λ-directed. If
〈gξ | ξ < λ〉 is any sequence in ΠA, then there exists a <I-increasing se-
quence f = 〈fξ | ξ < λ〉 of length λ in ΠA/I, such that gξ < fξ+1 for every
ξ < λ and (∗)κ holds for f for every regular cardinal κ such that κ++ < λ
and {a ∈ A | a ≤ κ++} ∈ I. Hence if κ = |A|+ is such a cardinal, then by
Theorem 2.15 and the fact that (∗)κ holds, we have an exact upper bound g
to the sequence f so that {a ∈ A | cf g(a) < κ} ∈ I.

Proof. We shall define a <I -increasing sequence 〈fξ | ξ < λ〉 in ΠA/I as
follows. At successor stages, if fξ is defined, let fξ+1 be any function in ΠA
that <-extends fξ and gξ.

1. At limit stages δ < λ there are two cases. In the first cf(δ) = κ++

where κ is regular and {a ∈ A | a ≤ κ++} ∈ I. Then fix some Eδ ⊆ δ
closed unbounded and of order type cf(δ), and define

fδ = sup{fi | i ∈ Eδ}.
Then fδ(a) < a when a > κ++, and thus fδ ∈ ΠA/I since {a ∈ A |
a ≤ κ++} ∈ I.

2. If δ < λ, but case 1 above does not hold, let fδ ∈ ΠA be any ≤I upper
bound of 〈fξ | ξ < δ〉 guaranteed by the λ-directedness assumption.
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Now Lemma 2.19 implies that (∗)κ holds for every regular cardinal κ of
the required form. a

In the following, we shall apply Lemma 2.19 (or rather its consequence
Theorem 2.21 above) and obtain an important representation of successors
of singular cardinals with uncountable cofinality. But first we introduce a
notation.

2.22 Notation. Let X be a set of cardinals, then

X(+) = {α+ | α ∈ X}

denotes the set of successors of cardinals in X.

2.23 Theorem (Representation of µ+ as true cofinality). Suppose that µ is
a singular cardinal with uncountable cofinality. Then there exists a closed
unbounded set C ⊆ µ such that

µ+ = tcf(ΠC(+)/Jbd)

where Jbd is the ideal of bounded subsets of C(+).

Proof. Let C0 ⊆ µ be any closed unbounded set of limit cardinals such that
|C0| = cf(µ) and all cardinals in C0 are above cf(µ). Clearly all cardinals
in C0 that are limit points of C0 are singular cardinals, and hence we can
assume that C0 consists only of singular cardinals.

Observe that ΠC
(+)
0 /Jbd is µ directed, and in fact is µ+ directed since

µ is a singular cardinal. Indeed, suppose that F ⊆ ΠC
(+)
0 has cardinality

< µ and define h(a) by h(a) = sup{f(a) | f ∈ F} for every a ∈ C
(+)
0 above

|F | (so that h(a) ∈ a), and h(a) is arbitrarily defined on smaller a’s. This
proves that every subset of ΠC

(+)
0 of cardinality < µ is bounded in <Jbd .

But then it follows that subsets of ΠC
(+)
0 of cardinality µ are also bounded:

decompose any such subset F =
⋃

α<cf(µ) Fα where each Fα has cardinality
< µ, then bound each Fα, and finally bound the sequence of bounds.

Thus ΠC
(+)
0 /Jbd is µ+ directed and we may construct a Jbd increasing

sequence f = 〈fξ | ξ < µ+〉 in ΠC
(+)
0 such that (∗)κ holds for every regular

cardinal κ < µ (apply Theorem 2.21 in its simpler form in which there is
no need to extend a given sequence g).

Theorem 2.15 implies that f has an exact upper bound h : C
(+)
0 → On

such that
{a ∈ C

(+)
0 | cf(h(a)) < κ} ∈ Jbd (I.13)

for every regular κ < µ. We may assume that h(a) ≤ a for every a ∈ C
(+)
0 ,

since the identity function is clearly an upper bound to f .
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2.24 Claim. The set {α ∈ C0 | h(α+) = α+} contains a closed unbounded
set.

Proof of Claim. Suppose toward a contradiction that for some stationary
set S ⊆ C0, h(α+) < α+ for every α ∈ S. Since all cardinals of C0 are
singular, cf(h(α+)) < α for every α ∈ S. Hence (by Fodor’s theorem)
cf(h(α+)) is bounded by some κ < µ on a stationary subset of α in S. But
this is in contradiction to (I.13) above.

Thus we have proved the existence of a closed unbounded set C ⊆ C0 such
that h(α+) = α+ for every α ∈ C. We claim that µ+ = tcf(ΠC(+)/Jbd).
But this is clear since h ¹ C(+), which is the identity function, is an exact
upper bound to the sequence 〈fξ ¹ C(+) | ξ < µ+〉 which is Jbd increasing
and of length µ+. This ends the proof of the claim and Theorem 2.23. a

A somewhat stronger form of this theorem is in Exercise 4.17.

2.25 Exercise. Prove the following representation theorem for µ+ in case
cf(µ) = ℵ0.

2.26 Theorem. If µ is a singular cardinal of countable cofinality then for
some unbounded set D ⊆ µ (of order type ω) of regular cardinals

µ+ = tcf(ΠD/Jbd)

where Jbd is the ideal of bounded subsets of D. For example, there exists a
set B ⊆ {ℵn | n < ω} such that tcf ΠB/Jbd = ℵω+1.

Hint. Let C0 be any ω sequence converging to µ, consisting of regular
cardinals. Repeat the proof above and define D = {cf(h(a)) | a ∈ C0}.
Then use Lemma 2.3.

The theory of exact upper bounds, which is the basis of the pcf theory,
can be developed in various ways. For example [10] presents Shelah’s Tri-
chotomy theorem, and extends it to further analyze the set of flat points.
Suitably interpreted, Theorem 2.15 is equivalent to Theorem 18 of [10]. The
following exercise establishes the connection between the Trichotomy and
the bounding projection property.

2.27 Exercise. (The Trichotomy theorem.) Suppose that λ > |A|+ is a
regular cardinal, and f = 〈fξ | ξ < λ〉 is a <I increasing sequence. Consider
the following properties of f and a regular cardinal κ such that |A| < κ ≤ λ:

Badκ There are sets of ordinals S(a) for a ∈ A such that |S(a)| < κ
and sup of S <I -dominates f , and there is an ultrafilter D over A,
extending the dual of I, such that for every α < λ f+

α <D fβ for some
β < λ (where f+

α = proj(fα, S)).
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Ugly There exists a function g ∈ OnA such that, forming tα = {a ∈ A |
g(a) < fα(a)}, the sequence 〈tα | α < λ〉 which we know to be ⊆I

increasing does not stabilize modulo I. That is, for every α there is
some β > α in λ such that tβ \ tα ∈ I+.

Goodκ There exists an exact upper bound g to the sequence f such that
cf(g(a)) ≥ κ for every a ∈ A.

Prove that the bounding projection property for κ is equivalent to ¬Badκ ∧
¬Ugly. Hence the Trichotomy theorem which says that if neither Badκ nor
Ugly, then Goodκ.

2.28 Exercise. (Lemma 0.D, Chapter V, [14]) If λ is a regular cardinal and
∀µ < λ µ|A| < λ, if fα ∈ OnA for α < λ, then for some unbounded E ⊆ λ,
for all α < β both in E, fα ≤ fβ and {a ∈ A | fα(a) = fβ(a)} does not
depend on α, β in E.

Hence, if I is an ideal over A and fα <I fβ for all α < β, then (∗)λ holds.

Hint. For a ∈ A fix some γa > sup{fα(a) | α ∈ λ}. For α < λ, a ∈ A,
define sα(a) = {fβ(a) | β < α} ∪ {γa}. Define gα = proj(fα, sα). Let
T = {δ < λ | cf(δ) = |A|+}. For α ∈ T there exists µα < α such that
gα = proj(fα, sµα). By Fodor’s theorem we may assume µ = µα is fixed
on a stationary set T ′ ⊆ T . Moreover, since sµ has cardinality |µ| and
|µ||A| < λ, we may assume that gα = g is fixed for α ∈ T

′′ ⊆ T ′, stationary.

2.2. Application: Silver’s Theorem

One form of Silver’s theorem says that if κ is a singular cardinal of un-
countable cofinality such that 2δ = δ+ for a stationary set of δ’s in κ, then
2κ = κ+. A slightly more general form is the following

2.29 Theorem. (Silver [17]) Let κ be a singular cardinal with uncountable
cofinality: ℵ0 < cf(κ) < κ. Suppose that there exists a stationary set of
cardinals S ⊆ κ such that, for every δ ∈ S, δcf(κ) = δ+. Then

κcf(κ) = κ+

as well.

Proof. Assume that S ⊆ κ, of order type cf(κ), is a stationary set of
cardinals such that for every δ ∈ S

δcf(κ) = δ+.

We have established the existence of a closed unbounded subset C ⊆ κ with
κ+ = tcf(ΠC(+)/Jbd). So, by taking S ∩ C for S, we may conclude that
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ΠS(+)/Jbd has true cofinality κ+ and let f = 〈fξ | ξ ∈ κ+〉 be Jbd increasing
and cofinal there.

Since λcf(κ) = λ+ for all λ ∈ S, there exists an encoding of all pairs
〈λ,X〉 where X ∈ [λ]cf(κ) by ordinals in λ+. Hence we can encode each
X ∈ [κ]cf(κ) by a function hX ∈ ΠS(+), where hX(λ+) gives the code of
X ∩ λ. Thus, if X 6= Y then hX and hY are eventually disjoint. Since each
hX is Jbd dominated by some fξ for ξ ∈ κ+, the following lemma concludes
the proof of our theorem.

2.30 Lemma. For every function g ∈ ΠS(+), the collection

F = {X ∈ [κ]cf(κ) | hX <Jbd g}
has cardinality ≤ κ.

Proof. Suppose that, on the contrary, |F | ≥ κ+. For each δ ∈ S fix an
enumeration of g(δ+) ∈ δ+ that has order-type≤ δ. Using this enumeration,
hX(δ+) is “viewed” as an ordinal in δ, denoted kX(δ) whenever hX(δ+) <
g(δ+). Thus for every X ∈ F , hX is translated into a pressing down function
defined on a final segment of S.

By Fodor’s theorem, for some stationary set SX ⊆ S, kX is bounded
on SX , say by δX < κ. Now the number of subsets of S is bounded by
2cf(κ) < κ, and hence there exists a subset F0 ⊆ F of cardinality κ+, a
fixed stationary set S0, and a fixed cardinal δ0 ∈ S such that SX = S0

and δX = δ0 for every X in F0. Moreover the translation function taking
δ ∈ S0 to that ordinal in δ0 that indirectly encodes X ∩ δ can also be
assumed to be independent of X ∈ F0, since there are at most δ

cf(κ)
0 = δ+

0

such functions. Yet this is absurd because the translation function of hX

completely determines X =
⋃{X ∩ δ | δ ∈ S0}. A contradiction which

proves the lemma and the theorem. a
2.31 Exercise. Show that the following form of Silver’s theorem is equiva-
lent to 2.29 (cf. [8]). Let κ be a singular cardinal with uncountable cofinal-
ity: ℵ0 < cf(κ) < κ. Suppose that λcf(κ) < κ for all λ < κ, and there exists
a stationary set of cardinals S ⊆ κ such that, for every δ ∈ S, δcf(δ) = δ+.
Then

κcf(κ) = κ+

as well.

2.32 Exercise.

The proof given by Baumgartner and Prikry (in [1]) to Silver’s theorem
simplifies the original proof, and is actually simpler than the proof given
here which serves to illustrate some of the pcf concepts. In addition the
Baumgartner–Prikry proof relies on very elementary notions. The following
exercise describes that proof. Assume that κ is a singular cardinal with
uncountable cofinality.
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1. If S ⊂ κ is a stationary set such that δcf(κ) = δ+ for δ ∈ S, define on
ΠS(+) a relation R by f R g iff {α ∈ S | f(α+) < g(α+)} is stationary.
Prove that for every g the cardinality of R−1g = {X ∈ κcf(κ) | hX R g}
is ≤ κ.

2. Prove that for every f, g ∈ ΠS(+) that are eventually different either
f R g or g R f . Take any collection Xi ∈ [κ]cf(κ), i < κ+, of different
subsets and consider H =

⋃
i∈κ+ R−1hXi . If κcf(κ) > κ+ there must

be some g 6∈ H, and hence hXi
R g for every i < κ+. This is a

contradiction.

2.3. Application: a covering theorem

In this subsection V denotes the universe of all sets, and U a transitive
subclass containing all ordinals and satisfying the axioms of ZFC. (See, for
example, Levy [12] for the meaning of statements concerning classes.) If X
and Y are sets of ordinals in V and U (respectively) and X ⊆ Y , then we
say that Y covers X.

The countable covering property of U (or between U and V ) is the state-
ment that any countable set of ordinals X is covered by some countable set
of ordinals Y in U (that is, Y is in U , and Y is countable in V ). Similarly,
for any cardinal κ, the ≤ κ covering property is that any set of cardinals
X of cardinality ≤ κ is covered by some set in U that has cardinality ≤ κ
in V . If the ≤ κ covering property holds for every cardinal κ, then we say
that the “full” covering property holds for U : every set of ordinals X is
covered by some set Y in U such that X and Y are equinumerous in V .
The following theorem gives conditions by which the full covering property
can be deduced from the countable covering property.

2.33 Theorem. (Magidor) Suppose U is a transitive class containing all
ordinals and satisfying all ZFC axioms. Moreover, assume that

1. the GCH holds in U ,

2. U and the universe V have the same cardinals, and moreover every
regular cardinal in U remains regular in V .

Then the countable covering property for U implies the full covering prop-
erty.

Proof. Observe first that if U and V have the same regular cardinals, they
have the same cardinals and cfU (κ) = cfV (κ) for every ordinal. Also, for
every set X ∈ U , |X|U = |X|V . We prove by induction on λ ∈ On that
every X ⊆ λ is covered by some Y in U of the same V cardinality. Of course
if X is bounded in λ then the inductive assumption applies, and hence we
can consider only sets that are unbounded in λ.
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If λ is not a cardinal, let |λ| be its cardinality. So |λ| < λ < λ+ in U as well
since V and U have the same cardinals. Since λ and |λ| are equinumerous
in U , the inductive assumption for |λ| implies that any subset of λ can be
covered by a set in U of the same cardinality.

So we assume that λ is a cardinal. If it is a regular cardinal, then any
unbounded X ⊆ λ is covered by λ itself. Hence we are left with the case
that λ is a singular cardinal, in V and hence in U since both universes have
the same regular/singular predicate. Again, if X ⊆ λ has cardinality λ then
λ itself is a covering as required, and hence we may assume that |X| < λ.

Assume first that cf(λ) = ω. Then cfU (λ) = ω as well. Suppose that an
unbounded set X ⊆ λ of cardinality < λ is given. Take in U an increasing
cofinal in λ sequence 〈λi | i ∈ ω〉. Since 2<λ = λ is assumed in U , there
exists in U an enumeration of length λ of all bounded subsets of λ of
cardinality ≤ |X|. Now consider the sequence X ∩ λi, i ∈ ω (where X is
the set to be covered) and cover first each X ∩ λi by some Yi ∈ U with
|Yi| = |X ∩ λi|. Then define αi ∈ λ to be the ordinal that encodes Yi in
U , and form the countable set A = {αi | i ∈ ω} of ordinals that encode X.
This countable set A can be covered by some countable set A′ in U , and we
can define in U a cover

Y =
⋃
{E ⊆ λi | E is encoded by some ordinal in A′ and |E| ≤ |X|}.

Clearly X ⊆ Y and |Y | = |X|.
Finally suppose that λ is a singular cardinal with uncountable cofinality,

and it is here that the theory developed so far is employed. Since V and U
have the same regular cardinals cfU (λ) = cf(λ).

We work for a while in U and apply the Representation Theorem 2.23 to
λ. In fact, we must analyze the proof and use the construction rather than
the theorem. Recall that we took an arbitrary closed unbounded set C0 ⊆ λ
consisting of singular cardinals, and such that |C0| = cf(λ) < min C0. Then
we constructed a Jbd increasing sequence f = 〈fξ | ξ < λ+〉 in ΠC

(+)
0 such

that for all limit ordinals δ < λ+ a closed unbounded set Eδ ⊆ δ was chosen
with |Eδ| = cf(δ) < λ and then

fδ =Jbd sup{fi | i ∈ Eδ}

was defined. All of this is done in U , but now we pass to V and deduce
that (∗)κ holds for every regular κ < λ (by Lemma 2.19). Hence f has an
exact upper bound h such that {a ∈ C

(+)
0 | cf(h(a)) < κ} ∈ Jbd for every

κ < λ. Now the argument of Claim 2.24 applies, and there exists (in V ) a
closed unbounded set C ⊆ C0 such that {fξ ¹ C(+) | ξ < λ+} is cofinal in
ΠC(+)/Jbd.

We continue now the proof that any set X ⊆ λ of cardinality λ0 < λ can
be covered in U by a set of the same cardinality. Since X is unbounded in
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λ, λ0 ≥ cf(λ). For every α ∈ C0 cover X ∩ α by some Yα ∈ U (a subset of
α) of cardinality ≤ λ0. We assume in U an enumeration of length α+ of all
subsets of α of size ≤ λ0. There is an index < α+ that encodes Yα in U .
The function d taking α+ ∈ C

(+)
0 to that coding ordinal is defined in V and

is bounded by some fξ ∈ U . Namely d ¹ C(+) <Jbd fξ ¹ C(+). In U , choose
for every α ∈ C0 a function gα : fξ(α+) → α that is one-to-one. Then in V
look at the values gα(d(α+)) < α, and find a stationary set S ⊆ C on which
these values are bounded, say by κ. The set {gα(d(α)) | α ∈ S} ⊆ κ can be
covered by some set Y in U that has the same cardinality (namely cf(λ)).
Now look in U at the set

⋃
α∈C0

g−1
α Y . Every index in g−1

α Y represents
a subset of α of cardinality ≤ λ0, and hence this yields a cover of X of
cardinality λ0. a
2.34 Exercise. There is actually no need to start with countable covering
in order to deduce covering for all higher cardinals. The following general-
ization is left as an exercise.

2.35 Theorem. As in Theorem 2.33 assume that V and U ⊆ V have the
same regular cardinals, and the GCH holds in U . Let λ0 be any cardinal
such that every countable set of ordinals is covered by some set in U of
cardinality ≤ λ0. Then any set of ordinals X is covered by some set in U
of cardinality |X|+ λ0.

3. Basic properties of the pcf function

For any set A of regular uncountable cardinals define

pcf(A) = {λ | for some ultrafilter U over A, λ = cf(ΠA/U)}.

Some easily verifiable properties:

1. If λ = tcf(ΠA/F ) for some filter F over A, then λ ∈ pcf(A). (For any
ultrafilter U that extends F λ = tcf(ΠA/U).)

2. A ⊆ pcf(A). Since for every a ∈ A we can take the principal ultrafilter
over A concentrating on {a}.

3. A ⊆ B implies pcf(A) ⊆ pcf(B). Because every ultrafilter D over
A can be extended to D′ over B, and the ultraproducts ΠA/D and
ΠB/D′ are the same.

4. For any sets A and B, pcf(A ∪ B) = pcf(A) ∪ pcf(B). Indeed, if
λ ∈ pcf(A ∪B), and D is an ultrafilter over A ∪B with ultraproduct
of cofinality λ, then either A ∈ D or B ∈ D (or both) and hence
λ ∈ pcf(A) or λ ∈ pcf(B). For the other direction use the previous
item.
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We say that A is an interval of regular cardinals if for some cardinals
α < β, A is the set of all regular cardinals κ such that α ≤ κ < β. This
term is slightly misleading because one may misinterpret it as saying that
all cardinals between α and β are regular.

3.1 Theorem (The “no holes” argument). Assume that A is an interval
of regular cardinals satisfying |A| < min A, and λ is a regular cardinal with
supA < λ. Let I be a proper ideal over A such that ΠA/I is λ directed.
Then λ ∈ pcf(A).

Proof. We may assume that every proper initial segment of A is in I (or
else substitute for A its first initial segment that is not in I.) It now follows
that A is infinite and unbounded (without a maximum).

Theorem 2.21 gives an <I -increasing sequence f = 〈fξ | ξ ∈ λ〉 in ΠA/I
that satisfies (∗)κ for every regular cardinal κ in A (and thus for smaller
cardinals of course). In particular (∗)|A|+ holds, and f has an exact upper
bound h ∈ OnA such that

{a ∈ A | cf(h(a)) < κ} ∈ I (I.14)

for every κ ∈ A (this by Theorem 2.15). Since the identity function id :
A → A taking a to a is clearly an upper bound of f , h(a) ≤ a for I-almost
all a ∈ A. Yet (I.14) implies that

{a ∈ A | cf(h(a)) < min A} ∈ I,

and hence we have min(A) ≤ cf(h(a)) ≤ a for I-almost all a ∈ A. Changing
h on a null set, we may assume for simplicity that this holds for every a ∈ A,
namely that

cf(h(a)) ∈ A for all a ∈ A

(as A is an interval of regular cardinals). Since the sequence f has length λ,
Πh/I has true cofinality λ. Consequently Πa∈Acf(h(a))/I has true cofinality
λ as well. Since |A| < min A, Lemma 2.3 gives a proper ideal J on B =
{cf(h(a)) | a ∈ A} ⊆ A, such that ΠB/J has true cofinality λ as well. So
λ ∈ pcf(A). We note in addition that J is the Rudin–Keisler projection
obtained via cf ◦ h, and hence (I.14) implies for every κ < sup(A) that
B ∩ κ ∈ J . a

Upon examination of the proof, the reader will notice that the follow-
ing slightly stronger formulation of the theorem can be obtained. In this
formulation the requirement that A is an interval is relaxed.

3.2 Theorem. Assume that A is a set of regular cardinals such that |A| <
min A, and λ is a regular cardinal such that sup A < λ. Suppose that I is a
proper ideal over A containing all proper initial segments of A and such that
ΠA/I is λ-directed. Then λ ∈ pcf(A′) for some set A′ of regular cardinals
such that
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1. A′ ⊆ [min(A), sup(A)), and A′ is cofinal in sup(A).

2. |A′| ≤ |A|.
In fact, λ is the true cofinality of ΠA′/J for an ideal J over A′ that contains
all bounded subsets of A′.

Proof. Follow the previous proof and let A′ be the set {cf(h(a)) | a ∈ A}. a
3.3 Notation. The property |A| < min A assumed for the set of regular
cardinals appearing in the theorem is so pervasive in the pcf theory that
it ought to be given a name. Following [6] we say that a set of regular
cardinals A is progressive if |A| < min A.

3.1. The ideal J<λ

Let A be a set of regular cardinals. For any cardinal λ define

J<λ[A] = {X ⊆ A | pcf(X) ⊆ λ}.
In plain words, X ∈ J<λ[A] iff for every ultrafilter D over A such that X ∈
D, cf(ΠA/D) < λ. That is, X “forces” the cofinalities of its ultraproducts
to be below λ.

Clearly J<λ[A] is an ideal over A, but it is not necessarily a proper ideal
since A ∈ J<λ[A] is possible. However, if λ ∈ pcf(A), then J<λ[A] is proper
(A 6∈ J<λ[A], or else pcf(A) ⊆ λ shows that λ 6∈ pcf(A)). When the identity
of A is obvious from the context, we write J<λ instead of J<λ[A]. Note that
if A ⊆ B then J<λ[A] = J<λ[B] ∩ P(A).

Let J∗<λ[A] be the dual filter over A. Then

J∗<λ[A] =
⋂
{D | D is an ultrafilter and cf(ΠA/D) ≥ λ}.

3.4 Theorem (λ-Directedness). Assume that A is a progressive set of reg-
ular cardinals. Then, for every cardinal λ, ΠA/J<λ[A] is λ-directed: any
set of less than λ functions is bounded in ΠA/J<λ[A].

Proof. The theorem holds trivially if A ∈ J<λ[A], since |ΠA/J<λ| = 1 in
this case. So we assume that J<λ is a proper ideal over A. Let κ0 = min A
be the first cardinal of A, and κ1, κ2 be the second, third etc. cardinals
of A. The case λ ≤ κn for n finite is quite obvious: if λ = κn then
J<λ = P({κ0, . . . , κn−1}) and for every family F ⊆ ΠA of cardinality < λ,
sup F ∈ ΠA, because (sup F )(a) =

⋃{f(a) | f ∈ F} < a, since |F | < λ ≤ a
for every a 6∈ {κ0, . . . , κn−1}). So we can certainly assume that λ > κn for
all n ∈ ω, and hence that {κn} ∈ J<λ.

Since any null subset of A can be removed without changing the structure
of ΠA/J<λ, we may assume that |A|+, |A|++, |A|+3 6∈ A. That is we can
assume that

|A|+3 < min A < λ.
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We shall prove by induction on λ0 < λ that ΠA/J<λ is λ+
0 -directed: for

every F = {fi | i ∈ λ0} ⊆ ΠA a family of functions of cardinality λ0, F has
an upper bound in ΠA/J<λ. The case λ0 < min(A) is obvious as we saw.

So let F = {fi | i ∈ λ0} ⊆ ΠA be a subset of ΠA where λ0 < λ and
assume that ΠA/J<λ is λ0-directed. Our aim is to bound F in ΠA/J<λ.

In case λ0 is singular, we take 〈αi | i < cf(λ0)〉 increasing and cofinal in
λ0, and obtain gi ∈ ΠA for every i < cf(λ0) that bounds {fξ | ξ < αi}. Then
we apply the inductive assumption again to the sequence {gi | i < cf(λ0)},
and obtain a bound to F .

Thus λ0 is assumed to be a regular cardinal above |A|+3. We shall replace
F by a J<λ increasing sequence that satisfies (∗)κ for κ = |A|+. That is,
using Theorem 2.21 we define a J<λ-increasing sequence 〈f ′ξ | ξ < λ0〉
satisfying (∗)κ and such that fi ≤ f ′i .

Hence we can assume that the sequence f = 〈fi | i < λ0〉 that we want
to dominate satisfies (∗)|A|+ and thus has an exact upper bound g ∈ OnA

in <J<λ[A] (by Theorem 2.15).
Since the identity function taking a ∈ A to a is an upper bound of our

sequence f , we may assume that g(a) ≤ a for all a ∈ A (by possibly changing
g on a null set). We intend to prove that B = {a ∈ A | g(a) = a} ∈ J<λ[A],
and thus that g =J<λ

g′ for some g′ ∈ ΠA which will show that g bounds f
in ΠA/J<λ[A].

Assume toward a contradiction that B 6∈ J<λ[A]. Then (by definition of
J<λ) there is an ultrafilter D over A such that B ∈ D and cf(ΠA/D) ≥ λ.
Clearly D ∩ J<λ = ∅, or else cf(ΠA/D) < λ. The sequence f of length
λ0 < λ is necessarily bounded in ΠA/D and we let h ∈ ΠA/D be such a
bound. So h(a) < g(a) for every a ∈ B (since g(a) = a for a ∈ B). Hence
(by definition of an exact upper bound) there is some fi in f such that
h ¹ B <J<λ[A] fi ¹ B. But this would imply h <D fi, which contradicts the
definition of h as an upper bound. a
3.5 Corollary. Suppose that A is a progressive set of regular cardinals. For
every ultrafilter D over A

cf(ΠA/D) < λ iff J<λ[A] ∩D 6= ∅.
Hence cf(ΠA/D) = λ iff J<λ+ ∩ D 6= ∅ and J<λ ∩ D = ∅. Namely,
cf(ΠA/D) = λ iff λ+ is the first cardinal µ such that J<µ ∩D 6= ∅.
Proof. If J<λ[A]∩D 6= ∅ and X ∈ J<λ[A]∩D, then by definition of X ∈ J<λ

cf(ΠA/D) < λ.

On the other hand, if J<λ ∩ D = ∅, then the above theorem stating
that ΠA/J<λ is λ-directed gives that ΠA/D is λ-directed as well. Thus
cf(ΠA/D) < λ is impossible in this case. The additional conclusion of the
corollary is easily derived. a
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This corollary allows us to investigate the relationship between J<λ[A]
and J<λ+ [A]. By definition X ∈ J<λ+ [A] iff X ⊆ A and for every ultrafilter
D over A containing X, cf(ΠA/D) ≤ λ. For this reason, J<λ+ [A] is also
denoted J≤λ[A].

If λ 6∈ pcf(A), for example when λ is singular, then J<λ = J≤λ. However,
if λ ∈ pcf(A) then J<λ⊂J≤λ (where ⊂ is the strict inclusion relation).
Indeed, if D is an ultrafilter over A such that cf(ΠA/D) = λ, then by
Corollary 3.5 applied to λ+, J≤λ ∩D 6= ∅, and certainly J<λ ∩D = ∅. This
argument shows that there is a one-to-one mapping from pcf(A) into P(A).
Namely choosing Xλ ∈ J≤λ \ J<λ for every λ ∈ pcf(A). Thus we have the
following theorem which is not evident from the definition of pcf.

3.6 Theorem. If A is a progressive set of regular cardinals, then

|pcf(A)| ≤ |P(A)|

Another consequence of Theorem 3.4 is that max pcf A exists.

3.7 Corollary (Max Pcf). If A is a progressive set of regular cardinals,
then the set pcf(A) contains a maximal cardinal.

Proof. Observe that if λ1 < λ2 are cardinals, then J<λ1 [A] ⊆ J<λ2 [A].
Define

I =
⋃
{J<λ[A] | λ ∈ pcf(A)}.

For every λ ∈ pcf(A) J<λ[A] is a proper ideal on A, and hence I (being the
union of a chain of proper ideals) is also a proper ideal.

Since I is a proper ideal it can be extended to a maximal proper ideal,
and we let E be any ultrafilter over A and disjoint to I. Let µ = cf(ΠA/E).
Since E is disjoint to I, it is disjoint to every J<λ[A] for λ ∈ pcf(A), and
hence cf(ΠA/E) ≥ λ by the previous corollary. That is µ = cf(ΠA/E) =
max(pcf A). As an important consequence we note that µ = suppcf(A) =
maxpcf(A) is a regular cardinal (since it is in pcf A). a

3.8 Exercise. If λ is a limit cardinal then

J<λ[A] =
⋃

θ<λ

J<θ[A].

Another way of writing this statement is that for every cardinal λ (not
necessarily limit)

J<λ[A] =
⋃

θ<λ

J<θ+ [A] =
⋃

θ<λ

J≤θ[A].

The no holes argument has the following consequence.
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3.9 Theorem. Suppose that A is a progressive interval of regular cardinals.
Then pcf(A) is again an interval of regular cardinals.

Proof. We may assume that A is infinite, as the finite case is clear. We may
also assume that A has no last cardinal (and deduce the general theorem
in a short argument). Let λ0 = max pcf(A). We must show that every
regular cardinal in the interval [min(A), λ0] is in pcf(A). Say µ = sup A.
Since µ 6∈ A (A has no maximum), µ is a singular cardinal (because A is
progressive). Since A ⊆ pcf(A) and A is an interval of regular cardinals,
the substantial part of the proof is in showing that any regular cardinal in
(µ, λ0] is in pcf(A). But if λ is a regular cardinal and µ < λ ≤ λ0, then
J<λ is a proper ideal (since λ ≤ max pcf(A)). By Theorem 3.4, ΠA/J<λ is
λ-directed. Hence Theorem 3.1 applies, and λ ∈ pcf(A). a

We can get some information even when A is not progressive.

3.10 Definition. Suppose that A is a set of regular cardinals and κ <
min(A) is a cardinal. We define

pcfκ(A) =
⋃
{pcf(X) | X ⊆ A and |X| = κ}.

That is, pcfκ(A) is the collection of all cofinalities of ultraproducts of A
over ultrafilters that concentrate on subsets of A of power κ (or less).

Similarly to the previous theorem stating that pcf(A) of a progressive
interval A is again an interval of regular cardinals, we have the following.

3.11 Theorem. If A is an interval of regular cardinals, and κ < min A,
then pcfκ(A) is an interval of regular cardinals.

Proof. Define λ0 = sup pcfκ(A), and let λ be a regular cardinal such
that min(A) < λ < λ0. Then for some X ⊆ A such that |X| = κ,
λ ≤ max pcf(X). Hence J<λ[X] is proper, and we may assume that every
initial segment of X is in J<λ. As X is progressive, ΠX/J<λ is λ-directed,
Theorem 3.2 can be applied, and it yields that λ ∈ pcf(X ′) for some X ′ ⊆ A
of cardinality ≤ |X|. Thus λ ∈ pcfκ(A). a

Yet another consequence of the λ-directedness of ΠA/J<λ is the following

3.12 Theorem. Suppose that A is a progressive set of regular cardinals and
B ⊆ pcf(A) is also progressive, then

pcf(B) ⊆ pcf(A).

Hence if pcf(A) is progressive, then pcf pcf(A) = pcf(A).
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Proof. Suppose that µ ∈ pcf(B), and let E be an ultrafilter over B such
that

µ = cf(Πb∈B b/E). (I.15)

For every b ∈ B fix an ultrafilter Db over A such that

b = cf(ΠA/Db).

Define an ultrafilter D over A by

X ∈ D iff {b ∈ B | X ∈ Db} ∈ E. (I.16)

We shall prove that µ = cf(ΠA/D), and hence that µ ∈ pcf(A).
Consider (I.15). If, for every b ∈ B, (b′, <b′) is an ordering that has true

cofinality b, then µ = cf(Πb∈B b′/E) as well. Hence

µ = cf(Πb∈B(ΠA/Db)/E). (I.17)

It remains to implement this iterated ultraproduct as an ultraproduct of
A over D. For this aim consider the Cartesian product B × A and the
ultrafilter P defined on B ×A by

H ∈ P iff {b ∈ B | {a ∈ A | 〈b, a〉 ∈ H} ∈ Db} ∈ E.

For any pair 〈b, a〉 let r(〈b, a〉) = a be its right projection. The reader
should prove the following isomorphism

3.13 Claim. Π〈b,a〉∈B×A r(〈b, a〉)/P ∼= Πb∈B(ΠA/Db)/E.

Thus µ (an arbitrary cardinal in pcf(B)) is the cofinality of the ultra-
product Π〈b,a〉∈B×A r(〈b, a〉)/P . But the projection map r : B × A → A,
shows that the ultrafilter D defined in (I.16) is the Rudin–Keisler projec-
tion of P , and we are almost in the situation of Lemma 2.3, which concludes
that µ = cf(ΠA/D). However Lemma 2.3 cannot be used verbatim because
|B ×A| < min A is not assumed. All we know is that |B| < min B. Recall
(Lemma 2.3) that we had a map from ΠA into Π〈b,a〉∈B×A r(〈b, a〉) carrying
h ∈ ΠA to h̄ ∈ Π〈b,a〉∈B×A r(〈b, a〉) defined by

h̄(〈b, a〉) = h(a).

We have proved that this map induces an isomorphism denoted L of ΠA/D
into Π〈b,a〉∈B×A r(〈b, a〉), but the problem is to prove that the image of L
is cofinal there. Let λ = min B. We have assumed that |B| < λ, and we
shall use the fact that the reduced product modulo J<λ[A] is λ-directed as
follows. Given any g ∈ Π〈b,a〉∈B×A r(〈b, a〉) define for every b ∈ B the map
gb ∈ ΠA by

gb(a) = g(b, a).
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Then {gb | b ∈ B} is bounded in ΠA/J<λ[A] by some function h ∈ ΠA, and
we thus have that gb <J<λ[A] h for every b ∈ B. Hence

gb <Db
h

since J<λ ∩ Db = ∅ (because cf(ΠA/Db) = b and λ ≤ b). So g <P h̄ is
concluded. a

4. Generators for J<λ

A very useful property of the J<λ ideals is that for every cardinal λ ∈ pcf(A)
there is a set Bλ ⊆ A such that

J<λ+ [A] = J<λ[A] + Bλ

which means that the ideal J<λ+ [A] is generated by the sets in J<λ[A] ∪
{Bλ}. That is, for every X ⊆ A, X ∈ J<λ+ iff X \ Bλ ∈ J<λ. So Bλ is a
maximal set in J≤λ[A] in the sense that if Bλ ⊆ C ∈ J≤λ then C\Bλ ∈ J<λ.
The property that J≤λ[A] is generated from J<λ[A] by the addition of a
single set is called normality.

Normality of λ ∈ pcf(A) is obtained by means of a universal sequence for
λ, and these sequences are studied first.

4.1 Definition. Suppose that λ ∈ pcf(A). A sequence f = 〈fξ | ξ < λ〉
of functions in ΠA, increasing in <J<λ

, is a universal sequence for λ if and
only if, for every ultrafilter D over A such that λ = cf(ΠA/D), f is cofinal
in ΠA/D.

4.2 Theorem (Universally Cofinal Sequences). Suppose that A is a pro-
gressive set of regular cardinals. Then every λ ∈ pcf(A) has a universal
sequence.

Proof. The proof is obvious in case λ = min A. (The functions fξ defined
by fξ(a) = ξ will do.) Therefore we shall assume that |A|+ < min A < λ.

Suppose that there is no universal sequence for λ. This means that for
every J<λ-increasing sequence f = 〈fξ | ξ < λ〉 there is an ultrafilter D over
A such that cf(ΠA/D) = λ but f is bounded in ΠA/D.

The proof is typical in that it makes |A|+ steps and obtains a contradic-
tion from the continuous failure at every step.

So for each α < |A|+ we shall define a J<λ increasing sequence fα =
〈fα

ξ | ξ < λ〉 in ΠA, and assume that no fα is universal. The definition is
by recursion on α < |A|+ and the fact that ΠA/J<λ is λ directed is used in
this construction.

If we visualize the functions fα
ξ as lying on a matrix 〈ξ, α〉 ∈ λ × |A|+,

then in each column α the functions fα
ξ are <J<λ

increasing with ξ, and in
each row ξ the functions fα

ξ are ≤ increasing with α.
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To begin with f0 = 〈f0
ξ | ξ < λ〉 is an arbitrary <J<λ

-increasing sequence
in ΠA/J<λ of length λ.

At limit stages δ < |A|+ we define fδ = 〈fδ
ξ | ξ < λ〉 by induction on

ξ < λ so that for every ξ < λ

1. fδ
i <J<λ

fδ
ξ for i < ξ.

2. sup{fα
ξ | α < δ} ≤ fδ

ξ .

Suppose now that fα is defined. Since it is not universal, there exists an
ultrafilter Dα over A such that

1. cf(ΠA/Dα) = λ, and

2. the sequence fα is bounded in <Dα
.

So we can choose fα+1
0 that bounds the sequence fα in <Dα

. The sequence
fα+1

i for 0 < i < λ is defined recursively by requiring that

1. fα+1 is J<λ increasing and cofinal in ΠA/Dα, and

2. fα+1
i ≥ fα

i (everywhere) for every i < λ.

To sum-up, we have constructed <J<λ
-increasing sequences fα, each of

length λ, and ultrafilters Dα over A, for α < |A|+ so that:

1. for every i < λ, 〈fα
i | α < |A|+〉 is increasing in ≤ (i.e., for α1 < α2 <

|A|+, fα1
i (a) ≤ fα2

i (a) for every a).

2. fα = 〈fα
ξ | ξ < λ〉 is bounded in ΠA/Dα by fα+1

0 .

3. fα+1 is cofinal in ΠA/Dα.

Now let h = sup{fα
0 | α < |A|+}. Then h ∈ ΠA, because |A|+ < min A.

Find for every α < |A|+ an index iα < λ such that h <Dα fα+1
iα

. This is
possible since fα+1 is cofinal in ΠA/Dα. Now pick an ordinal i < λ such
that i > iα for every α < |A|+. This is possible since λ > |A|+ is regular.
So h <Dα fα+1

i for every α < |A|+.
Define

Aα = ≤(h, fα
i ).

The sets Aα ⊆ A are increasing with α, that is Aα ⊆ Aβ for α < β < |A|+
(since fα

i ≤ fβ
i ).

The contradiction is obtained when we show that Aα ⊂ Aα+1 (strict
inclusion) for every α < |A|+ (and contrast this with Aα ⊆ A). For this,
observe the following two statements.

1. Aα 6∈ Dα, because fα
i <Dα fα+1

0 ≤ h.

2. Aα+1 ∈ Dα, because h <Dα fα+1
i .
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a
If λ ∈ pcf(A) and D is an ultrafilter over A such that cf(ΠA/D) = λ,

then A ∩ (λ + 1) ∈ D because otherwise {a ∈ A | a > λ} ∈ D and then
cf(ΠA/D) > λ. Thus, if 〈fξ | ξ ∈ λ〉 is a universal sequence for λ, we may
assume that fξ(a) = ξ for all a ∈ A \ λ.

4.3 Exercise. If λ = max pcf(A), then any universal sequence for λ is
cofinal in ΠA/J<λ

Universal sequences can be used to prove the following

4.4 Theorem. For every progressive set A of regular cardinals,

cf(ΠA,<) = max pcf(A).

Hence cf(ΠA,<) is a regular cardinal.

Proof. The partial ordering < in this theorem refers to the everywhere dom-
inance relation on ΠA. The required equality is obtained by first proving ≥
and then ≤.

Suppose that λ = max pcf(A), and D is an ultrafilter over A such that
λ = cf(ΠA/D). Then <D extends < on ΠA. That is, for f, g ∈ ΠA, f < g
implies f <D g. This shows that any cofinal set in (ΠA, <) is also cofinal
in (ΠA,<D), and hence that cf(ΠA,<) ≥ cf(ΠA, <D) = λ.

Now we must exhibit a cofinal subset of (ΠA,<) of cardinality λ in order
to conclude the proof.

Fix for every µ ∈ pcf(A) a universal sequence fµ = 〈fµ
i | i < µ〉 for µ.

Let F be the set of all functions of the form

sup{fµ1
i1

, fµ2
i2

, . . . , fµn

in
}

where µ1, µ2, . . . , µn is a finite sequence of cardinals in pcf(A) (with possible
repetitions) and ik < µk are arbitrary indices. (Recall the definition of
sup{g1, . . . , gn}: at every a ∈ A it returns max{g1(a), . . . , gn(a)}). Clearly
|F | = λ.

4.5 Claim. F is cofinal in (ΠA,<).

Proof of claim. Let g ∈ ΠA be any function there. Consider the following
collection of subsets of A:

I = {>(f, g) | f ∈ F}.

(Recall that > (f, g) = {a ∈ A | f(a) > g(a)}.) This collection is closed
under unions, that is

>(f1, g) ∪ >(f2, g) = >(sup{f1, f2}, g).
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If A ∈ I, namely if > (f, g) = A for some f ∈ F , then evidently g < f
as required. But otherwise we obtain a contradiction by extending I to
a proper maximal ideal J , and considering µ = cf(ΠA/J). Then fµ, the
universal sequence for µ, is cofinal in ΠA/J , and at the same time it is ≤J

bounded by g since f ≤I g for all f ∈ F . Yet this is obviously impossible,
and thus the theorem is proved. a

If f ′ = 〈f ′ξ | ξ < λ〉 is universal sequence for λ, and if f = 〈fξ | ξ < λ〉 is
another sequence in ΠA, <J<λ

-increasing and dominating f ′ (for all ξ′ < λ
there is ξ < λ such that f ′ξ′ ≤J<λ

fξ) then clearly f is also universal for λ.
Hence we can use Theorem 2.21 and deduce the following

4.6 Lemma. Suppose that A is a progressive set of regular cardinals, and
λ ∈ pcf(A). Let µ be the least ordinal such that A∩µ 6∈ J<λ[A]. Then there
is a universal sequence for λ that satisfies (∗)κ with respect to J<λ[A] for
every regular cardinal κ such that κ < µ, and in particular for κ = |A|+.

Proof. Observe first that µ ≤ λ + 1. (Let D be an ultrafilter over A such
that λ = cf(ΠA/D). Then A ∩ (λ + 1) ∈ D, or else {a ∈ A | a > λ} ∈ D
and then cf(ΠA/D) > λ. Thus λ ∈ pcf(A ∩ (λ + 1))). Observe also that
µ = λ is impossible, since λ is regular and A ∩ λ is necessarily bounded in
λ as |A| < min A ≤ λ. The case µ = λ + 1 is rather trivial: λ ∈ A and
J<λ[A] = P(A ∩ λ). In this case the functions defined by fξ(a) = ξ for all
a ∈ A \ λ are as required (and (∗)λ holds). So we assume that µ < λ and
A ∩ µ is unbounded in µ.

Let 〈f ′ξ | ξ < λ〉 be any universal sequence for λ. Theorem 2.21 can be
applied to this sequence and to I = J<λ. This gives a sequence fξ ∈ ΠA

that dominates f
′
ξ and that satisfies (∗)κ for every regular cardinal κ such

that κ++ < λ and {a ∈ A | a ≤ κ++} ∈ I. Thus (∗)κ holds for every regular
κ < µ. a

We intend to prove next the existence of a generating set for J<λ+ . For
this we need first the following characterization of generators for J<λ+ .

4.7 Lemma. If A is a progressive set of regular cardinals and B ⊆ A is
any subset, then

J<λ+ [A] = J<λ[A] + B (I.18)

if and only if
B ∈ J<λ+ [A] and (I.19)

If D is any ultrafilter over A with cf(ΠA/D) = λ
then B ∈ D.

(I.20)
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Proof. Assume first that (I.18) holds. Then (I.19) is obvious. We prove
(I.20). If D is any ultrafilter over A with cf(ΠA/D) = λ, then D∩J<λ+ [A] 6=
∅, and if X ∈ D ∩ J<λ+ [A] is any set in the intersection then (I.18) implies
that X \B ∈ J<λ[A]. Since D ∩ J<λ = ∅, B ∈ D follows.

Now assume that (I.19) and (I.20) hold, and we prove that J<λ+ [A] =
J<λ[A] + B.

Since B ∈ J<λ+ [A], J<λ+ [A] ⊇ J<λ[A] + B.
To prove J<λ+ [A] ⊆ J<λ[A] + B assume X ∈ J<λ+ [A] and prove that

X\B ∈ J<λ as follows. Let D be any ultrafilter over A such that X\B ∈ D.
Since X ∈ J<λ+ , cf(ΠA/D) < λ+. But cf(ΠA/D) = λ is impossible as
B 6∈ D and we assume (I.20). Hence cf(ΠA/D) < λ. a
4.8 Theorem (Normality). If A is a progressive set of regular cardinals,
then every cardinal λ ∈ pcf(A) is normal: there exists a set Bλ ⊆ A such
that

J<λ+ [A] = J<λ[A] + Bλ.

Proof. By Lemma 4.6, there exists a universal sequence f = 〈fξ | ξ < λ〉 for
λ that satisfies (∗)|A|+ . Hence f has an exact upper bound h in OnA/J<λ.
Since the identity function is an upper bound of f , we can assume that
h(a) ≤ a for every a ∈ A. Now define

B = {a ∈ A | h(a) = a}.

We are going to prove that B satisfies the two properties (I.19) and (I.20)
which concludes the theorem and shows that B is a generator for J<λ+ . We
first prove that B ∈ J<λ+ [A]. If D is any ultrafilter over A containing B
then

cf(ΠA/D) ≤ λ (I.21)

is deduced in two steps. If D ∩ J<λ 6= ∅, then the strict inequality of (I.21)
holds by definition of J<λ. But if D ∩ J<λ = ∅, then h remains the exact
upper bound of the <D increasing sequence f in <D (just because D extends
the dual filter of J<λ). So cf(Πh/D) = λ. As h is =D equivalent to the
identity function over A, ΠA/D has cofinality λ.

To prove (I.20), suppose that D is an ultrafilter over A and cf(ΠA/D) =
λ. If B 6∈ D then {a ∈ A | h(a) < a} ∈ D, and thus [h]D (the =D-
equivalence class of h) is in ΠA/D. Yet D∩J<λ[A] = ∅ (or else cf(ΠA/D) <
λ), and this implies that fξ <D h for every ξ < λ (because fξ <J<λ

h). So
f is not cofinal in ΠA/D, in contradiction to f being a universal sequence
for λ. a

The generator set Bλ is not uniquely determined, but if B1 and B2 are two
generators (they both satisfy I.18), then the symmetric difference B14B2

is in J<λ[A]. So generators are uniquely determined modulo J<λ, and we
can use a “generic” notation.
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4.9 Notation. For a progressive set of regular cardinals A and for any
cardinal λ ∈ pcf(A), Bλ[A] denotes a subset B ⊆ A such that (I.19) and
(I.20) hold, or equivalently

J<λ+ [A] = J<λ[A] + B. (I.22)

We also use the expression “B is a Bλ[A] set” if (I.22) holds for B. We
often write Bλ instead of Bλ[A], when the identity of A is obvious.

The sequence 〈Bλ[A] | λ ∈ pcf(A)〉 is called a “generating sequence” for
A, because the ideal J<λ is generated by the collection {Bλ0 | λ0 < λ} (see
Corollary 4.12). It is convenient to write Bλ = ∅ when λ 6∈ pcf(A).

The following conclusion will be needed later on.

4.10 Lemma. Suppose that A is a progressive set of regular cardinals. If
A0 ⊆ A and λ ∈ pcf(A0), then Bλ[A0] =J<λ[A0] A0 ∩Bλ[A]. (This justifies
our inclination to write Bλ instead of Bλ[A0].)

Proof. We prove (I.19) and (I.20) for A0 ∩ Bλ[A]. Clearly A0 ∩ Bλ[A] ∈
J≤λ[A0]. If D0 is any ultrafilter over A0 such that cf(ΠA0/D0) = λ, then
A0 ∩Bλ[A] ∈ D0 can be argued as followed. Assume A0 \Bλ[A] ∈ D0, and
extend D0 to an ultrafilter over A, still denoted D0. Then cf(ΠA/D0) = λ
and Bλ[A] 6∈ D0 is in contradiction to (I.20). a

For a progressive set A with λ = max pcf(A) and B a Bλ[A] set, we have
by (I.20) that

A \B ∈ J<λ (I.23)

since A ∈ J<λ+ [A]. Hence we can take Bmax(pcf(A)) = A.
We will conclude that the ideal J<λ[A] is (finitely) generated by the sets

{Bµ[A] | µ < λ} using the following “compactness” theorem, which says
that any set X ∈ J<λ is covered by a finite collection of Bµ’s for µ < λ.

4.11 Theorem. (Compactness) Suppose that A is a progressive set of reg-
ular cardinals and 〈Bλ | λ ∈ pcf(A)〉 is a generating sequence for A, then
for any X ⊆ A

X ⊆ Bλ1 ∪Bλ2 . . . ∪Bλn

for some finite set {λ1, . . . , λn} ⊆ pcf(X).

Proof. This can be proved by induction on λ = max pcf(X), since X \Bλ ∈
J<λ and so max pcf(X \Bλ) < λ. a

4.12 Corollary. If A is a progressive set of regular cardinals then for every
cardinal λ, for every set X ⊆ A, X ∈ J<λ[A] iff X is included in a finite
union of sets from {Bλ′ | λ′ < λ}.
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Observe that λ 6∈ pcf(A \ Bλ[A]). For let D0 be any ultrafilter over
A0 = A \ Bλ[A]. Extend D0 to an ultrafilter D over A. Since ΠA0/D0 is
isomorphic to ΠA/D, it suffices to prove that cf(ΠA/D) 6= λ. But since
A0 is disjoint to Bλ[A], Bλ[A] 6∈ D. So (I.20) implies this, and we have
obtained the following result. A set B ∈ J<λ+ [A] is a Bλ set if and only if
λ 6∈ pcf(A \B).

If λ ∈ pcf(A) and f = 〈fξ | ξ < λ〉 is a universal sequence for λ, then the
definition of Bλ[A] = {a ∈ A | h(a) = a}, where h is an exact upper bound
of f , shows that 〈fξ ¹ Bλ | ξ < λ〉 is cofinal in ΠBλ/J<λ. This result is
sufficiently interesting to be isolated as a theorem (and we give a somewhat
different proof).

4.13 Theorem. If A is a progressive set of regular cardinals and λ ∈
pcf(A), then for some set B ⊆ A we have tcf(ΠB/J<λ[B]) = λ. In fact,
any universal sequence for λ is cofinal in ΠBλ/J<λ and thus shows that

tcf(ΠBλ/J<λ) = λ. (I.24)

Proof. We know that there exists a universal sequence for λ and that there
exists a generating set Bλ. We will prove that any universal sequence f =
〈fξ | ξ < λ〉 for λ is cofinal in ΠBλ/J<λ. That is, if h ∈ ΠBλ is any function
then

≤(fξ ¹ Bλ, h) ∈ J<λ for some ξ < λ.

Otherwise the sets ≤(fξ ¹ Bλ, h) are positive and decreasing with ξ < λ
(mod J<λ). Hence there is a filter over Bλ containing them all and extending
the dual filter of J<λ[Bλ]. Extending this filter to an ultrafilter D over A,
D∩J<λ[A] = ∅ and the ultraproduct ΠA/D has cofinality λ (as Bλ ∈ D and
D∩J<λ = ∅). In this ultrapower h bounds all functions in f , in contradiction
to the assumption that f is universally cofinal. Thus the restriction to Bλ[A]
of any universal sequence for λ is cofinal in ΠBλ/J<λ. a

In particular, (I.24) shows (again) that λ = max pcf(Bλ) whenever λ ∈
pcf(A). We have, more generally, the following characterization.

4.14 Lemma. The following are equivalent for every filter F over a pro-
gressive set of regular cardinals A and for every cardinal λ.

1. tcf(ΠA/F ) = λ.

2. Bλ ∈ F , and F contains the dual filter of J<λ[A].

3. cf(ΠA/D) = λ for every ultrafilter D that extends F .

In particular we get for every ultrafilter D that

cf(ΠA/D) = λ iff Bλ ∈ D and D ∩ J<λ = ∅. (I.25)
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Equivalently,

cf(ΠA/D) = λ iff λ is the least cardinal such that Bλ ∈ D. (I.26)

Proof. Fix a filter F and a cardinal λ. 1 =⇒ 3 is obvious. Assume 3 and
we prove 2. Since cf(ΠA/D) = λ for every ultrafilter D that extends F ,
Bλ ∈ D for every such ultrafilter (by (I.20)). Hence Bλ ∈ F . It is clear that
F contains the dual filter of J<λ, or else an extension of F can be found
that intersects J<λ and thus has an ultraproduct with cofinality below λ.

Assume now 2, and then the fact already proved that tcf(ΠBλ/J<λ) = λ
shows that tcf(ΠA/F ) = λ (as ΠA/F and ΠBλ/F are isomorphic, since
Bλ ∈ F ).

In particular, if D is an ultrafilter over A, then D ∩ J<λ = ∅ iff the dual
filter of J<λ is contained in D. So the equivalence of 1 and 2 of the lemma
estabilshes (I.25). a

4.15 Exercise. 1. If D is an ultrafilter over a progressive set A, and λ
is the least cardinal such that Bλ ∈ D, then λ = cf(ΠA/D).

2. If A is a progressive set of regular cardinals and E = pcf(A) is also
progressive, then

pcf(Bλ[A]) =J<λ[E] Bλ[pcf(A)].

(Use Theorem 3.12.)

4.16 Exercise. If A is a progressive set of regular cardinals then for every
cardinal λ, λ = max pcf(A) iff λ = tcf(ΠA/J<λ) iff λ = cf(ΠA/J<λ).

In Theorem 2.23 we have proved for µ, a singular cardinal with uncount-
able cofinality, that µ+ = tcf(ΠC(+)/Jbd) for some closed unbounded set of
cardinals C ⊂ µ. Since J<µ = J<µ+ ⊆ Jbd, an apparently stronger claim is
obtained by asserting tcf(ΠC(+)/J<µ[C(+)]) = µ+.

4.17 Exercise (The Representation Theorem). If µ is a singular cardinal
with uncountable cofinality, then for some closed unbounded set of cardinals
C ⊆ µ, tcf(ΠC(+)/J<µ[C(+)]) = µ+. Thus µ+ = max pcf C(+).

Hint. Let C0 ⊆ µ be a closed unbounded set of limit cardinals such that
µ+ = tcf(ΠC

(+)
0 /Jbd). Then define C ⊆ C0 so that C(+) = Bµ+ [C(+)

0 ].
Prove that C0 \ C is bounded in µ. Then use Theorem 4.13.

4.18 Exercise. For any filter F over a progressive set A of regular cardinals,
define

pcfF (A) = {cf(ΠA/D) | D an ultrafilter over A that extends F}.
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1. Prove that max pcfF (A) exists.

Hint. Look at the minimal λ such that F ∩ J≤λ 6= ∅.
2. Deduce that cf(ΠA/F ) = maxpcfF (A), so that the cofinality of this

partial ordering is a regular cardinal.

3. If B ⊆ pcfF (A) is progressive, then pcf(B) ⊆ pcfF (A).

4. Suppose that A is a progressive interval of regular cardinals, and let
F be the filter of co-bounded subsets of A (X ∈ F iff A\X is bounded
in A). Then pcfF (A) is an interval of regular cardinals.

5. The cofinality of [µ]κ

Some of the most important applications of the pcf theory will be described
in this section. For example, we will prove that ℵℵ0

ω < ℵ(2ℵ0 )+ . For this re-
sult we investigate obedient universal sequences and their relationship with
characteristic functions of elementary substructures. Some of the theorems
about obedient sequences proved and used in this section will be applied
in the following section to “elevated” sequences. These sequences are not
obedient, but they share enough properties with the obedient sequences to
enable uniform proofs. This explains our desire to deal here with the shared
properties (I.32 and I.33) rather than with obedient sequences.

As usual, A is a progressive set of regular cardinals. Recall how Bλ[A]
was obtained. First a universal sequence 〈fξ | ξ < λ〉 for λ was defined
which satisfied (∗)|A|+ , then an exact upper bound h was constructed, and
finally the set Bλ = {a ∈ A | h(a) = a} was shown to generate J<λ+ [A]
over J<λ[A]. Once this is done, we have greater flexibility in tuning-up Bλ

by using elementary substructures, and we therefore say first a few words
about these structures.

5.1. Elementary substructures

Elementary substructures are extensively used in the pcf theory and its
applications, and in this section we study some basic properties of their
characteristic functions.

Let Ψ be a “sufficiently large” cardinal, and HΨ be the ∈-structure whose
universe is the collection HΨ of all sets hereditarily of cardinality less than
Ψ (which means having transitive closure of size < Ψ). The expression
“sufficiently large” depends on the context and means that Ψ is regular and
is sufficiently large to include in HΨ all sets that were discussed so far. We
also add to the structure HΨ a well-ordering <∗ of its universe. We shall
seldom mention <∗ explicitly, but it allows us to assume that the objects
we talk about are uniquely determined.
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For the rest of this section κ denotes a regular cardinal such that |A| <
κ < min(A).

5.1 Definition. An increasing and continuous chain of length λ of elemen-
tary substructures of HΨ is a sequence 〈Mi | i < λ〉 such that

1. Each Mi is an elementary substructure of HΨ,

2. i1 < i2 < λ implies that Mi1 ⊂ Mi2 , and

3. for every limit ordinal δ < λ, Mδ =
⋃

i<δ Mi (this is continuity).

We say in this paper that an elementary substructure M ≺ HΨ is “κ-
presentable” if and only if M =

⋃
i<κ Mi where 〈Mi | i < κ〉 is an increasing

and continuous chain of length κ such that

1. M has cardinality κ and κ + 1 ⊂ M .

2. For every i < κ, Mi ∈ Mi+1. (Thus Mi ∈ Mj for i < j.)

We do not make any assumption on the cardinality of Mi for i < κ, which
may be κ or smaller than κ.

In order to define a κ-presentable elementary substructure define, re-
cursively, the approaching structures Mα, and observe that each Mα (and
even the sequence 〈Mα | α ≤ β〉) is an element of HΨ and thus can be
incorporated in Mβ+1 ≺ HΨ.

We shall use the following observation. Let M̄α denote the ordinal closure
of Mα ∩On. That is γ ∈ M̄α iff γ ∈ Mα ∩On or γ is a limit of ordinals in
Mα. Since Mα ∈ Mα+1 and Mα ⊂ Mα+1, M̄α ∈ Mα+1, and M̄α ⊆ Mα+1

For any structure N , we let ChN be the “characteristic function” of N .
That is, the function defined on any regular cardinal µ such that ‖N‖ < µ
by

ChN (µ) = sup N ∩ µ.

Then ChN (µ) ∈ µ since µ is regular and N is of smaller cardinality.
A very useful fact that we are going to prove is that if M is κ-presentable,

then for cardinals λ < µ, M ∩ µ can be reconstructed from M ∩ λ and the
characteristic function of M restricted to the successor cardinals in the
interval (λ, µ]. We shall use the following form of this fact.

5.2 Theorem. Suppose that M and N are elementary substructures of HΨ.
Let κ < µ be any cardinals (κ is always regular uncountable).

1. If M ∩ κ ⊆ N ∩ κ, and, for every successor cardinal α+ ∈ M ∩ µ + 1,

sup M ∩ α+ = sup M ∩N ∩ α+, (I.27)

then M ∩ µ ⊆ N ∩ µ.
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2. Therefore, if M and N are both κ-presentable and for every successor
cardinal α+ ∈ µ + 1

sup M ∩ α+ = sup N ∩ α+, (I.28)

then M ∩ µ = N ∩ µ.

Proof. This is a bootstrapping argument. We prove by induction on δ, a
cardinal in the interval [κ, µ], that M ∩ δ ⊆ N ∩ δ. For δ = κ this is an
assumption. If δ is a limit cardinal, then M ∩ δ ⊆ N ∩ δ is an immediate
application of the inductive assumption that M ∩ δ′ ⊆ N ∩ δ′ for every
cardinal δ′ in the interval [κ, δ). Assume now that M ∩ δ ⊆ N ∩ δ, and
we shall argue for M ∩ δ+ ⊆ N ∩ δ+. If δ+ 6∈ M , then M contains no
ordinals from the interval [δ, δ+] and the claim is obvious. So assume that
δ+ ∈ M . (And hence δ+ ∈ N since [δ, δ+]∩N 6= ∅.) Let γ = sup(M ∩δ+) =
sup(M ∩N ∩ δ+). Now if α ∈ M ∩ γ, then there exists some β ∈ M ∩N ∩ γ
such that α < β. Consider the structure (HΨ,∈, <∗) of which M and N are
elementary substructures, and pick an injection f : β → δ that is minimal
with respect to the well-ordering <∗ of HΨ. Then f ∈ M ∩ N because
f is definable from the parameter β. Since α ∈ M , f(α) ∈ M , and hence
f(α) ∈ N . But then, applying f−1 in N , we get α ∈ N . Thus M∩β ⊆ N∩β.

For the second part of the theorem, let M =
⋃

ξ<κ Mξ and N =
⋃

ξ<κ Nξ

be presentations for M and N . Observe that M ∩ κ = N ∩ κ = κ. Let
α+ be any successor cardinal in the interval (κ, µ]. We assume that γ =
ChM (α+) = ChN (α+). We claim that there is a subset of M ∩ N that
is closed and unbounded in γ. Indeed, the approaching substructures Mξ

provide a closed unbounded sequence 〈sup(Mξ ∩ α+) | ξ ∈ κ〉 which is
cofinal in γ. Likewise, N contains a closed unbounded sequence of order-
type κ cofinal in γ. The intersection of these closed unbounded sets is as
required. Hence sup M ∩ α+ = sup N ∩ α+ = sup M ∩N ∩ α+ holds and
M ∩ µ = N ∩ µ is obtained by the first part of the theorem. a

Recall that a sequence of functions in ΠA is universal for λ if it is J<λ in-
creasing and cofinal in ΠA/D whenever cf(ΠA/D) = λ. Recall also (Equa-
tion I.3) that a sequence 〈pξ | ξ < λ〉 of members of a partial ordering
(P,<P ) is persistently cofinal iff every member of P is dominated by all
members of the sequence with a sufficiently large index.

5.3 Definition. We say that a sequence 〈fξ | ξ < λ〉 of functions in ΠA is
persistently cofinal for λ if their restrictions to Bλ form a persistently cofinal
sequence in ΠBλ/J<λ. Namely if for every h ∈ ΠA there exists ξ0 < λ such
that

h ¹ Bλ <J<λ
fξ ¹ Bλ

for all ξ0 ≤ ξ < λ (where Bλ = Bλ[A]).
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For example, if 〈fξ | ξ < λ〉 is universal for λ then it is persistently cofinal
(see Theorem 4.13), and if the functions Fξ are such that fξ ≤J<λ

Fξ for
all ξ < λ, then 〈Fξ | ξ < λ〉 is also persistently cofinal, although it is
not necessarily J<λ increasing. Clearly, an arbitrary λ sequence in ΠA is
universal for λ iff it is J<λ increasing and persistently cofinal.

A basic observation which is used later to define the transitive generators
is the following.

5.4 Lemma. Suppose that the progressive set A and the cardinal λ ∈ pcf(A)
belong to an elementary substructure N ≺ HΨ so that N =

⋃
α<κ Nα where

|A| < κ < min(A) is a regular cardinal, |N | = κ, κ + 1 ⊂ N , and 〈Nα | α <
κ〉 is an increasing chain of elementary substructures of HΨ. If a sequence
of functions f = 〈fξ | ξ < λ〉 ∈ N , with fξ ∈ ΠA, is persistently cofinal for
λ, then for every ξ ≥ sup(N ∩ λ)

≤(ChN , fξ) = {a ∈ A | ChN (a) ≤ fξ(a)} is a Bλ[A] set. (I.29)

Proof. We first make some preliminary observations. Since κ < min A,
we have that ChN ¹ A ∈ ΠA. Since A, λ ∈ N =

⋃
α<κ Nα, we may as

well assume that A, λ, f ∈ N0 (or else re-enumerate the structures). Since
|A| < κ and κ ⊂ N , A ⊂ N and we can assume that A ⊂ N0. Since Ψ is
sufficiently large, all the pcf theory involved in defining Bλ[A] etc. can be
done in HΨ and hence in N0. We may assume again that a generating set
B = Bλ[A] is in N0. Suppose that ξ ≥ sup(N ∩λ). To prove (I.29) we need
two inclusions:

1. ChN ¹ B ≤J<λ
fξ ¹ B, which shows that B ⊆J<λ

≤(ChN , fξ).

2. ≤(ChN , fξ) ∩ (A\B) ∈ J<λ, which shows that ≤(ChN , fξ) ⊆J<λ
B.

We prove 1. For every a ∈ A, if fξ(a) < ChN (a) then there exists an
index α = α(a) < κ such that fξ(a) < ChNα(a). Since |A| < κ there exists
a single index α < κ such that, for every a ∈ A, fξ(a) < ChN (a) implies
that fξ(a) < ChNα(a). Hence for every a ∈ A

fξ(a) < ChN (a) iff fξ(a) < ChNα(a). (I.30)

But the sequence f is persistently cofinal in ΠB/J<λ, and hence h ¹ B <J<λ

fξ ¹ B for every h ∈ N ∩ ΠA, because ξ ≥ sup(N ∩ λ). In particular, for
h = ChNα ∈ N , we get

ChNα ¹ B ≤J<λ
fξ ¹ B (in fact <J<λ

).

That is, {b ∈ B | fξ(b) < ChNα(b)} ∈ J<λ. Hence, by (I.30), {b ∈ B |
fξ(b) < ChN (b)} ∈ J<λ. Thus

ChN ¹ B ≤J<λ
fξ ¹ B.
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This proves 1.
Now we prove 2. That is

{a ∈ A \B | ChN (a) ≤ fξ(a)} ∈ J<λ. (I.31)

As λ 6∈ pcf(A \ B), J<λ[A \ B] = J<λ+ [A \ B] and hence Π(A \ B)/J<λ is
λ+-directed, and f (with functions restricted to A\B) has an upper bound.
Since f ∈ N , we have this upper bound in N . Let h ∈ N ∩Π(A \B) be an
upper bound in <J<λ

of the sequence f restricted to A \B. Then

fξ ¹ (A \B) <J<λ
h < ChN ¹ (A \B).

But this is exactly (I.31) a

5.2. Minimally obedient sequences

Suppose that δ is a limit ordinal and f = 〈fξ | ξ < δ〉 is a sequence of
functions fξ ∈ ΠA, where A is a set of regular cardinals and |A|+ ≤ cf(δ) <
min(A) holds. For every closed unbounded set E ⊆ δ of order type cf(δ) let

hE = sup{fξ | ξ ∈ E}.
That is, hE(a) = sup{fξ(a) | ξ ∈ E}. Since cf(δ) < min(A), hE ∈ ΠA.
We say that hE is the “supremum along E of the sequence f”. Observe
that if E1 ⊆ E2 then hE1 ≤ hE2 . The following lemma says that among all
functions obtained as suprema along closed unbounded subsets of δ there is
a minimal one in the ≤ ordering.

5.5 Lemma. Let δ and f be as above (so |A| < cf(δ) < min(A) and f is a
sequence of length δ of functions in ΠA). There is a closed unbounded set
C ⊆ δ of order type cf(δ) such that

hC(a) ≤ hE(a)

for every a ∈ A and E ⊆ δ closed and unbounded (of order type cf(δ)).

Proof. Assume that there is no such closed unbounded set C ⊆ δ as required.
We construct a decreasing sequence 〈Eα | α < |A|+〉 of closed unbounded
subsets of δ of order type cf(δ) each, such that for every α < |A|+, hEα 6≤
hEα+1 . (Since |A| < cf(δ), at limit stages of the construction we may take
the intersection of the clubs so far constructed.) Then find a single a ∈ A
such that hEα(a) > hEα+1(a) for an unbounded set of indices α. Yet this is
obviously impossible. a

In applications of this lemma, an ideal J over A is assumed and the
sequence 〈fξ | ξ < δ〉 is <J -increasing. In that case, the minimal function
fC = sup{fξ | ξ ∈ C} ≤-bounds each fξ, for ξ ∈ C, and hence ≤J -bounds
all fξ’s for ξ < δ. This function fC is called “minimal club-obedient bound
of 〈fξ | ξ < δ〉”.
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5.6 Definition (Minimally Obedient Universal Sequence). Suppose that λ
is in pcf(A) and f = 〈fξ | ξ < λ〉 is a universal sequence for λ. Let κ be
a fixed regular cardinal such that |A| < κ < min(A). We say that f is a
“minimally obedient (at cofinality κ)” if for every δ < λ such that cf(δ) = κ,
fδ is the minimal club-obedient bound of 〈fξ | ξ < δ〉.

The universal sequence f is said to be “minimally obedient” if |A|+ <
min(A) and it is minimally obedient for every regular κ such that |A| < κ <
min(A).

Suppose that |A|+ < min(A) and λ ∈ pcf(A). In order to arrange a
minimally obedient universal sequence for λ start with an arbitrary universal
sequence 〈f0

ξ | ξ < λ〉 and define the functions fξ by induction on ξ < λ
such that:

1. f0 = f0
0 , and fξ+1 is such that

max{fξ, f
0
ξ } < fξ+1.

2. At limit stages δ < λ with cf(δ) = κ and such that |A| < κ < min(A)
let fδ be the minimal club-obedient bound of 〈fξ | ξ < δ〉.

3. At limit stages δ < λ with cf(δ) not of that form use the fact that
ΠA/J<λ is λ-directed to define fδ as a <J<λ

bound of 〈fξ | ξ < δ〉.
Minimally obedient sequences will be used in conjunction with κ-presentable

elementary substructures.

5.7 Lemma. Let A be a progressive set of regular cardinals, and κ be a
regular cardinal such that |A| < κ < min(A). Suppose that

1. λ ∈ pcf(A),

2. f = 〈fξ | ξ < λ〉 is a minimally obedient at cofinality κ, universal
sequence for λ, and

3. N ≺ HΨ (for Ψ sufficiently large) is an elementary, κ-presentable
substructure of HΨ such that λ, f, A ∈ N . (So A ⊂ N .)

Let N̄ denote the ordinal closure of N ∩On, that is the set of ordinals that
are in N or that are limit of ordinals in N . Then for every γ ∈ (N̄ ∩λ) \N
there is a closed unbounded set C ⊆ γ ∩ N (of order-type κ) such that
fγ = sup{fξ | ξ ∈ C} and thus

fγ(a) ∈ N̄ ∩ a for every a ∈ A.

In particular, for γ = ChN (λ), γ ∈ N̄ \N , and fγ = sup{fξ | ξ ∈ C} for a
closed unbounded set C ⊆ γ ∩N such that
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1. each fξ is in N , and

2. for every h ∈ N ∩ΠA

h ¹ Bλ[A] <J<λ
fξ ¹ Bλ[A]

for some ξ ∈ C.

Proof. Since N is κ-presentable, N =
⋃

α<κ Nα is the union of an increasing
and continuous chain such that Nα ∈ Nα+1. It follows for every γ ∈ N̄ ,
that either γ ∈ N or cf(γ) = κ. Indeed, if γ ∈ N̄ \N , then γ is a limit point
of ordinals in N and yet γ is not a limit point of ordinals in any Nα (or else
γ ∈ N̄α ⊂ N). Hence sup(γ ∩Nα) < γ and

E = {sup(γ ∩Nα) | α < κ}

is closed unbounded in γ and of order-type κ. Thus cf(γ) = κ. Observe
that E ⊆ N , because Nα ∈ N implies that N̄α ⊂ N and in particular
sup(γ ∩Nα) ∈ N .

Now take γ ∈ (N̄ ∩λ) \N and consider fγ(a) for a ∈ A. Since cf(γ) = κ,
fγ is the minimal club-obedient bound of 〈fξ | ξ < γ〉, and there is thus
a closed unbounded set C ⊆ γ such that fγ = fC . It follows from the
minimality of fC that fC = fC∩E and we may thus assume at the outset
that C ⊆ N . So fγ = fC = sup{fξ | ξ ∈ C} is the supremum of a set of
functions that are all in N . (As C ⊂ N implies that fξ ∈ N for ξ ∈ C.)
This shows that fγ(a) ∈ N̄ for every a ∈ A.

In particular, if γ = ChN (λ), then γ < λ because κ < λ and N has
cardinality κ. So γ ∈ N̄ \ N . Item 2 is a consequence of the fact that
f is a universal sequence (see Theorem 4.13) and that C is unbounded in
N ∩ λ. a

The conclusions of lemmas 5.4 and 5.7 will be given names (I.32 and
I.33) so that we can easily refer to these properties in the future. Let A
be a progressive set of regular cardinals and suppose that κ is a regular
cardinal such that |A| < κ < min A. Suppose that λ ∈ pcf(A), and
f = 〈fξ | ξ ∈ λ〉 is a sequence of functions in ΠA. We shall refer to
the following two properties of a κ-presentable N ≺ HΨ and a sequence
f = 〈fξ | ξ < λ〉 such that f ∈ N .

If γ = ChN (λ), then

{a ∈ A | ChN (a) ≤ fγ(a)}

is a Bλ[A] set.

(I.32)
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If γ = ChN (λ), then

1. fγ ≤ ChN .

2. For every h ∈ N ∩ ΠA there exists some d ∈
N ∩ΠA such that

h ¹ B <J<λ
d ¹ B and d ≤ fγ ,

where B = Bλ[A].

(I.33)

We have seen that any persistently cofinal sequence for λ satisfies (I.32)
(this is Lemma 5.4), and that any universal, minimally obedient sequence
satisfies (I.33) as well (by Lemma 5.7).

Suppose that f is a sequence of length λ and N ≺ HΨ is κ-presentable
and such that f ∈ N (so A, λ ∈ N). Suppose that both (I.32) and (I.33)
hold. If γ = ChN (λ), then fγ ≤ ChN by (I.33), and hence

{a ∈ A | ChN (a) = fγ(a)} (I.34)

is a Bλ[A] set by (I.32). We shall use this observation in the following.

5.8 Lemma. Suppose that A is a progressive set of regular cardinals and κ
is a regular cardinal such that |A| < κ < min A. Suppose that λ0 ∈ pcf(A)
and fλ0 = 〈fλ0

ξ | ξ < λ0〉 is a sequence of functions in ΠA. Let N ≺ HΨ be
a κ-presentable elementary substructure (Ψ is a sufficiently large cardinal)
such that A, λ0, f

λ0 ∈ N . Suppose that N and fλ0 ∈ N satisfy properties
(I.32) and (I.33) for λ = λ0. Put γ0 = ChN (λ0) and define

bλ0 = {a ∈ A | ChN (a) = fλ0
γ0

(a)}.

Then the following hold.

1. bλ0 is a Bλ0 [A] set, namely

J≤λ0 [A] = J<λ0 [A] + bλ0 .

2. There exists a set b′λ0
⊆ bλ0 such that

(a) b′λ0
∈ N

(b) bλ0 \ b′λ0
∈ J<λ0 [A] (hence b′λ0

is also a Bλ0 set).

Proof. Note that since fλ0
γ0
≤ ChN , bλ0 = {a ∈ A | ChN (a) ≤ fλ0

γ0
(a)}. We

have already observed in the paragraph preceding the lemma that 1 holds.
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We prove 2. As the definition of bλ0 involves N and fλ0
γ0

, we do not expect
that bλ0 ∈ N . However we shall find an inner approximation b′λ0

of bλ0 that
lies in N . If a ∈ A and fλ0

γ0
(a) < ChN (a), then there exists some α < κ

such that fλ0
γ0

(a) < ChNα
(a) (because N =

⋃
α<κ Nα). Since |A| < κ, there

is some sufficiently large α < κ such that

fλ0
γ0

(a) < ChN (a) iff fλ0
γ0

(a) < ChNα
(a)

holds for every a ∈ A. Or equivalently (by negating both sides)

a ∈ bλ0 iff ChNα(a) ≤ fλ0
γ0

(a).

That is we have replaced the parameter N with Nα in the definition of bλ0 ,
but γ0 is still a parameter not in N .

Since fλ0 satisfies (I.33), there exists (for h = ChNα) some function
d ∈ N such that

1. ChNα ¹ Bλ0 <J<λ0
d ¹ Bλ0 and

2. d ≤ fλ0
γ0

.

Define
b′λ0

= {a ∈ A | ChNα(a) ≤ d(a)}.
Now all parameters are in N and clearly b′λ0

∈ N . Property 1 above implies
that for almost all a ∈ Bλ0 , ChNα(a) < d(a) (i.e. except on a J<λ0 set).
Hence Bλ0 ⊆J<λ0

b′λ0
. Property 2 implies that b′λ0

⊆ bλ0 . a

Suppose that for every λ ∈ pcf(A) we attach a certain Bλ[A] set b∗λ. Then
the Compactness Theorem (4.11) gives a finite set λ0, . . . , λn−1 of pcf(A)
cardinals such that A = b∗λ0

∪ · · · ∪ b∗λn−1
. Now let N ≺ HΨ be such that

A ∈ N and assume that the sets b∗λ are chosen in N for each λ ∈ pcf(A)∩N .
Then the covering cardinals λ0, . . . , λn−1 can be found in N , even when the
map λ 7→ b∗λ is not in N . To prove that, we define a descending sequence of
cardinals λ0 > · · · > λi by induction on i, starting with λ0 = max pcf(A),
so that the following two conditions hold.

1. λi ∈ N .

2. If Ak = A \ (b∗0 ∪ · · · ∪ b∗k−1) 6= ∅, then λk = max pcf(Ak).

Since b∗0, . . . , b
∗
k−1 are in N , Ak ∈ N as well, and hence λk ∈ N (whenever

Ak 6= ∅ and λk is defined). It follows from lemmas 4.14 and 4.10 that
λ0 > λ1 > · · · > λk. Hence, for some k, Ak = ∅, and then A = b∗0∪· · ·∪b∗k−1.

Here is a main result saying that the number of characteristic functions
ChN ¹ A is bounded by max pcf(A).
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5.9 Corollary. Suppose that A is a progressive set of regular cardinals, κ
is a regular cardinal such that |A| < κ < min(A), and N with A ∈ N is
a κ-presentable elementary substructure N ≺ HΨ and containing, for every
λ ∈ pcf(A)∩N , a sequence fλ = 〈fλ

ξ | ξ < λ〉 that satisfies properties (I.32)
and (I.33). Then there are cardinals λ0 > λ1 · · · > λn in N ∩ pcf(A) such
that

ChN ¹ A = sup{fλ0
γ0

, . . . , fλn
γn
}, (I.35)

where γi = ChN (λi).

Proof. We employ Lemma 5.8, which assigns Bλ[A] sets, b′λ ∈ N , for every
λ ∈ pcf(A) ∩N , so that

b′λ ⊆ {a ∈ A | ChN (a) = fλ
ChN (λ)(a)}. (I.36)

By the Inductive Covering procedure explained above, for some λ0, . . . , λn−1

in pcf(A) ∩N
A = b′λ0

∪ · · · ∪ b′λn−1
.

Since property (I.33) ensures that fλ
ChN (λ) ≤ ChN , (I.36) implies that (I.35)

holds. a

Application: the cofinality of ([µ]κ,⊆)

For cardinals κ ≤ µ, let [µ]κ denote the collection of all subsets of µ of size
κ. Under the inclusion relation ⊆ this collection is a partial ordering, and
we denote its cofinality by cf([µ]κ,⊆). Likewise, [µ]<κ is the collection of
all subsets of µ of cardinality less than κ. For example, if µ is a regular
cardinal then the collection of all proper initial segments of µ is cofinal in
[µ]<µ.

One reason for the importance of studying cf([µ]κ,⊆) is the relationship

|[µ]κ| = cf([µ]κ,⊆) · 2κ (I.37)

and its applications to cardinal arithmetic (which we shall see). The proof
of (I.37) is quite simple. Suppose that cf([µ]κ,⊆) = λ and let Y = {Yi ∈
[µ]κ | i < λ} be cofinal. A one-to-one map from [µ]κ to Y × 2κ can be
defined as follows. For every E ∈ [µ]κ find some E ⊆ Yi. Since Yi has
cardinality κ, E is isomorphic to some subset S of κ, and then we map E
to 〈Yi, S〉.

We record some relatively simple facts about cofinalities of [µ]κ.

5.10 Lemma. For any cardinal µ:

1. If κ1 < κ2 then

cf([µ]κ1 ,⊆) ≤ cf([µ]κ2 ,⊆) · cf([κ2]κ1 ,⊆).
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2. If µ1 < µ2 then cf([µ1]κ,⊆) ≤ cf([µ2]κ,⊆).

3. Suppose that κ ≤ µ and E ⊆ [µ]κ is cofinal. Then there exists a cofinal
set in ([µ+]κ,⊆) of cardinality |E| · µ+.

Proof. We prove the third item. For every µ ≤ γ < µ+ let fγ be a bijection
from γ to µ. Then the collection of all sets of the form f−1

γ X, where X ∈ E,
is cofinal and of cardinality |E| · µ+. a

A consequence (which can be proved by induction) is that for every n < ω,
cf([ℵn]ℵ0 ,⊆) = ℵn.

The first application of the pcf theory to the subset cofinality question is
the following

5.11 Theorem. Suppose that µ is a singular cardinal, and κ < µ is an
infinite cardinal such that the interval A of regular cardinals in (κ, µ) has
size ≤ κ. Then

cf([µ]κ,⊆) = max pcf(A).

Proof. Let µ and κ be as in the theorem. Define

A = {γ | γ is a regular cardinal and κ < γ < µ}.

We assume that |A| ≤ κ, so that A is a progressive interval of regular
cardinals. To prove the theorem, we first prove the easier inequality ≥.
Let {Xi | i ∈ I} ⊆ [µ]κ be cofinal and of cardinality cf([µ]κ,⊆). Define
hi = ChXi ¹ A. That is, hi(a) = sup a ∩Xi for a ∈ A. Then {hi | i ∈ I} is
cofinal in (ΠA,<). (Since for every f ∈ ΠA the range of f is a subset of µ of
size ≤ |A| ≤ κ, and is hence covered by some Xi. So f ≤ hi.) But we know
that the cofinality of (ΠA,<) is max pcf(A), and hence |I| ≥ max pcf(A).

Now we prove the ≤ inequality. We assume first that |A| < κ and prove
the ≤ inequality for this case. Then we can obtain the |A| = κ case by
applying the first case to κ+ (instead of κ) and using

cf([µ]κ,⊆) ≤ cf([µ]κ
+
,⊆) · κ+.

So assume that |A| < κ (and hence κ is uncountable). We plan to present
a cofinal subset of [µ]κ of cardinality max pcf(A). Fix for every ρ ∈ pcf(A)
a minimally obedient (at cofinality κ) universal sequence for ρ, and let
f = {fρ | ρ ∈ pcf(A)} be the resulting array of sequences. In fact, we
let f be the minimal such array in the well-ordering <∗ of HΨ, so that
f ∈ M for every M ≺ HΨ such that A ∈ M . Let M be the collection of
all substructures M ≺ HΨ that are κ-presentable and such that A ∈ M
(so A ⊆ M). We know that (I.32) and (I.33) hold. Consider the collection
F = {M ∩ µ | M ∈ M}. This collection is clearly cofinal in [µ]κ, since
for any set X ∈ [µ]κ a structure M ∈ M can be defined so that X ⊆ M
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(or even X ∈ M). We shall prove that |F | ≤ max pcf(A). We know (by
Corollary 5.9) that for every M ∈M, ChM ¹ A is the supremum of a finite
number of functions taken from the array {fρ | ρ ∈ pcf(A)}, which contains
max pcf(A) functions. Hence it suffices to prove that whenever M, N ∈M
are such that ChM ¹ A = ChN ¹ A, then M ∩µ = N ∩µ. But this is exactly
Theorem 5.2. a

The theorem just proved (5.11) has important consequences for cardinal
arithmetic which we shall explore now. Look, for example, at µ = ℵω,
κ = ℵ0, and A = {ℵn | 1 < n < ω}. Then

cf([ℵω]ℵ0 ,⊆) = max pcf(A).

So ℵℵ0
ω = (max pcf(A))2ℵ0 . If ℵω is a strong limit cardinal then [ℵω]ω

has cardinality 2ℵω , and this cardinal turns out to be regular since it is
max pcf(A). Similarly, for every n < ω, cf([ℵω,⊆]ℵn ,⊆) = max pcf(A).
Hence

cf([ℵω]ℵn ,⊆) = cf([ℵω]ℵm ,⊆)

for every n,m < ω.
Since A is an interval of regular cardinals, pcf(A) is also an interval of

regular cardinals (Theorem 3.9) containing all regular cardinals from ℵ2

to max pcf(A). Hence if we write max pcf(A) = ℵα, then |α| = |pcf(A)|
follows. Yet |pcf(A)| ≤ 2ℵ0 (Theorem 3.6). Thus cf([ℵω]ℵ0 ,⊆) = ℵα for
α < (2ℵ0)+. Thus we have proved the following theorem.

5.12 Theorem. cf([ℵω]ℵ0 ,⊆) < ℵ(2ℵ0 )+ .

An immediate conclusion is

5.13 Theorem. ℵℵ0
ω < ℵ(2ℵ0 )+ .

Proof. If 2ℵ0 > ℵω (equality is impossible by König’s theorem) then ℵℵ0
ω =

2ℵ0 , and then 2ℵ0 ≤ ℵ2ℵ0 implies the theorem as a triviality. So we assume
that 2ℵ0 < ℵω.

Suppose that ℵα = cf([ℵω]ℵ0 ,⊆). We have proved in the preceding
theorem that α < (2ℵ0)+. Let {Xi | i < ℵα} ⊆ [ℵω]ℵ0 be cofinal. So
[ℵω]ℵ0 ⊆ ⋃{P(Xi) | i < ℵα}. Hence |[ℵω]ℵ0 | ≤ 2ℵ0 · ℵα = ℵα < ℵ(2ℵ0 )+ . a

We want to generalize this theorem to arbitrary singular cardinals ℵδ such
that δ < ℵδ. A straightforward generalization gives the following which we
leave as an exercise: If δ is a limit ordinal such that δ < ℵδ, then

cf([ℵδ]|δ|,⊆) < ℵ(2|δ|)+

and hence
ℵ|δ|δ < ℵ(2|δ|)+ .
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We shall describe now a tighter bound: ℵcf(δ)
δ < ℵ(|δ|cf(δ))+ .

As in the proof for bounding ℵℵ0
ω , which consists in first evaluating the

cofinality of ([ℵω]ℵ0 ,⊆), here too we first investigate cardinalities of covering
sets. For cardinals µ ≥ τ a cover for [µ]<τ is a collection C of subsets of µ
such that for every X ∈ [µ]<τ there exists Y ∈ C with X ⊆ Y . For cardinals
µ ≥ θ ≥ τ , cov(µ, θ, τ) is the least cardinality of a cover for [µ]<τ consisting
of sets taken from [µ]<θ. So cov(µ, θ, τ) measures how many sets, each of
cardinality < θ, are needed to cover every subset of µ of cardinality < τ .
For example, cf([µ]κ,⊆) = cov(µ, κ+, κ+). We shall prove the following.

5.14 Theorem. Suppose that µ is a singular cardinal, and κ < µ a regular
cardinal. Let A be the set of all regular cardinals in the interval [κ++, µ).
If |A| ≤ κ, then

cov(µ, κ+, cf(µ)+) = sup pcfcf(µ)(A).

(See Definition 3.10 for pcfcf(µ)(A).)

Before proving this theorem, let’s see how it can be employed.

5.15 Corollary. Suppose that δ is a limit ordinal such that δ < ℵδ. Then

cov(ℵδ, |δ|+, cf(δ)+) < ℵ(|δ|cf(δ))+

and hence
ℵcf(δ)

δ < ℵ(|δ|cf(δ))+ .

Proof. Suppose that δ is a limit ordinal such that δ < ℵδ. Let µ = ℵδ, and
κ = |δ|+. Define A as the set of all regular cardinals in the interval (κ++, µ].
So |A| ≤ |δ|. By Theorem 5.14, there exists a collection {Xi | i ∈ I}, where
Xi ∈ [µ]κ and |I| = sup pcfcf(µ)(A), such that for every Z ∈ [ℵδ]cf(µ),
Z ⊆ Xi for some i ∈ I. Yet, by Theorem 3.11, pcfcf(µ)(A) is also an interval
of regular cardinals, containing all regular cardinals in the interval [κ++,ℵα)
where ℵα = sup pcfcf(µ)(A). Now |pcfcf(µ)(A)| ≤ |[A]cf(µ)| ·2cf(µ) ≤ |δ|cf(µ).
It follows (see the proof in the following paragraph) that α < (|δ|cf(µ))+.
That is, |I| < ℵ(|δ|cf(δ))+ (as cf(µ) = cf(δ)). Hence |[ℵδ]cf(δ)| < κcf(δ) ·
ℵ(|δ|cf(δ))+ . Thus ℵcf(δ)

δ < ℵ(|δ|cf(δ))+ as required.
We prove that α < (|δ|cf(µ))+. Since δ < |δ|+ ≤ (|δ|cf(µ))+, it follows

that the interval (ℵδ,ℵ(|δ|cf(µ))+) contains (|δ|cf(µ))+ regular cardinals. But
the interval of regular cardinals in (ℵδ,ℵα) is included in pcfcf(µ)(A) and
contains ≤ |δ|cf(µ) regular cardinals. Hence α < (|δ|cf(µ))+. a

We proceed now with the proof of Theorem 5.14. Let κ < µ and |A| ≤ κ
be as in the theorem. Since A is cofinal in µ and |A| ≤ κ, cf(µ) ≤ κ.
Let ρ = cf(µ) be the cofinality of µ. We shall prove that cov(µ, κ+, ρ+) =
sup pcfρ(A).
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For the ≥ inequality, we must prove that cov(µ, κ+, ρ+) ≥ λ for every
λ ∈ pcfρ(A). That is, if A0 ⊆ A is of cardinality ρ we want to prove that
cov(µ, κ+, ρ+) ≥ max pcf(A0). So let {Xi | i ∈ I} be a covering of [µ]cf(µ)

with sets Xi of cardinality ≤ κ. For each Xi define hi = ChXi
¹ A0. Then

{hi | i ∈ I} is cofinal in (ΠA0, <), and hence |I| ≥ max pcf(A0).
For the ≤ inequality, we must provide a covering set for cov(µ, κ+, ρ+)

of cardinality sup pcfρ(A).
For every λ ∈ pcfρ(A), λ ∈ pcf(A) as well, and we fix a minimally

obedient at cofinality ρ+ sequence fλ = 〈fλ
ξ | ξ < λ〉 of functions in ΠA

that is universal for λ.
For every α < µ such that cf(α) = ρ+, let Eα ⊆ α be a closed unbounded

subset of α of order type ρ+.
Define F as the collection of all functions of the form sup{fλ1

α1
, · · · , fλn

αn
}

where λi ∈ pcfρ(A) and αi < λi. Clearly F has cardinality sup pcfρ(A).
For every f ∈ F let

E(f) =
⋃
{Ef(a) | a ∈ A and cf(f(a)) = ρ+}

Then the cardinality of E(f) is at most κ+. Let

K(f) = Skolem(E(f) ∪ κ+) ≺ HΨ

be the Skolem hull (closure) of E(f) ∪ κ+. We remind the reader that the
structure HΨ includes a class well-ordering <∗ of all sets, and hence there is
a countable set of Skolem functions for HΨ so that X ≺ HΨ iff X is closed
under all of these Skolem functions. The cardinality of K(f) is κ+.

Clearly K = {K(f) | f ∈ F} has cardinality ≤ sup pcfρ(A). Our aim
now is to show that

K covers [µ]cf(µ).

Since cf([κ+]κ,⊆) = κ+, this yields that

cov(µ, κ+, cf(µ)+) = sup pcfcf(µ)(A).

Let Z ⊂ µ be of size ρ = cf(µ). Define 〈Mi | i < ρ+〉 an increasing and
continuous chain of elementary substructures Mi ≺ HΨ, each of cardinality
ρ, such that A,Z ∈ M0, Mi ∈ Mi+1, and Z ⊂ M0. Let M =

⋃
i<ρ+ Mi be

the resulting ρ+-presentable structure.
For every a ∈ A∩M (and in fact for every a ∈ A), ChM (a) has cofinality

ρ+. Indeed 〈ChMi(a) | i < ρ+〉 is increasing, continuous and with limit
ChM (a). There is another closed unbounded sequence in ChM (a) which
interests us, namely EChM (a), and we consider the intersection of these two
closed unbounded sets. So there exists a closed unbounded set Da ⊆ ρ+

such that for every i ∈ Da

ChMi(a) ∈ EChM (a). (I.38)
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For every i < ρ+, Mi has cardinality ρ and hence D(i) =
⋂{Da | a ∈

A ∩ Mi} is closed unbounded in ρ+. Form the diagonal intersection D =
{j ∈ ρ+ | ∀i < j (j ∈ D(i))}. Fix any j0 ∈ D′ (a limit point of D). For every
a ∈ A∩Mj0 there exists some j1 < j0 such that a ∈ A∩Mj1 . If j1 < i ≤ j0
and i ∈ D, then i ∈ D(j1) and hence i ∈ Da. So ChMi(a) ∈ EChM (a). Thus
〈ChMi

(a) | j1 < i < j0 ∧ i ∈ D〉 is a sequence of ordinals in Mj0 ∩ EChM (a)

that tends to ChMj0
(a) (whenever j0 ∈ D′ and a ∈ A ∩Mj0).

Define A0 = A ∩ Mj0 . Then A0 ∈ [A]cf(µ), and A0 ∈ M . We plan to
apply Corollary 5.9 to A0, ρ

+ and M (substituting A, κ, and N there). For
every λ ∈ pcf(A0), λ ∈ pcfcf(µ)(A) and the sequence 〈fλ

ξ ¹ A0 | ξ < λ〉 is, in
M , universal for λ and minimally obedient at ρ+. Hence, by 5.9,

ChM ¹ A0 = f ¹ A0 for some f ∈ F . (I.39)

Since Z ⊆ Mj0 , the following proves that Z ⊆ K(f).

Claim. Mj0 ∩ µ ⊆ K(f).

By Lemma 5.2, this is a consequence of the following

5.16 Lemma. For every successor cardinal σ+ ∈ Mj0 ∩ µ

sup (Mj0 ∩ σ+) = sup (Mj0 ∩K(f) ∩ σ+).

Proof. Assume that σ+ ∈ Mj0 ∩ µ. If σ+ ≤ κ+, then κ+ ⊆ K(f) implies
the lemma immediately. So assume that σ+ > κ+, and hence that σ+ ∈
A ∩ Mj0 = A0. Now (I.39) implies that ChM (σ+) = f(σ+) = α. Hence
cf(α) = ρ+ and Eα ⊆ E(f) ⊆ K(f). The sequence 〈ChMi(σ

+) | j1 < i <
j0 ∧ i ∈ D〉 is unbounded in ChMj0

(σ+), as we have observed above, and
thus shows that the lemma is correct. a
5.17 Exercise. 1. Let µ, κ, and A be as in Theorem 5.14. Suppose that

|A| ≤ κ. Prove that

cov(µ, κ+,ℵ1) = sup pcfℵ0
(A).

Conclude that if δ < ℵδ is a limit ordinal, then

ℵℵ0
δ < ℵ(|δ|ℵ0 )+ .

Hint. By induction on µ.

2. Suppose that δ is a limit ordinal such that for every cardinal µ < δ
µℵ0 < δ. Then ℵδ satisfies the same property, namely for every µ < ℵδ,
µℵ0 < ℵδ.

Hint. Without loss of generality, δ < ℵδ. Prove that µℵ0 < ℵδ by
induction on µ < ℵδ.
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6. Elevations and transitive generators

Given a progressive set A of regular cardinals, we have proved the existence
of generating sets Bλ = Bλ[A]. Suppose that N is such that A ⊆ N ⊆
pcf(A) and B = 〈Bλ | λ ∈ N〉 is a generating sequence (defined only for λ
in N). Then B is said to be smooth (or transitive) if for every λ ∈ N and
θ ∈ Bλ, Bθ ⊆ Bλ.

This definition is trivial when Bθ = {θ} (that is when θ 6∈ pcf(A ∩ θ)).
However, we shall be interested in A’s for which θ ∈ pcf(A ∩ θ) is possible
for θ ∈ A. The reason for considering subsets N of pcf(A) in this definition,
rather than the whole pcf(A) (which would be most desirable) is that we
only know how to prove the existence of smooth sequences for sets N of
cardinality min(A).

Our aim is to obtain transitive generators; they will be useful in prov-
ing, for example, that for every progressive interval of regular cardinals A,
|pcf(A)| < |A|+4. However, there is still some material to cover beforehand.

Fix a progressive set A of regular cardinals and let κ be a regular cardinal
such that |A| < κ < min(A). For every λ ∈ pcf(A) let fλ = 〈fλ

ξ | ξ < λ〉
be a universal sequence for λ which is minimally obedient (at cofinality κ).
It is convenient to assume that for a ∈ A \ λ, fλ

ξ (a) = ξ. The elevation
of the array 〈fλ | λ ∈ pcf(A)〉 is another array 〈Fλ | λ ∈ pcf(A)〉 of
persistently cofinal sequences defined below, and which will be shown to
satisfy properties (I.32) and (I.33).

For every finite, decreasing sequence λ0 > λ1 > · · · > λn of cardinals
such that λ0 ∈ pcf(A) and λi+1 ∈ A ∩ λi for i < n, and for every ordinal
γ0 ∈ λ0, define a sequence γ1 ∈ λ1, . . . , γn ∈ λn by

γi+1 = fλi
γi

(λi+1). (I.40)

So γ1 = fλ0
γ0

(λ1), γ2 = fλ1
γ1

(λ2), etc. until γn = f
λn−1
γn−1 (λn). Now define the

elevation function Elλ0,...,λn on λ0 by

Elλ0,...,λn(γ0) = γn.

We say that the last value obtained, γn, is reached from fλ0
γ0

via the de-
scending sequence λ0 > λ1 > · · · > λn.

Fix a cardinal λ0 ∈ pcf(A). We want to define the elevated sequence
Fλ0 , first on A∩ λ0. Given any λ ∈ A∩ λ0, let Fλ0,λ be the set of all finite,
descending sequences 〈λ0 > λ1 > · · · > λn〉 leading from λ0 to λn = λ, such
that λi for i > 0 are all in A. For every γ0 ∈ λ0 we ask whether there is a
maximal value among

{Elλ0,...,λn(γ0) | 〈λ0, . . . , λn〉 ∈ Fλ0,λ}.
If this set contains a maximum, let Fλ0

γ0
(λ) be that maximum, and otherwise

put Fλ0
γ0

(λ) = fλ0
γ0

(λ). In case λ ∈ A and λ ≥ λ0, define Fλ0
γ0

(λ) = γ0. So
Fλ0 = 〈Fλ0

γ | γ < λ0〉 with Fλ0
γ ∈ ΠA is defined.
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The elevated array 〈Fλ0 | λ0 ∈ pcf(A)〉 thus defined will give the required
transitive generating sequence. Observe first that

fλ0
γ ≤ Fλ0

γ for every γ < λ0.

This is so because Elλ0,λ(γ0) = fλ0
γ0

(λ) for every λ ∈ A ∩ λ0; so that this
original value is among the values considered for maximum. Hence

Fλ0 is persistently cofinal for λ0.

This shows that Lemma 5.4 can be applied and property (I.32) holds when-
ever Fλ ∈ N (and N is κ-presentable).

Another observation concerns any κ-presentable elementary substructure
N ≺ HΨ such that A, 〈fλ | λ ∈ pcf(A)〉 ∈ N . Being definable, the elevated
array is also in N . Even though each fλ is assumed to be minimally obe-
dient, the elevated sequence Fλ is not anymore club-obedient. We have
however the following consequence of Lemma 5.7.

6.1 Lemma. If λ0 ∈ pcf(A) ∩ N and γ0 = ChN (λ0), then for every λ ∈
A ∩ λ0, Fλ0

γ0
(λ) ∈ N̄ ∩ λ (where N̄ is the ordinal closure of N). Thus the

elevated sequence Fλ0 satisfies (I.33). Namely,

1. Fλ0
γ0

(λ) ≤ ChN (λ) for every λ ∈ A, and

2. for every h ∈ N ∩ΠA there exists some d ∈ N ∩ΠA such that

h ¹ B <J<λ0
d ¹ B and d ≤ Fλ0

γ0

where B = Bλ0 [A].

Proof. Observe first that A ⊆ N , λ ∈ N , and Fλ0,λ ⊆ N . Consider any
〈λ0, . . . , λn〉 ∈ Fλ0,λ and the ordinals γi defined by (I.40). It follows from
Lemma 5.7 that γi ∈ N̄ . If γi ∈ N then obviously γi+1 = fλi

γi
(λi+1) ∈ N .

If, however, γi ∈ N̄ \N , then Lemma 5.7 yields that fλi
γi

(a) ∈ N̄ for every
a ∈ A, and in particular γi+1 ∈ N̄ . Thus Elλ0,...,λn(γ0) ∈ N̄ and hence
Fλ0

γ0
(λ) ∈ N̄ ∩ λ.

Thus (I.33)(1) holds for Fλ0 . Since fλ0 ≤ Fλ0 , where fλ0 is universal
and minimally obedient at κ, (I.33)(2) holds as well. a
6.2 Lemma. Let A, f , and N be as in the previous lemma. Suppose that
λ0 ∈ pcf(A) ∩N , γ0 = ChN (λ0) and λ ∈ A ∩ λ0.

1. If for some descending sequence λ0 > · · · > λn = λ in Fλ0,λ

Elλ0,...,λn(γ0) = ChN (λ).

Then ChN (λ) is the maximal value in {Elλ̄(γ0) | λ̄ ∈ Fλ0,λ} and hence

ChN (λ) = Fλ0
γ0

(λ).
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2. Suppose that
Fλ0

γ0
(λ) = γ.

For any a ∈ A ∩ λ, if

Fλ
γ (a) = ChN (a),

then
Fλ0

γ0
(a) = ChN (a)

as well.

Proof. Item 1 says that if some descending sequence leading from λ0 to λ
reaches ChN (λ), then no sequence reaches a higher value. But this is clear
from Lemma 6.1 since ChN (λ) is the maximal possible value.

Item 2 uses Item 1. It says that if γ can be reached from fλ0
γ0

by a
finite descending sequence leading to λ, and if there is another sequence
leading from λ to a, so that ChN (a) can be reached from fλ

γ , then ChN (a)
can be reached already from fλ0

γ0
via the concatenation of these descending

sequences (and no higher value can be reached—by 1). a

Now we can get our transitive generating sequence.

6.3 Theorem (Transitive Generators.). Suppose that A is a progressive set
of regular cardinals, and |A| < κ < min(A) is a regular cardinal. Let 〈fλ |
λ ∈ pcf(A)〉 be an array of minimally obedient (at cofinality κ) universal
sequences. Let N ≺ HΨ be an elementary substructure that is κ-presentable
and such that A, 〈fλ | λ ∈ pcf(A)〉 ∈ N . Let 〈Fλ | λ ∈ pcf(A)〉 be the
derived elevated array. For every λ0 ∈ pcf(A) ∩N put γ0 = ChN (λ0) and
define

bλ0 = {a ∈ A | ChN (a) = Fλ0
γ0

(a)}.
then the following hold:

1. Every bλ0 is a Bλ0 [A] set, namely

J≤λ0 [A] = J<λ0 [A] + bλ0 .

2. There exists sets b′λ0
⊆ bλ0 , for λ0 ∈ pcf(A) ∩N , such that

(a) bλ0 \ b′λ0
∈ J<λ0 [A].

(b) b′λ0
∈ N (but the sequence 〈b′λ0

| λ0 ∈ pcf(A)∩N〉 is not claimed
to be in N).

3. The collection 〈bλ | λ ∈ pcf(A)∩N〉 is transitive; which means that if
λ1 ∈ bλ then bλ1 ⊆ bλ.
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Proof. The elevated sequence Fλ0satisfies properties (I.32) (because it is
persistently cofinal) and (I.33) (as shown in Lemma 6.1). Thus items 1 and
2 of our lemma follow from Lemma 5.8. Observe that bλ0 ⊆ λ0 + 1, since
Bλ0 ∈ J<λ+

0
.

Transitivity (item 3) relies on Lemma 6.2. Suppose that λ0 ∈ pcf(A)∩N
and λ1 ∈ bλ0 . This means

ChN (λ1) = Fλ0
γ0

(λ1)

where γ0 = ChN (λ0). Say ChN (λ1) = γ1. We have to show that bλ1 ⊂ bλ0

in this case. So assume that a ∈ bλ1 . This means

ChN (a) = Fλ1
γ1

(a).

Now Lemma 6.2(2) applies and yields

Fλ0
γ0

(a) = ChN (a)

which gives a ∈ bλ0 . a

Localization

Localization is the following property of the pcf function which will be
proved in this subsection.

If A is a progressive set of regular cardinals and B ⊆ pcf(A) is
also progressive, then for every λ ∈ pcf(B) there exists B0 ⊆ B
such that |B0| ≤ |A| and λ ∈ pcf(B0).

The localization property implies that there exists no B ⊆ pcf(A) with
|B| = |A|+ and such that b > max pcf(B∩ b) for every b ∈ B. For indeed if
there were such B it would be progressive, and if we define λ = max pcf(B),
then λ is not in the pcf of any proper initial segment of B. In fact, λ >
max pcf(B0) for any proper initial segment B0 of B. It is this conclusion,
the simplest case of localization, which is proved first.

6.4 Theorem. Assume that A is a progressive set of regular cardinals.
Then there is no set B ⊆ pcf(A) such that |B| = |A|+, and, for every
b ∈ B, b > max pcf(B ∩ b).

Proof. Assume on the contrary that A is as in the theorem and yet, for some
B ⊆ pcf(A) of cardinality |A|+, b > max pcf(B ∩ b) for every b ∈ B. Since
A is progressive |A| < min A, and in case |A|+ ∈ A we may remove the
first cardinal of A and assume that |A|+ < min A. The set E = A ∪ B of
cardinality |A|+ thus satisfies |E| < min E and the Transitive Generators
Theorem 6.3 can be applied to E.
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Find a κ-presentable elementary substructure, N ≺ HΨ, that contains A
and B where κ = |E|. Let 〈bλ | λ ∈ pcf(E) ∩ N〉 be the set of transitive
generators (subsets of E) as guaranteed by Theorem 6.3. Let b′λ ∈ N be
such that b′λ ⊆ bλ and bλ \ b′λ ∈ J<λ.

Since |A| < |B| we can find an initial segment B0 ⊆ B of cardinality |A|
such that if an arbitrary a ∈ A is in some bβ , β ∈ B, then it is already in
some bβ with β ∈ B0. Namely

∀a ∈ A [ (∃β ∈ B) a ∈ bβ =⇒ (∃β ∈ B0) a ∈ bβ ]. (I.41)

Let β0 = min(B \B0). So B0 = B ∩ β0 and B0 ∈ N .

Claim. There exists a finite descending sequence of cardinals λ0 > · · · > λn

in N ∩ pcf(B0) such that

B0 ⊆ bλ0 ∪ · · · ∪ bλn
. (I.42)

Proof. In fact we shall find a finite sequence λ0, . . . , λn ∈ N ∩ pcf(B0) such
that B0 ⊆ b′λ0

∪· · ·∪b′λn
. The proof is the same as that of Theorem 4.11, but

one must be a little bit more careful to ensure that the pcf index-cardinals
are in N .

So let λ0 = max pcf(B0). Clearly λ0 ∈ N and hence b′λ0
∈ N . So

B1 = B0 \ b′λ0
∈ N , and λ1 = max pcf(B1) ∈ N ∩ λ0. Next define

B2 = B1 \ b′λ1
etc. The point is that we have Bi ∈ N since b′λi−1

∈ N , and
we must stop with Bn+1 = ∅ after a finite number of steps since λ0 > λ1 . . ..
Since b′λi

⊆ bλi , (I.42) holds. a
The following claim will bring the desired contradiction and thus prove

the theorem. Recall that β0 = min(B \B0) and thus β0 > max(pcf(B0)) ≥
λ0, . . . , λn. Since β0 ∈ pcf(A), β0 ∈ pcf(bβ0 ∩ A) (or else β0 ∈ pcf(A \ bβ0)
which is impossible by Lemma 4.14). Yet the following inclusion shows that
this is impossible.

6.5 Claim. bβ0 ∩A ⊆ bλ0 ∪ . . . ∪ bλn .

Proof. Consider any cardinal a ∈ bβ0 ∩A. Then

a ∈ bβ

for some β ∈ B0 (by I.41). As B0 ⊆ bλ0 ∪ · · · ∪ bλn , β ∈ bλi for some
0 ≤ i ≤ n. But transitivity implies

bβ ⊆ bλi

and hence
a ∈ bλi

as required. This claim shows that max pcf(bβ0 ∩ A) < β0, and yet β0 ∈
pcf(bβ0 ∩A) which is a contradiction! a
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Thus Theorem 6.4 is proved. a
Now we pass to the general case and prove the localization theorem.

6.6 Theorem (Localization). Suppose that A is a progressive set of regular
cardinals. If B ⊆ pcf(A) is also progressive, then for every λ ∈ pcf(B) there
exists B0 ⊆ B with |B0| ≤ |A| and such that λ ∈ pcf(B0).

Proof. We prove by induction on λ that for every A and B as in the theorem
the conclusion holds for λ. Replacing B with Bλ[B], we may assume that
λ = max pcf(B).

6.7 Claim. We may assume that the set λ∩ pcf(B) has no maximal cardi-
nal.

Proof. Suppose on the contrary the existence of some λ0 = max (λ∩pcf(B)).
It is easy to remove λ0 by defining

B1 = B \Bλ0 [B].

Then λ ∈ pcf(B1) still holds since Bλ0 ∈ J<λ. We can now replace B with
B1, and repeat, if necessary, this procedure a finite number of times until
the claim holds (for some Bk which is renamed B). a

We shall find now a set C ⊆ λ ∩ pcf(B) of cardinality ≤ |A| such that
λ ∈ pcf(C). Such C is necessarily progressive. Together with the inductive
hypothesis this will conclude the proof; because for every γ ∈ C we can
pick B(γ) ⊆ B of cardinality ≤ |A| and such that γ ∈ pcf B(γ), and then
define B0 =

⋃
γ∈C B(γ). Since C ⊆ pcf(B0), λ ∈ pcf(B0) will then follow

from λ ∈ pcf(C) (by Theorem 3.12). So the following is the last piece of
the proof.

6.8 Claim. There exists a set C ⊆ λ∩pcf(B) of cardinality ≤ |A| and such
that λ ∈ pcf(C).

Proof. Assume no such C exists. We shall construct a sequence 〈γi | i ∈
|A|+〉 of cardinals in pcf(B) such that

γi > max pcf {γj | j < i}.
This will contradict Theorem 6.4.

So suppose that C = {γj | j < i} have been defined. Then

λ > max pcf(C).

Indeed λ = max pcf(C) is impossible by our assumption that no such C
exists, and λ < max pcf(C) is impossible since pcf(C) ⊆ pcf(B) and
λ = max pcf(B). We can find now γi ∈ pcf(B) above max pcf(C) (recall
that pcf(B) has no maximum below λ). a

a
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7. Size limitation on pcf of intervals

This relatively short section is devoted to a theorem which occupies a central
place in the pcf theory and to a famous application:

ℵℵ0
ω < max{(2ℵ0)+,ℵω4}.

The reader will notice that many of the ingredients developed so far appear
in its proof. We know that for any A progressive set of regular cardinals
the cardinality of pcf(A) does not exceed 2|A|, and it is an open question
whether |pcf(A)| ≤ |A| or not. At present the following theorem with its
enigmatic appearance of the number four is the best result.

7.1 Theorem. Let A be an interval of regular cardinals such that |A| <
min A. Then

|pcf A| < |A|+4.

Proof. Suppose that A is as in the theorem a progressive interval of regular
cardinals, but |pcf(A)| ≥ |A|+4. Say |A| = ρ. The following proof provides
a sequence B of length ρ+ of cardinals in pcf(A) such that each cardinal
b ∈ B is above max pcf(B ∩ b). This, of course, will be in contradiction to
Theorem 6.4.

Let S = Sρ+3

ρ+ be the set of ordinals in ρ+3 that have cofinality ρ+. Choose
a club guessing sequence 〈Ck | k ∈ S〉. So for every closed unbounded set
E ⊆ ρ+3 there exists some k ∈ S such that Ck ⊂ E.

Consider the cardinal sup(A), and let σ be that ordinal such that ℵσ =
sup(A). Since pcf(A) is an interval of regular cardinals (by Theorem 3.9),
and since we assume that pcf(A) has cardinality at least ρ+4, any regular
cardinal in {ℵσ+α | α < ρ+4} is in pcf(A).

We intend to define a closed set D ⊂ ρ+4 of order-type ρ+3, D = {αi |
i < ρ+3}, and the impossible sequence of length ρ+, B, will be a subset of
{ℵ+

σ+α | α ∈ D}. The definition of the ordinal αi is by induction on i < ρ+3.

1. For i = 0, α0 = 0.

2. If i < ρ+3 is a limit ordinal, then αi = sup{αj | j < i}.
3. Suppose that {αj | j ≤ i} has been defined for some i < ρ+3, and

we shall define αi+1. Consider i + 1 ⊂ ρ+3 as an isomorphic copy of
{αj | j ≤ i}. For every k ∈ S look at the set Ck ∩ (i + 1) and define
the set of cardinals ek = {ℵσ+αj | j ∈ Ck ∩ (i + 1)}. Then the set
of successors e

(+)
k = {γ+ | γ ∈ ek} is a set of regular cardinals, and

we ask whether max pcf(e(+)
k ) < ℵσ+ρ+4 or not. There are ρ+3 such

questions, and therefore we can define αi+1 < ρ+4 so that αi < αi+1

and the following holds. For every k ∈ S, if max pcf(e(+)
k ) < ℵσ+ρ+4 ,

then max pcf(e(+)
k ) < ℵσ+αi+1 .



7. Size limitation on pcf of intervals 67

So D = {αi | i < ρ+3} is defined. Let δ = sup D. Then µ = ℵσ+δ is a
singular cardinal of uncountable cofinality (that is, of cofinality ρ+3). The
Representation Theorem (Exercise 4.17) can be applied now. So there exists
a closed unbounded set C ⊆ D such that

µ+ = max pcf({ℵ+
σ+α | α ∈ C}). (I.43)

The closed unbounded set D is isomorphic to ρ+3, and C is transformed
under this isomorphism to a closed unbounded set E ⊆ ρ+3. That is

E = {i ∈ ρ+3 | αi ∈ C}.
By the club-guessing property, there exists k ∈ S such that Ck ⊂ E. If C ′k
denotes the non-accumulation points of Ck, we claim that B = {ℵ+

σ+αj
|

j ∈ C ′k} has the (impossible) property excluded by Theorem 6.4. Since the
order-type of Ck is ρ+, that of C ′k is also ρ+. It suffices to prove for every
i ∈ Ck that

max pcf({ℵ+
σ+αj

| j ∈ Ck ∩ (i + 1)}) < ℵσ+αi+1 . (I.44)

Consider the definition of αi+1. The set ek = {ℵσ+αj | j ∈ Ck ∩ (i +
1)} was defined, and since e

(+)
k ⊆ {ℵ+

σ+α | α ∈ C}, (I.43) implies that
max pcf(e(+)

k ) ≤ µ+. So the answer to the question for ek was “yes”, and
as a result (I.44) holds. a

This theorem leads to surprising applications. Consider for example A =
{ℵn | n ∈ ω}. Then cf([ℵω]ℵ0 ,⊆) = max pcf(A) by Theorem 5.11. But
pcf(A) is an interval of regular cardinals of size < ℵ4. Hence if we write
max pcf(A) = ℵα, then α < ω4. Thus

cf([ℵω]ℵ0 ,⊆) < ℵω4 .

This result holds even if 2ℵ0 is larger than ℵω4 . It follows now immediately
that if 2ℵ0 < ℵω then ℵℵ0

ω < ℵω4 . Shelah emphasizes that the former result
(concerning the cofinality of [ℵω]ℵ0) is more basic, and hence one should
ask questions concerning cofinalities rather than cardinalities, if one wants
to get (absolute) answers.

Generalizing this, we have:

7.2 Theorem. If ℵδ is a singular cardinal such that δ < ℵδ then

cf([ℵδ]|δ|,⊆) < ℵ(|δ|+4).

Proof. Write |δ| = κ. Then κ < ℵδ and if A is the interval of regular
cardinals in (κ,ℵδ) then |A| ≤ |δ| = κ and A is a progressive set. Theorem
5.11 applies with µ = ℵδ and it yields

cf([ℵδ]κ,⊆) = max pcf(A).
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But A is an interval of regular cardinals, and hence |pcf(A)| < |A|+4, by
Theorem 7.1. This implies that max pcf(A) < ℵδ+(|A|+4) ≤ ℵ|δ|+4 . Hence
cf([ℵδ]κ,⊆) < ℵ(|δ|+4). a

We are now able to deduce the following application to cardinal arith-
metic.

7.3 Theorem. Suppose that δ is a limit ordinal and |δ|cf(δ) < ℵδ. Then

ℵcf(δ)
δ < ℵ(|δ|+4).

Proof. Since |δ|cf(δ) < ℵδ, δ < ℵδ. It follows from the cofinality theorem
above that

ℵcf(δ)
δ ≤ |δ|cf(δ) · cf([ℵδ]|δ|,⊆) < ℵδ · ℵ(|δ|+4). (I.45)

a

8. Revised GCH

The generalized continuum hypothesis (G.C.H) saying that 2κ = κ+ for
every (infinite) cardinal κ is readily seen to be equivalent to the statement
that for every two regular cardinals κ < λ we have λκ = λ. In [16] Shelah
considers a “revised power set” operation λ[κ] defined as follows:

λ[κ] = min{|P| | P ⊆ [λ]≤κ and ∀u ∈ [λ]κ∃P0 ⊆ P (|P0| < κ ∧ u =
⋃
P0)}.

An inductive proof can show that the G.C.H. is equivalent to the statement
that for all regular cardinals κ < λ, λ[κ] = λ. The “revised” G.C.H theorem
says that for “many” pairs of regular cardinals we have λ[κ] = λ.

8.1 Theorem (Shelah’s Revised G.C.H). If θ is a strong limit uncountable
cardinal, then for every λ ≥ θ, for some κ0 < θ, for every κ0 ≤ κ < θ

λ[κ] = λ.

The proof that we give here is adopted from a later article ([13]) of Shelah,
and it relies on two notions that we have to investigate first, pcfσ−com(A)
and TD(f).

8.2 Definition. Let λ > θ ≥ σ = cf(σ) be cardinals.

1. We say that P ⊆ [λ]≤θ is a (< σ)-base for [λ]≤θ if every u ∈ [λ]≤θ is
the union of fewer than σ members of P. That is, for some P0 ⊆ P,
|P0| < σ, and u =

⋃P0.
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2. We define λ[σ,θ] = min{|P| | P ⊆ [λ]≤θ is a (< σ) − base for [λ]≤θ}.
Another notation for λ[σ,θ] is λ[σ,≤θ]. We have λ[σ] = λ[σ,σ]. In a
similar fashion define λ[σ,<θ]. It is the minimal cardinality of a set
P ⊆ [λ]<θ so that every u ∈ [λ]<θ is a union of fewer than σ members
of P.

3. We say that P ⊆ [λ]θ is (< σ)-cofinal in [λ]θ if every u ∈ [λ]θ is
included in the union of fewer than σ members of P. That is, for
some P0 ⊂ P, |P0| < σ, and u ⊆ ⋃P0.

4. We define λ〈σ,θ〉 = min{|P| | P ⊆ [λ]θ is (< σ)-cofinal in [λ]θ}.
Define λ〈σ〉 = λ〈σ,σ〉.

For a regular infinite cardinal σ and a set A of regular cardinal define

pcfσ−com(A) = {tcf(ΠA/F ) |F is a σ − complete filter

over A and tcf(ΠA/F ) exists}.
(I.46)

(A filter is σ complete if it is closed under the intersections of less than
σ members of the filter.)

Clearly, A ⊆ pcfσ−com(A) ⊆ pcf(A).
Define Jσ−com

<λ [A] ⊆ P(A) by the formula X ∈ Jσ−com
<λ [A] iff X ⊆ A

and whenever F is a σ-complete filter over A with X ∈ F and such that
tcf(ΠA/F ) exists, then tcf(ΠA/F ) < λ. Equivalently,

Jσ−com
<λ [A] = {X ⊆ A | pcfσ−com(X) ⊆ λ}.

Clearly, J<λ[A] ⊆ Jσ−com
<λ [A]

8.3 Lemma. Jσ−com
<λ [A] is a σ-complete ideal.

Proof. Suppose that Xi ∈ Jσ−com
<λ [A] for every i < σ∗ where σ∗ < σ. We

prove that X =
⋃

i<σ∗ Xi ∈ Jσ−com
<λ [A]. So let F be a σ-complete filter

over A containing X and such that tcf(ΠA/F ) = τ exists. We must show
that τ < λ. Assume that F is proper (the cofinality of a reduced product
by a non-proper filter is 1). For every i < σ∗ consider the filter F + Xi

(defined as the collection of all subsets of A that contain a set of the form
A ∩ Xi for A ∈ F ). If for some i < σ∗, Fi = F + Xi is proper, then it is
a σ-complete filter containing Xi and such that tcf(ΠA/Fi) = τ (extending
the filter F will not change the cofinality of the existing reduced product).
But as Xi ∈ Jσ−com

<λ [A], we get τ < λ.
If, for every i < σ∗, F + Xi is non-proper, then X \ Xi ∈ F . Hence

the intersection of these sets which is the empty set is in F , and thus F is
non-proper. a
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8.4 Lemma. Suppose that A is a progressive set of regular cardinals and
λ = max pcf(A). Then X ∈ Jσ−com

<λ [A] iff X is a union of < σ members of
J<λ[A]. That is, Jσ−com

<λ [A] is the σ-completion of J<λ[A].

Proof. Let J be the σ-completion of J<λ[A]. It is the collection of all sets
that are union of fewer than σ members of J<λ[A]. By the previous lemma,
Jσ−com

<λ [A] is σ-complete, and hence it contains J . It remains to prove that
Jσ−com

<λ [A] ⊆ J . So no assumptions on A were needed in this direction.
Assume for a contradiction that X ∈ Jσ−com

<λ [A] \ J . Then J + (A \X),
the ideal generated by J and A \X, is proper. It is easily seen to be a σ-
complete ideal. Let F be the dual filter of that ideal. Then F is σ-complete
and X ∈ F . Hence the cofinality of ΠA/F is smaller than λ.

Since λ = max pcfA, there are fζ for ζ < λ that are increasing and cofinal
in ΠA/J<λ[A] (Exercise 4.3, or Theorem 4.13). But this sequence is also
increasing and cofinal in ΠA/F , and this is an obvious contradiction. a

We now strengthen the lemma by removing the assumption that λ =
max pcf(A).

8.5 Theorem. Let A be a progressive set of regular cardinals, and σ a
regular cardinal. Then Jσ−com

<λ [A] is the σ-completion of J<λ[A].

Proof. We prove by induction on µ that for every progressive set A of reg-
ular cardinals with µ = max pcf(A), for all cardinals λ and σ (regular),
Jσ−com

<λ [A] is the σ-completion of J<λ[A].
We know already that J<λ[A] ⊆ Jσ−com

<λ [A] and that Jσ−com
<λ is σ-complete.

It remains to prove that any X ∈ Jσ−com
<λ [A] is a union of less than σ sets

from J<λ[A]. If µ < λ then X ∈ J<λ[A] and this case is uninteresting. In
case λ ≤ µ, X ∈ Jσ−com

<µ [A]. So by the previous lemma, X is a union of less
than σ sets from J<µ[A]. But the inductive assumption can be applied to
each one of these sets, and the lemma follows since σ is regular. a

Another characterization of the ideal Jσ−com
<λ [A] is provided by the fol-

lowing theorem dealing with the cofinality of product of cardinals under the
< relation: f < g iff for every a ∈ dom(f) f(a) < g(a).

We know (Theorem 4.4) that X ∈ J<λ[A] iff cf(ΠX) < λ. For a similar
characterization of Jσ−com

<λ we need the following definition. Let σ be a
regular cardinal and X a set of regular cardinals. If F ⊆ ΠX, we say that
F is (< σ)-cofinal iff for every f ∈ ΠX there is a set F0 ⊆ F with |F0| < σ
and such that f < supF0. In other words, the functions formed by taking
the supremum of fewer than σ functions from F form a cofinal set in ΠX.
The (< σ)-cofinality of ΠX is the smallest cardinality of a (< σ)-cofinal
subset. It makes sense to assume that σ ≤ min X when inquiring about the
(< σ)-cofinality of X.
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8.6 Theorem. Suppose that A is a progressive set of regular cardinals,
σ ≤ min A is a regular cardinal, and σ ≤ cf(λ). Define

J = {B ⊆ A | B = ∅ or ΠB has (< σ)-cofinality < λ}

Then J = Jσ−com
<λ [A].

Proof. We first prove that J ⊆ Jσ−com
<λ . Suppose B ∈ J and let D be a

σ-complete filter over A containing B and such that tcf(ΠA/D) exists and
is equal to λ′ ≥ λ. This will lead to a contradiction, thereby proving that
B ∈ Jσ−com

<λ . Since tcf(ΠA/D) = λ′, λ′ is a regular cardinal and there is
an increasing sequence S in ΠA/D of length λ′ that is cofinal in ΠA/D.
By definition of B ∈ J , there is a set F ⊆ ΠB of cardinality < λ that is
(< σ)-cofinal. For every f ∈ F there is a function s ∈ S such that f <D s
(f is defined on B and s on A, but as B ∈ D, this makes sense). Since λ′

is regular and bigger than |F|, there is a single s ∈ S such that f <D s for
every f ∈ F . Since F is (< σ)-cofinal, s <D supF0 for some F0 ⊆ F of size
< σ. But as D is σ-complete, and f <D s for every f ∈ F0, supF0 ≤D s
as well. This is a contradiction, and thus J ⊆ Jσ−com

<λ [A].
Clearly J<λ[A] ⊆ J (by Theorem 4.4). If we prove that J is σ-complete

then Jσ−com
<λ [A] ⊆ J follows from the previous theorem.

So let σ∗ < σ and Xi ∈ J for i < σ∗ be given. We shall prove that
X =

⋃
i<σ∗ Xi ∈ J . For every i < σ∗ we have a (< σ)-cofinal set Pi ⊆

ΠXi of cardinality < λ. Then P =
⋃

i<σ∗ Pi has cardinality < λ because
σ ≤ cf(λ). The domain of each function in Pi is Xi, but we can extend it
arbitrarily on X and then P can be considered as a subset of ΠX. Clearly
P is (< σ)-cofinal. a

We shall apply this theorem to the ideal Jσ−com
≤λ [A] rather than Jσ−com

<λ [A].
That is, replacing λ with λ+ in the theorem, we get the following corollary
in which σ ≤ cfλ is no longer required.

8.7 Corollary. Suppose that A is a progressive set of regular cardinals,
σ ≤ min A is a regular cardinal, and σ ≤ λ. Define

J = {B ⊆ A | B = ∅ or ΠB has (< σ)-cofinality ≤ λ}

Then J = Jσ−com
≤λ [A].

8.8 Theorem. Suppose that:

1. λ > θ > σ > ℵ0 are given, where θ and σ are regular cardinals, and
2<θ ≤ λ.

2. For every A ⊆ Reg ∩ λ \ θ, if |A| < θ then A ∈ Jσ−com
≤λ [A].

Then λ = λ[σ,<θ].
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Proof. Fix χ sufficiently large, and let M ≺ H(χ) be an elementary sub-
structure of cardinality λ and such that λ + 1 ⊂ M . We shall prove the
following claim which yields the theorem:

M ∩ [λ]<θ is a (< σ)-base for [λ]<θ.

For this, we need the following lemma.

8.9 Lemma. With the same assumptions of the theorem and on M , let
g : κ → λ and f : κ → λ + 1 be given with κ < θ, f ∈ M , and such that
∀a ∈ κ g(a) ≤ f(a). Then there is a collection Φ ⊆ M of functions from κ
to λ such that the following hold:

1. |Φ| < σ.

2. For every p ∈ Φ, g ≤ p ≤ f (that is, for all a ∈ κ, g(a) ≤ p(a) ≤ f(a)).

3. For every a ∈ κ, if g(a) < f(a), then for some p ∈ Φ g(a) ≤ p(a) <
f(a).

Proof. Think of f as an “approximation from above” in M to the function g
(which is not in M , or else the theorem is trivial). The set Φ is not required
to be a member of M , and each function of Φ (if different from f) is a
better approximation that lies in M . For each a ∈ κ, if f(a) is not the best
approximation, then Φ contains a function that gets a better value at a.

Fix in M a sequence 〈Cδ | δ ≤ λ, δ ∈ limλ〉 such that Cδ ⊆ δ is
unbounded in δ and of order-type cf(δ).

Define the following subsets of κ:

E0 = {a < κ | g(a) = f(a)}

E1 = {a < κ | g(a) < f(a), f(a) is a successor ordinal}

E2 = {a < κ | g(a) < f(a), f(a) is a limit and cf(f(a)) < θ}

E3 = κ \ (E0 ∪ E1 ∪ E2).

Since 2<θ ≤ λ, any bounded subset of θ is in M . So each E` is in M .
We define h on κ as follows. For a ∈ E0, h(a) = f(a). For a ∈ E1,
h(a) + 1 = f(a). For a ∈ κ \ (E0 ∪ E1), h(a) = min Cf(a) \ g(a).

Obviously h ¹ E0 ∪ E1 ∈ M . We prove that h ¹ E2 ∈ M as well. By
definition h ¹ E2 is a function in Πδ∈E2Cf(δ). But θ is regular, and since
|E2| < θ and cf(f(δ)) < θ, there is a bound below θ on the values of
{cf(f(a)) | a ∈ E2}, and hence |Πδ∈E2Cf(δ)| ≤ 2<θ ≤ λ.

So Πδ∈E2Cf(δ) ⊂ M , and hence h ¹ E2 ∈ M .



8. Revised GCH 73

There is no reason to assume that h ¹ E3 is in M , but we shall find a set Φ
of size < σ as required by the lemma. Define A = {cff(a) | a ∈ E3}. Then
A ⊆ λ+1\θ is a set of regular cardinals of size ≤ κ, and so A ∈ Jσ−com

≤λ [A].
There is by Corollary 8.7 a family F of size ≤ λ that is (< σ)-cofinal in
ΠA. Since A ∈ M we can have F ∈ M and F ⊂ M . Since κ < min A
and A ⊂ Reg, F yields a family of functions, F ′ ⊂ Πδ∈E3Cf(δ) = P that
is (< σ)-cofinal in P . As h ¹ E3 ∈ P , there is a set F0 ⊆ F ′ of size < σ
such that h ¹ E3 < supF0. If e ∈ F0, then e(δ) < f(δ) but e(δ) < g(δ) is
possible. So we correct each e ∈ F0 and define:

e′(δ) =

{
e(δ) if g(δ) ≤ e(δ),
f(δ) otherwise.

Then e′ ∈ M because e, f ∈ M and every subset of κ is in M . The collection
{h ¹ (E0∪E1∪E2)_e′ | e ∈ F0} is as required, and the lemma is proved. a

We continue now with the proof of the theorem. So let u ∈ [λ]<θ be given
and we shall find a subset of M ∩ [λ]<θ of cardinality < σ whose union is u.
Let κ = |u| < θ be the cardinality of u and take an enumeration g : κ → u.
We shall define by induction on n ∈ ω a set Φn of functions from κ to λ
such that the following holds.

1. Let f0 : κ → λ + 1 be defined by f0(a) = λ. Then Φ0 = {f0}.
2. For every n, Φn ⊂ M and |Φn| < σ. If f ∈ Φn then g ≤ f .

3. For every f ∈ Φn and a ∈ κ such that g(a) < f(a) there exists
p ∈ Φn+1 such that g(a) ≤ p(a) < f(a).

This is easily obtained by the lemma.
Let Φ =

⋃
n<ω Φn. Then |Φ| < σ. For any f ∈ Φ, the set

E(f) = {f(a) | a ∈ κ and f(a) = g(a)}
is in M (because f is, and any subset of κ). We have u = ∪{E(f) | f ∈ Φ}
because if x ∈ u then x = g(a) for some a ∈ κ, and g(a) < f0(a). There
exists a sequence fn ∈ Φn so that if g(a) < fn(a) then fn+1(a) < fn(a).
And necessarily for some n g(a) = fn(a). So a ∈ E(fn). This ends the
proof of Theorem 8.8. a

The following corollary shows that the theorem above can also be applied
when cf(θ) < σ.

8.10 Corollary. Suppose that:

1. λ > θ > σ = cf(σ) > ℵ0 are given, where cf(θ) < σ, and 2<θ ≤ λ.

2. For every A ⊆ Reg ∩ λ + 1 \ θ, if |A| < θ then A ∈ Jσ−com
≤λ [A].
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Then λ = λ[σ,≤θ].

Proof. Fix a sequence 〈θi | i < cf(θ)〉 of regular cardinals that is cofinal in
θ and such that σ < θi for all i. We claim for every i < cf(θ) that the
assumptions of Theorem 8.8 hold for λ > θi > σ, and hence λ = λ[σ,<θi]

follows. But this clearly implies that λ = λ[σ,≤θ].
For the claim, we must prove that if θ′ < θ is regular then for every

A ⊆ Reg ∩ λ + 1 \ θ′, if |A| < θ′ then A ∈ Jσ−com
≤λ [A]. Suppose for a

contradiction that this is not the case, and for some σ-complete filter D
over A ⊂ Reg ∩ λ + 1 \ θ′ we have tcf(ΠA/D) = λ0 > λ. We may assume
that A ⊂ θ, that is, we may assume that A ∩ θ ∈ D, or else A \ θ is not
D-null and then it can be added to D without changing the true cofinality
of the reduced product, which contradicts the assumptions of the theorem.

If for every i < cf(θ) A\θi ∈ D, then by the σ-completeness of D and the
fact that cf(θ) < σ, we get a contradiction. So for some i A∩θi is not D-null.
But then D′ = D+A∩θi is σ-complete and it follows that the true cofinality
of ΠA/D′ remains λ0. Yet this is impossible since (θi)|A∩θi| ≤ 2<θ ≤ λ. a

8.1. TD(f)

Let J be an ideal over a cardinal κ. We recall some definitions. The collec-
tion of positive sets is denoted J+. The corresponding dual filter is denoted
J∗. If R is a relation, if f and g are functions defined on κ, then we define
f RJ g if and only if {i ∈ κ | f(i) R g(i)} ∈ J∗. We also write f RJ+ g for
{i ∈ κ | f(i) R g(i)} 6∈ J . That is, f(i) R g(i) occurs positively.

Thus f 6=J g means that {i ∈ κ | f(i) = g(i)} ∈ J , and f =J+ g means
that ¬f 6=J g.

Let κ be a cardinal and D a filter over κ. Consider the <D ordering on
Onκ. For f ∈ Onκ, Πi<κf(i) is denoted Πf , and Πi<κf(i)/D is denoted
Πf/D. (We consider only functions f such that f(i) > 0 for i ∈ κ.)

For F ⊂ Πf , we say that F is a set of pairwise “D-different” functions,
if for every distinct f1, f2 ∈ F we have f1 6=D f2. For any f ∈ Onκ, define

TD(f) = sup{|F| | F ⊆ Πf is a set of pairwise D-different functions}
(Shelah investigate several different definitions, and this cardinal is denoted
T 0

D in [13].)

8.11 Theorem. Suppose that D is a filter over κ, f ∈ Onκ and TD(f) = λ.
If 2κ < λ then the supremum in the definition of TD(f) is attained. In
fact, if 2κ < λ and F ⊂ Πf is any maximal family of pairwise D-different
functions, then |F| = λ.

Proof. Suppose on the contrary that F ⊂ Πf is maximal but |F| < λ. Let
G ⊂ Πf be a collection of pairwise D-different functions such that

|G| > |F|+ 2κ. (I.47)
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For every g ∈ G we can find f = f(g) ∈ F such that X(g) = {i ∈ κ | f(i) =
g(i)} is not D-null. As (I.47), there are two distinct functions g1 and g2 in
G such that f(g1) = f(g2) and X(g1) = X(g2). But this implies that g1

and g2 agree on a non-null set which is a contradiction to the assumption
that the functions in G are pairwise D-different. a

An obvious observation which turns out to be crucial is the following.

8.12 Lemma. If tcf(Πf/D) exists, then TD(f) ≥ tcf(Πf/D).

Proof. If tcf(Πf/D) = λ, then there exists a <D increasing sequence of
length λ, and hence a set of cardinality λ of pairwise D-different functions.

a
Assume now that σ is a regular uncountable cardinal, and D is a σ-

complete filter over κ. Then Πf/D is well-founded. This is used in the
following.

8.13 Lemma. Suppose that σ is a regular uncountable cardinal and D is a
σ-complete filter over κ. Suppose f ∈ Onκ and TD(f) ≥ λ where 2κ < λ.
Then for some g ≤D f we have TD(g) = λ.

Proof. Let g ≤D f be minimal in the ≤D ordering such that TD(g) ≥ λ.
Suppose for a contradiction that TD(g) > λ. There is a set {fα | α < λ+}
of pairwise D-different functions in Πg. For α < λ+ define

uα = {β < λ+ | fβ <D fα}.
If, for some α, |uα| ≥ λ, then uα proves that TD(fα) ≥ λ in contradiction
to the minimality of g. Hence |uα| < λ for every α < λ+.

But now we can apply the Free Mapping theorem of Hajnal and obtain
F ⊆ λ+, of cardinality λ+ such that α 6∈ uβ (and β 6∈ uα) for every α 6= β
in F . (The argument in short is the following. First, we can find λ0 < λ
such that |uα| = λ0 for unboundedly many α < λ+. Re-enumerating, we
may assume |uα| = λ0 for every α. On those α < λ+ with cofinality λ+

0 we
bound uα ∩ α in α, and use Fodor’s lemma.)

Hence there are fα ∈ Onκ for α < (2κ)+ such that fα 6≤D fβ whenever
α 6= β. But this is impossible in view of the Erdos-Rado partition theorem
(2κ)+ → (κ+)2κ. Indeed, for α < β < κ+ define h(α, β) as some i < κ
such that fβ(i) < fα(i). Then h has no infinite homogeneous set, which
contradicts the Erdos-Rado theorem. Thus TD(g) = λ.

Observe that since 2κ < λ, L = {a ∈ κ | g(a) ∈ lim} is not null in D, and
hence we may assume without loss of generality that it is in D. (Or else let
h <D g be such that g(a) = h(a) + 1 for every a 6∈ L, and h(a) = g(a) on
L. Let fα, for α < λ, exemplify TD(g) = λ. By minimality of g, there are λ
functions fα that are equal to h on a positive subset of κ \L. Since 2κ < λ,
two such functions are equal on a positive set, which is impossible.) a



76 I. Cardinal Arithmetic

The following is one of the two main arguments used in the proof of the
revised GCH theorem.

8.14 Theorem. Assume that λ > θ ≥ σ = cf(σ) > κ are cardinals such
that:

1. θκ = θ.

2. If τ < σ then τκ < σ.

3. J is an ideal on κ.

4. There is a sequence λ̄ = 〈λi | i < κ〉, λi < λ, such that

(a) TJ (λ̄) = λ,

(b) λ
〈σ,θ〉
i = λi for every i < κ.

Then λ〈σ,θ〉 = λ. (If we also assume 2θ ≤ λ, then evidently λ[σ,θ] = λ.)

Proof. In the proof, we actually weaken the requirement TJ(λ̄) = λ to the
following conjunction.

1. There are fα ∈ Πi<κλi, for α < λ, such that α 6= β −→ fα 6=J fβ ,

2. There are gα ∈ Πi<κλi, for α < λ, such that for every f ∈ Πi<κλi

there exists α < κ with f =J+ gα.

Fix a sequence of pairwise D-different functions fα ∈ Πi<κλi, for α < λ,
as in 1 above.

For every i < κ we assume λ
〈σ,θ〉
i = λi, so there exists a family Pi ⊆ [λi]θ

of cardinality λi that is (< σ)-cofinal in [λi]θ.
Since |Pi| = λi, Πi∈κPi is isomorphic to Πi<κλi. So there is (by 2 above)

a family {gα | α < λ} ⊂ Πi∈κPi such that for every g ∈ Πi∈κPi there is
α < λ with g =J+ gα.

For every g ∈ Πi∈κPi and A ∈ J+, let g |̀A be the restriction of g to A,
and Πg ¹ A is Πi∈Ag(i). We define

F(g |̀A) = {ζ ∈ λ | ∀i ∈ A fζ(i) ∈ g(i)}.

In other words, F(g ¹ A) is the set of ζ ∈ λ such that fζ ¹ A ∈ Πg ¹ A.
Observe that if A ⊂ B ⊆ κ, then F(g ¹ A) ⊇ F(g ¹ B).

8.15 Claim. For every g ∈ Πi∈κPi and A ∈ J+, |F(g ¹ A)| ≤ θ.

Since g(i) ∈ Pi ⊆ [λi]θ, |Πi∈Ag(i)| ≤ θκ = θ. So, if |F(g ¹ A)| > θ,
we would have ζ 6= ζ ′ in λ with fζ ¹ A = fζ′ ¹ A. But as A ∈ J+, this
contradicts fζ 6=J fζ′ and proves the claim.
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8.16 Claim. Every u ∈ [λ]θ is included in a union of fewer than σ sets of the
form F(gα ¹ A). That is, the collection F = {F(gα ¹ A) | α < λ, A ∈ J+}
is (< σ)-cofinal in [λ]θ.

Observe first that as |F| ≤ λ · 2κ = λ, this claim proves the theorem.
Given u ∈ [λ]θ define for every i < κ

ui = {fα(i) | α ∈ u}.

Then ui ∈ [λi]≤θ and hence there is Pu
i ⊂ Pi with |Pu

i | < σ and such
that ui ⊆

⋃Pu
i . Since σ is regular, some τ < σ bounds all the cardinals

σi = |Pu
i |, and, as τκ < σ, we have that |Πi∈κσi| < σ. So

G = Πi∈κPu
i

is a subset of Πi∈κPi of size < σ. The following two lemmas finish the proof
of our claim.

8.17 Lemma. u ⊆ ⋃{F(g) | g ∈ G}.
Proof. If ζ ∈ u then fζ(i) ∈ ui for every i ∈ κ. Thus fζ(i) ∈

⋃Pu
i for every

i < κ, and we can find g ∈ G such that fζ(i) ∈ g(i) for all i < κ. Namely,
ζ ∈ F(g) as required. a
8.18 Lemma. For every g ∈ G there is α < λ and A ∈ J+ such that
F(g) ⊆ F(gα ¹ A). Thus as |G| < σ, u is contained in the union of fewer
than σ sets of the form F(gα ¹ A).

Proof. For every g ∈ G there is some α < λ such that g =J+ gα. That is,
for some A ∈ J+, g ¹ A = gα ¹ A. We already observed that F(g) ⊆ F(g ¹
A), and hence the lemma follows. So Theorem 8.14 is proved. a

We shall use a variant of Theorem 8.14 in which the assumption θκ = θ is
replaced with the assumption that θ is a strong limit cardinal with cf(θ) < σ.

8.19 Corollary. Assume that λ > θ > σ = cf(σ) > κ are cardinals such
that:

1. θ is a strong limit cardinal and cf(θ) < σ.

2. If τ < σ then τκ < σ.

3. J is an ideal on κ.

4. There is a sequence λ̄ = 〈λi | i < κ〉, λi < λ, such that

(a) TJ(λ̄) = λ,

(b) λ
〈σ,θ〉
i = λi for every i < κ.
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Then λ〈σ,θ〉 = λ.

Proof. Fix a cofinal in θ sequence 〈θε | ε < cf(θ)〉 such that θκ
ε = θε and

σ < θε for every ε. (Start with any cofinal sequence, and replace θε with
(θε)κ if necessary.)

Consider any ε < cf(θ). Observe that for every i < κ we have λi = λ
[σ,θε]
i .

This follows immediately from the assumptions that θ is a strong limit
cardinal with cf(θ) < σ, and such that λi = λ

〈σ,θ〉
i . Hence Theorem 8.14 is

applicable (with θε in the role of θ) and λ = λ〈σ,θε〉. Since this holds for
every ε < cf(θ), we get λ = λ〈σ,θ〉. a

8.2. Proof of the revised GCH

We prove the following form of the revised G.C.H.

8.20 Theorem. If θ is a strong limit singular cardinal, then for every λ ≥ θ,
for some σ < θ,

λ = λ[σ,θ].

Proof. Let σ0 = (cf θ)+.
The theorem is proved by induction on λ. For λ = θ, λ = λ[σ0,θ], and

the family of all bounded subsets of θ is an evidence for this equality. (Any
subset of θ is a union of cf(θ) bounded subsets.)

We note for clarification that the induction can easily proceed in case
cf(λ) 6= cf(θ), and so we may assume that cf(λ) = cf(θ). However, we shall
not make any use of this in the following proof.

Case 1: For every A ⊆ Reg∩λ\θ, if |A| < θ then A ∈ Jσ0−com
≤λ [A].

In this case the inductive assumption is dispensable and Corollary
8.10 yields immediately that λ = λ[σ0,≤θ].

Case 2: Not Case 1:

For some A ⊆ Reg ∩ λ \ θ with |A| < θ, A 6∈ Jσ0−com
≤λ [A].

Hence there is a σ0-complete filter D over A, where |A| = κ < θ, such
that tcf(ΠA/D) > λ. Say f : κ → A enumerates A. By Lemma 8.12,
TD(f) ≥ tcf(ΠA/D) > λ. By Lemma 8.13, there exists g ≤ f defined
over κ so that TD(g) = λ.

We claim that {i < κ | g(i) ≥ θ} ∈ D. If not, then {i < κ | g(i) < θ} is
D-positive. But since cf(θ) < σ0 and D is σ0-complete, there is θ′ < θ
so that X = {i < κ | g(i) < θ′} is D-positive. Hence TD(g ¹ X) = λ.
But this is impossible since θ is strong limit and (θ′)κ < θ.

So we can assume now that for every i < κ, g(i) ≥ θ. Hence by the
inductive assumption there is σ(i) < θ so that
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g(i) = g(i)[σ(i),θ]. (I.48)

Since cf(θ) < σ0 and D is σ0-complete, there is σ, such that κ, σ0 <
σ < θ and {i < κ | σ(i) < σ} is D-positive. For notational simplicity
we assume that σ(i) < σ for all i < κ. Take σ1 = (σκ)+. Now apply
Corollary 8.19 to λ > θ > σ1 > κ. This yields λ〈σ1,θ〉 = λ, but since θ
is a strong limit cardinal with cf(θ) < σ1 we obtain λ[σ1,θ] = λ.

a
We note that Theorem 8.1 did not make the assumption that θ is a

singular cardinal, but Theorem 8.20 did. To see how 8.1 can be derived
from 8.20, we argue as follows in case θ is a regular uncountable strong
limit cardinal. There is a stationary set S ⊂ θ of strong limit singular
cardinals. So if λ ≥ θ, then Theorem 8.20 applies to each θ′ ∈ S, and
λ = λ[σ(θ′),θ′] follows for some σ(θ′) < θ′. By Fodor’s theorem, there is
fixed σ < θ such that σ = σ(θ′) for a stationary set of cardinals θ′ ∈ S.
This gives λ = λ[σ,<θ]. So obviously for every σ ≤ κ < θ, we get λ = λ[κ].

8.3. Applications of the revised GCH

Two applications are given here, the first to the existence of diamond se-
quences and the second to cellularity of Boolean algebras. Both use the
following immediate corollary of the revised GCH theorem.

If α ≥ iω then for some regular uncountable σ < iω there
is a collection Pα ⊆ [α]σ where |Pα| = |α| and such that for
each x ∈ [α]σ, for some p ∈ Pα, p ⊆ x.

(I.49)

To begin this section we recall that for a stationary set S ⊆ λ+, 3−
λ+(S)

is the following diamond statement: there is a sequence 〈Sα | α ∈ S〉 where
Sα ⊆ P(α), |Sα| ≤ λ, and for every A ⊆ λ+, {α ∈ S | A ∩ α ∈ Sα} is a
stationary set. If |Sα| = 1, that is essentially Sα ⊆ α, then the sequence
is the usual diamond sequence on S, and the resulting statement is the
classical diamond 3λ+(S). An intriguing theorem of Kunen’s (see [11])
states that 3−

λ+(S) is equivalent to 3λ+(S). (Somewhat more generally,
this holds for an arbitrary regular cardinal µ not necessarily a successor
cardinal, where 3−

µ (S) is the diamond statement obtained by restricting Sα

to have cardinality not greater than that of α.) When S = λ+, we write
3−

λ+ instead of 3−
λ+(S) etc.

A beautiful argument of Gregory [4] proves that if 2λ = λ+ and λℵ0 = λ,
then 3−

λ+(Sλ+

ω ) where Sλ+

ω is the stationary set of ordinals in λ+ of cofinality
ω. (There are stronger formulations, but this suffices to demonstrate the
application we have in mind.) To prove this theorem, let {Xi | i < λ+}
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be an enumeration of all bounded subsets of λ+. For every α < λ+ define
Sα as the collection of all subsets of α that are formed by taking countable
unions of sets from {Xi | i < α}. Since |α|ℵ0 ≤ λ, |Sα| ≤ λ. Now, if A ⊆ λ+

is given, then the set, C, of α < λ+ for which ∀ζ < α ∃i < α (A ∩ ζ = Xi)
is closed unbounded in λ+. If α ∈ C and cf(α) = ω then A ∩ α ∈ Sα.
Applying Kunen’s theorem, we can obtain 3λ+(Sλ+

ω ).
The revised GCH enables in many cases a stronger theorem in which

λℵ0 = λ is not required.

8.21 Theorem. If λ ≥ iω and 2λ = λ+, then 3λ+ holds. (Hence 3λ+ is
in fact equivalent to 2λ = λ+ for every λ ≥ iω.)

Proof. As before, let {Xi | i < λ+} enumerate all bounded subsets of λ+.
iω is the first strong limit cardinal, and the revised GCH theorem applies to
λ ≥ iω. So there is σ < iω such that (I.49) holds for some family P ⊆ [λ]σ.

For every α in the interval [λ, λ+), |α| = λ and hence P can be trans-
formed into a family Pα ⊂ [α]σ such that (I.49) holds (same σ for all α’s).
Now we define Sα as the collection of all subsets of α obtained as unions of
the form

⋃{Xi | i ∈ B} where B ∈ Pα. So |Sα| ≤ λ.
The argument to prove that 〈Si | i < λ+〉 is a diamond sequence is now

familiar. Let A ⊆ λ+ be any set. There is a closed unbounded C ⊂ λ+ as
before so that for α ∈ C and ζ < α there is i < α such that A∩ζ = Xi. Now
pick any α ∈ C such that cf(α) = σ. Pick an increasing sequence 〈αε | ε < σ〉
cofinal in α, and for each ε < κ find i(ε) < α such that A ∩ αε = Xi(ε).
Define u = {i(ε) | ε < σ}. Observe that if K ⊆ σ is any unbounded subset
of σ then

⋃{Xi(ε) | ε ∈ K} = A ∩ α. For some B ∈ Pα, i(ε) ∈ B for
unboundedly many ε < σ. Hence A ∩ α =

⋃{Xi | i ∈ B} ∈ Sα. a
We now begin the second application.

8.22 Definition. A subset X of a Boolean algebra is µ-linked if there is a
function h : X → µ such that x ∧ y 6= 0B whenever h(x) = h(y).

Our aim is to prove the following theorem from [15]. (For background
and motivation and additional results consult [15] and [5].)

8.23 Theorem. Assume that µ = µ<iω . If B is a c.c.c. Boolean algebra
of cardinality ≤ 2µ, then B is µ-linked.

The proof which follows is an example of an induction that relies on the
revised GCH. Since B satisfies the countable chain condition, its completion
has cardinality ≤ |B|ℵ0 ≤ 2µ, and so we can assume that B is a complete
Boolean algebra (and when we prove that it is µ-linked then the original
algebra which is embedded in its completion is also µ-linked).

We prove by induction on λ, a cardinal such that µ ≤ λ ≤ 2µ, that any
subset of B of cardinality λ is µ-linked. This is obvious for λ = µ, or when
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cf(λ) ≤ µ (and the inductive claim holds for smaller cardinals), and so we
may assume that cf(λ) > µ. There are several ingredients in the proof
of this theorem, and so it is postponed until the required preparations are
made.

8.24 Definition. Let C be a Boolean algebra, and D ⊆ C a subalgebra.
For any x ∈ C let Fx = {d ∈ D | x ≤ d} be the filter generated by x. For a
cardinal θ the following property is denoted (∗∗)θ (for the pair D and C):

(∗∗)θ For every x ∈ C there is F ⊆ Fx of cardinality ≤ θ and such that
for every b ∈ Fx there is a ∈ F such that a ≤ b.

In other words, Fx is generated by a subset of cardinality ≤ θ.

8.25 Lemma. Let θ, µ, and κ be cardinals such that θ, µ ≤ κ. Suppose
that C is a Boolean algebra with a decomposition C =

⋃
α<κ Cα, where the

sequence of Boolean subalgebras Cα is increasing and continuous (for limit
δ, Cδ =

⋃
i<δ Ci). Assume the following:

1. C0 = ∅.
2. Each Cα is µ-linked.

3. Property (∗∗)θ holds for each of the pairs Cα, C.

Let χ be a sufficiently large cardinal and consider the structure Hχ (with
some well ordering of its universe, and with C and its decomposition as
constants). Suppose that M1 and M2 are two elementary substructures of
Hχ that are isomorphic with an isomorphism g : M1 → M2 that is the
identity on κ ∩M1 ∩M2. Suppose in addition that θ ⊂ M1 ∩M2, and that
M1 ∩ µ = M2 ∩ µ.

Then for every non-zero x ∈ M1 ∩ C,

x ∧ g(x) 6= 0C .

Proof. The rank of an element c ∈ C is the least ordinal τ such that c ∈ Cτ .
Since C0 = ∅, the rank of c is a successor ordinal (below κ) such that
c ∈ Cα+1 \Cα. Take x ∈ M1 of minimal rank α+1 such that x∧ g(x) = 0C

and we shall obtain a contradiction.
Case 1. α ∈ M1 ∩ M2. So g(α) = α. Let h : Cα+1 → µ be the least

function (in the well-ordering of Hχ) given by the assumption that Cα+1

is µ-linked. So h ∈ M1 ∩ M2, and since h is definable from α we have
g(h) = h (as g(α) = α). Say h(x) = η ∈ µ. As M1 ∩ µ = M2 ∩ µ, we have
g(h(x)) = g(η) = η. But g(h(x)) = g(h)(g(x)) = h(g(x)). So h(g(x)) = η,
and hence h(x) = h(g(x)) which implies that x and g(x) have non-zero meet
in C.

Case 2. α ∈ M1\M2, and hence α 6= g(α) and g(α) ∈ M2\M1. Suppose
that g(α) < α (case g(α) > α is symmetric). Say g(x) = y, and g(α) = β.
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Then β + 1 is the rank of y. Let α1 ≤ α be the least ordinal in M1 that is
strictly above β. Since β + 1 ≤ α1,

y ∈ Cα1 .

Let Fx ⊂ Cα1 be the filter generated by x. Property (∗∗)θ of the pair Cα1

and C implies the existence of F ⊆ Fx of cardinality ≤ θ that generates Fx.
As x and y are disjoint, the complement, −y, of y is in Fx (since it is in
Cα1) and hence there is a ∈ F that is disjoint from y. Since α1 and x are in
M1, we have Fx and F in M1 as well. But as θ is included in M1, F ⊂ M1

and hence a ∈ M1 follows. The rank of a is α2 + 1 ≤ α1. The minimality
of α1 implies that α2 < β (equality is impossible because β is not in M1).
But now we can apply a similar argument to Fy (for the pair Cβ , C) and
discover b ∈ Cβ∩M2 that is disjoint to a. Say u ∈ M1 is such that g(u) = b.
Then u ∈ Cα and hence x0 = u ∧ a is in Cα. Since b ∈ Fy, u ∈ Fx, and
hence x0 is in Fx too. In particular, x0 6= 0C . But g(x0) = b ∧ g(a) and x0

is disjoint to b ∧ g(a) because already a is disjoint to b. So x0 is disjoint to
g(x0), in contradiction to the minimality of the rank of x. a

Here is a lemma which is an immediate consequence of the Engelking and
Karlowicz theorem [3]; we state it for reference and will return to its proof
later on.

8.26 Lemma. If µθ = µ then there is a map τ : [2µ]θ → µ such that if
τ(M1) = τ(M2) then M1 and M2 have the same order-type (as subsets of
the ordinal 2µ) and the order isomorphism g : M1 → M2 is the identity on
M1 ∩M2.

8.27 Corollary. Suppose that θ < µ < κ ≤ 2µ are cardinals such that
µθ = µ. Let C be a Boolean algebra of cardinality ≤ 2µ, and suppose that
C =

⋃
α<κ Cα where the Cα form an increasing and continuous sequence of

subalgebras such that: C0 = ∅, each Cα is µ-linked, and (∗∗)θ holds for each
pair Cα, C. Then C is µ-linked.

Proof. Let χ be sufficiently large and Hχ be the structure of sets of cardi-
nality hereditarily less than χ, with a well-ordering of the universe and C
as a constant. For every a ∈ C find M(a) ≺ Hχ of cardinality θ and such
that θ ⊂ M(a). With each M = M(a) we associate the following three
parameters.

1. M ∩ µ ∈ [µ]θ. So there are µ such parameters.

2. τ(M ∩ 2µ), where τ : [2µ]θ → µ is the map from the lemma above.

3. The isomorphism type of M(a) (with a as a parameter). Since 2θ ≤ µ
there are ≤ µ such types.
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The map taking a ∈ C to the three parameters associated with M(a)
proves that C is µ-linked. For if M(a) and M(b) have the same parameters
then a ∧ b 6= 0C by the following argument. Let g : M(a) → M(b) be
the isomorphism given by item 3. Then g(a) = b, and we plan to apply
Lemma 8.25. This is possible because (1) τ(M(a) ∩ 2µ) = τ(M(b) ∩ 2µ)
implies that g is the identity on 2µ ∩M(a) ∩M(b), (2) θ ⊂ M(a) ∩M(b)
by assumption, and (3) M(a)∩µ = M(b)∩µ because this is the first of the
three parameters. a

We continue the inductive proof of Theorem 8.23. Recall that λ ≤ 2µ, B
is a complete c.c.c. Boolean algebra of cardinality ≤ 2µ, and every subset
of B of cardinality < λ is µ-linked. Our aim is to prove that any X ⊆ B
of cardinality λ is µ-linked. We intend to use Corollary 8.27, and we must
find C ⊆ B with X ⊆ C and such that the premises of 8.27 hold.

For every α such that iω ≤ α < λ we have a regular uncountable cardinal
σ(α) < iω and a family Pα ⊆ [α]σ(α) such that (I.49) holds. Since cf(λ) 6= ω
(in fact cf(λ) > µ) there is an unbounded set E ⊂ λ such that for some
fixed σ we have σ = σ(α) for every α ∈ E. The symbols E and σ retain
this meaning throughout the proof. We define θ = 2<σ.

8.28 Lemma. Let χ > 2µ be sufficiently large. Suppose that δ is an ordinal
and 〈Mi ≺ Hχ | i < δ〉 is such that:

1. cf(δ) > σ.

2. B,E ∈ M0 and iω ⊂ M0.

3. Mi ⊂ Mj for i < j and Mi ∈ Mi+1.

4. |Mi| < λ, and Mi ∩ λ ∈ λ.

Then for M =
⋃

i<δ Mi and B0 = B∩M , (∗∗)2<σ holds for the pair B0 and
B.

Proof. Given x ∈ B consider Fx ⊂ B0, the filter of members of B0 that
are greater than x. We want to find F ⊆ Fx of cardinality ≤ θ = 2<σ

that generates Fx. We choose aζ ∈ Fx for ζ < σ by the following inductive
procedure. Suppose that Aζ = {aε | ε < ζ} is already chosen. Let Gζ =
{∧Z | Z ⊆ Aζ and Z ∈ M}. So Gζ is the collection of all elements of B
that can be formed by taking meets of subsets of Aζ that happen to be in
M . Clearly Aζ ⊆ Gζ ⊆ Fx. Since |Aζ | < σ, |Gζ | ≤ 2<σ. If there exists
a ∈ Fx not covering any b ∈ Gζ , then let aζ be such a. If there is no such
a, then the procedure stops and F = Gζ is as required. We shall prove
that the construction cannot proceed for every ζ < σ. Suppose it does, and
consider A = {aζ | ζ < σ}. Since cf(δ) > σ there is i < δ with A ⊂ Mi. As
|Mi| < λ there is, already in Mi+1 an ordinal α ∈ E such that |Mi| < α.
So α + 1 ⊂ Mi+1 and hence also Pα ⊂ Mi+1 (where Pα ⊆ [α]σ satisfies
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(I.49)). Viewing the universe of Mi as a copy of an ordinal < α, the set A
is a subset of α of cardinality σ, and we have some p ∈ Pα such that p ⊆ A.
Since iω ⊂ Mi+1, each subset of p is also in Mi+1. It follows that for every
aζ ∈ p, Aζ ∩ p ∈ M and hence aζ 6≥ ∧(Aζ ∩ p). Thus ∧(Aζ ∩ p)− aζ 6= 0B is
a sequence of σ pairwise disjoint members of B, which contradicts the c.c.c.
since σ is uncountable. a

We can complete now the proof of Theorem 8.23. We are assuming that
λ ≤ 2µ, cf(λ) > µ, µ<iω = µ, and every subset of B of cardinality smaller
than λ is µ-linked. A set X ⊆ B of cardinality λ is given, which we want
to show is µ-linked. Pick χ sufficiently large and define Mi ≺ Hχ, for
i < cf(λ) = κ, such that

1. Mi is increasing and continuous with i. |Mi| < λ, λ ∩ Mi ∈ λ, and
Mi ∈ Mi+1.

2. B, X ∈ M0, µ + 1 ⊂ M0, iω ⊂ M0, and X ⊂ M =
⋃

i<κ Mi.

We shall prove that B ∩ M is µ-linked, and hence that X is µ-linked.
For any set R of ordinals, let nacc(R) denotes those α ∈ R that are not
accumulation points of R (for some β < α R ∩ (β, α) = ∅).

Let R ⊂ κ be a closed unbounded set such that every α ∈ nacc(R) is a
limit ordinal with cf(α) > σ. Then, for δ ∈ nacc(R), Lemma 8.28 applies
to the sequence 〈Mi | i < δ〉 and hence the pair B ∩Mδ, B satisfies (∗∗)θ

(θ = 2<σ). But, then it follows that (∗∗)θ holds for every δ ∈ R for the pair
B ∩Mδ, B. Because if cf(δ) > σ then the lemma applies, and if cf(δ) ≤ σ
then δ is a limit of ≤ σ non-accumulation points of R, and hence (∗∗)θ holds
for B ∩Mδ by accumulating ≤ σ sets, each of cardinality ≤ θ.

Now let 〈ρi | i < κ〉 be an increasing and continuous enumeration of R,
and define Ci = B ∩Mρi , C = B ∩M . Then Corollary 8.27 applies with
θ = 2<σ and yields that B ∩M is µ-linked. This proves Theorem 8.23.

For completeness we review the theorem of Engelking and Karlowicz that
was used in the proof.

8.29 Theorem ([3]). Assume that θ and µ are cardinals such that µθ = µ.
Then there are functions fξ : 2µ → µ, for ξ < µ, such that if A ⊂ 2µ,
|A| ≤ θ, and f : A → µ, then there is ξ < µ such that f ⊂ fξ.

Proof. It is convenient for the proof to see 2µ as the set of functions from
µ to 2. A “template” is a triple (D, S, F ) where D ∈ [µ]θ, S ⊂ 2D and
|S| ≤ θ (S is a set of functions from D to 2), and F : S → µ. The number
of possible templates is µ.

For any template T = (D, S, F ) we define fT on 2µ. If α ∈ 2µ and
α ¹ D ∈ S, then we define fT (α) = F (α ¹ D) (if α ¹ D 6∈ S then fT (α) is
any value).
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Given any A ⊂ 2µ, |A| ≤ θ, and f : A → µ, find D ∈ [µ]θ such that
α1 ¹ D 6= α2 ¹ D whenever α1 6= α2 are in A. S = {a ¹ D | a ∈ A}. For
every s ∈ S there is a unique a ∈ A such that s = a ¹ D and we define
F (s) = f(a). Then f ⊂ fT . a

We can prove now Lemma 8.26. Clearly the map assigning to each X ∈
[2µ]θ its order-type (in θ+) ensures that two sets are isomorphic if they have
the same value. The problem is to ensure that two isomorphic sets have an
isomorphism that is the identity on their intersection. Given X ∈ [2µ]θ, let
fX be the collapsing map which assigns to each x ∈ X the order-type of
x ∩ X. Then there is some ξ < µ such that fX ⊂ fξ (by the Engelking
and Karlowicz theorem). Let’s color X with ξ (say the first one). Now if
X and Y in [2µ]θ have the same order-type and the same color ξ, then the
isomorphism of X onto Y is the identity on X∩Y since it is equal to g−1

2 ◦g1

where g1 = fξ ¹ X and g2 = fξ ¹ Y .
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