Universal homomorphisms

Wiesław Kubiś

Academy of Sciences of the Czech Republic
and
Jan Kochanowski University in Kielce, Poland
http://www.ujk.edu.pl/~wkubis/

Winter School in Abstract Analysis, Hejnice 2013
Definition

The **Urysohn space** is the unique Polish metric space U satisfying the following condition:

(U) Given finite metric spaces $S \subseteq T$, given an isometric embedding $f : S \to U$, given $\epsilon > 0$, there exists an ϵ-isometric embedding $g : T \to U$ such that $g \upharpoonright S = f$.

Definition

The **Gurarii space** is the unique separable Banach space G satisfying the following condition:

(G) Given finite-dimensional spaces $S \subseteq T$, given a linear isometric embedding $f : S \to U$, given $\epsilon > 0$, there exists a linear ϵ-isometric embedding $g : T \to U$ such that $g \upharpoonright S = f$.
Definition

The **Urysohn space** is the unique Polish metric space U satisfying the following condition:

(U) Given finite metric spaces $S \subseteq T$, given an isometric embedding $f : S \to U$, given $\varepsilon > 0$, there exists an ε-isometric embedding $g : T \to U$ such that $g \upharpoonright S = f$.

Definition

The **Gurarii space** is the unique separable Banach space G satisfying the following condition:

(G) Given finite-dimensional spaces $S \subseteq T$, given a linear isometric embedding $f : S \to U$, given $\varepsilon > 0$, there exists a linear ε-isometric embedding $g : T \to U$ such that $g \upharpoonright S = f$.
Theorem

Let \mathbb{U} denote the Urysohn space. There exists a non-expansive map $v: \mathbb{U} \to \mathbb{U}$ satisfying the following conditions:

1. For every non-expansive map $f: X \to Y$ between separable metric spaces, there exist isometric embeddings $i: X \to \mathbb{U}$, $j: Y \to \mathbb{U}$ such that $v \circ i = j \circ f$.

2. Given isometries $g: A_0 \to A_1$, $h: B_0 \to B_1$ such that $A_0, A_1, B_0, B_1 \subseteq \mathbb{U}$ are finite and $h \circ v = v \circ g$, there exist bijective isometries $G: \mathbb{U} \to \mathbb{U}$ and $H: \mathbb{U} \to \mathbb{U}$ extending g and h, respectively, and such that $H \circ v = v \circ G$.

Furthermore, the conditions above determine v up to an isometry.
Theorem

Let \mathbb{U} denote the Urysohn space. There exists a non-expansive map $v: \mathbb{U} \to \mathbb{U}$ satisfying the following conditions:

1. For every non-expansive map $f: X \to Y$ between separable metric spaces, there exist isometric embeddings $i: X \to \mathbb{U}$, $j: Y \to \mathbb{U}$ such that $v \circ i = j \circ f$.

2. Given isometries $g: A_0 \to A_1$, $h: B_0 \to B_1$ such that $A_0, A_1, B_0, B_1 \subseteq \mathbb{U}$ are finite and $h \circ v = v \circ g$, there exist bijective isometries $G: \mathbb{U} \to \mathbb{U}$ and $H: \mathbb{U} \to \mathbb{U}$ extending g and h, respectively, and such that $H \circ v = v \circ G$.

Furthermore, the conditions above determine v up to an isometry.
Theorem

Let U denote the Urysohn space. There exists a non-expansive map $v: U \to U$ satisfying the following conditions:

1. For every non-expansive map $f: X \to Y$ between separable metric spaces, there exist isometric embeddings $i: X \to U$, $j: Y \to U$ such that $v \circ i = j \circ f$.

2. Given isometries $g: A_0 \to A_1$, $h: B_0 \to B_1$ such that $A_0, A_1, B_0, B_1 \subseteq U$ are finite and $h \circ v = v \circ g$, there exist bijective isometries $G: U \to U$ and $H: U \to U$ extending g and h, respectively, and such that $H \circ v = v \circ G$.

Furthermore, the conditions above determine v up to an isometry.
Theorem

Let \mathbb{U} denote the Urysohn space. There exists a non-expansive map $v : \mathbb{U} \to \mathbb{U}$ satisfying the following conditions:

1. For every non-expansive map $f : X \to Y$ between separable metric spaces, there exist isometric embeddings $i : X \to \mathbb{U}$, $j : Y \to \mathbb{U}$ such that $v \circ i = j \circ f$.

2. Given isometries $g : A_0 \to A_1$, $h : B_0 \to B_1$ such that $A_0, A_1, B_0, B_1 \subseteq \mathbb{U}$ are finite and $h \circ v = v \circ g$, there exist bijective isometries $G : \mathbb{U} \to \mathbb{U}$ and $H : \mathbb{U} \to \mathbb{U}$ extending g and h, respectively, and such that $H \circ v = v \circ G$.

Furthermore, the conditions above determine v up to an isometry.
The diagram
Theorem

Let X be a Polish metric space. Then there exist a Polish space $U(X) \supseteq X$ and a non-expansive map $u : U(X) \to X$ such that $u \upharpoonright X = \text{id}_X$ and the following conditions are satisfied:

1. For every Polish metric space Y, for every non-expansive map $f : Y \to X$ there exists an isometric embedding $i : Y \to U(X)$ such that $f = u \circ i$.

2. For every finite sets $S, T \subseteq U(X)$, for every isometry $h : S \to T$ such that $u \circ h = u$, there exists an isometry $H : U(X) \to U(X)$ satisfying $H \upharpoonright S = h$ and $u \circ H = u$.

Furthermore, the conditions above determine u up to an isometry.
Theorem

Let X be a Polish metric space. Then there exist a Polish space $U(X) \supseteq X$ and a non-expansive map $u : U(X) \to X$ such that $u \upharpoonright X = \text{id}_X$ and the following conditions are satisfied:

1. For every Polish metric space Y, for every non-expansive map $f : Y \to X$ there exists an isometric embedding $i : Y \to U(X)$ such that $f = u \circ i$.

2. For every finite sets $S, T \subseteq U(X)$, for every isometry $h : S \to T$ such that $u \circ h = u$, there exists an isometry $H : U(X) \to U(X)$ satisfying $H \upharpoonright S = h$ and $u \circ H = u$.

Furthermore, the conditions above determine u up to an isometry.
Theorem

Let X be a Polish metric space. Then there exist a Polish space $U(X) \supseteq X$ and a non-expansive map $u : U(X) \rightarrow X$ such that $u \upharpoonright X = \text{id}_X$ and the following conditions are satisfied:

1. For every Polish metric space Y, for every non-expansive map $f : Y \rightarrow X$ there exists an isometric embedding $i : Y \rightarrow U(X)$ such that $f = u \circ i$.

2. For every finite sets $S, T \subseteq U(X)$, for every isometry $h : S \rightarrow T$ such that $u \circ h = u$, there exists an isometry $H : U(X) \rightarrow U(X)$ satisfying $H \upharpoonright S = h$ and $u \circ H = u$.

Furthermore, the conditions above determine u up to an isometry.
Theorem

Let X be a Polish metric space. Then there exist a Polish space $U(X) \supseteq X$ and a non-expansive map $u \: U(X) \to X$ such that $u \upharpoonright X = \text{id}_X$ and the following conditions are satisfied:

1. For every Polish metric space Y, for every non-expansive map $f \: Y \to X$ there exists an isometric embedding $i \: Y \to U(X)$ such that $f = u \circ i$.

2. For every finite sets $S, T \subseteq U(X)$, for every isometry $h \: S \to T$ such that $u \circ h = u$, there exists an isometry $H \: U(X) \to U(X)$ satisfying $H \upharpoonright S = h$ and $u \circ H = u$.

Furthermore, the conditions above determine u up to an isometry.
Definition

A metric space \(\langle X, d \rangle \) is **finitely hyperconvex** if for every family \(B_0, \ldots, B_{n-1} \) consisting of closed balls such that
\[
\bigcap_{i<n} B_i = \emptyset
\]
there exist \(i < j < n \) such that \(d(x_i, x_j) > r_i + r_j \), where \(B_i = \overline{B}(x_i, r_i) \) and \(B_j = \overline{B}(x_j, r_j) \).

Theorem

Given a Polish metric space \(X \) the following conditions are equivalent:

(a) \(X \) is finitely hyperconvex.

(b) \(U(X) \) is isometric to the Urysohn space \(\mathbb{U} \).
Definition

A metric space \(\langle X, d \rangle \) is finitely hyperconvex if for every family \(B_0, \ldots, B_{n-1} \) consisting of closed balls such that
\[
\bigcap_{i<n} B_i = \emptyset
\]
there exist \(i < j < n \) such that \(d(x_i, x_j) > r_i + r_j \), where \(B_i = \overline{B}(x_i, r_i) \) and \(B_j = \overline{B}(x_j, r_j) \).

Theorem

Given a Polish metric space \(X \) the following conditions are equivalent:

(a) \(X \) is finitely hyperconvex.

(b) \(U(X) \) is isometric to the Urysohn space \(U \).
Definition

A metric space $\langle X, d \rangle$ is finitely hyperconvex if for every family B_0, \ldots, B_{n-1} consisting of closed balls such that

$$\bigcap_{i<n} B_i = \emptyset$$

there exist $i < j < n$ such that $d(x_i, x_j) > r_i + r_j$, where $B_i = \overline{B}(x_i, r_i)$ and $B_j = \overline{B}(x_j, r_j)$.

Theorem

Given a Polish metric space X the following conditions are equivalent:

(a) X is finitely hyperconvex.
(b) $U(X)$ is isometric to the Urysohn space \mathbb{U}.
Corollary (K. 2011)

Given a Polish metric space X, the following properties are equivalent:

(a) X is a non-expansive retract of the Urysohn space \mathbb{U}.
(b) X is finitely hyperconvex.

Theorem

Let $u : U(X) \to X$ be as before. Then for every $p \in X$ the subspace $u^{-1}(p)$ is isometric to \mathbb{U}.
Corollary (K. 2011)

Given a Polish metric space X, the following properties are equivalent:

(a) X is a non-expansive retract of the Urysohn space \mathbb{U}.

(b) X is finitely hyperconvex.

Theorem

Let $u: U(X) \to X$ be as before. Then for every $p \in X$ the subspace $u^{-1}(p)$ is isometric to \mathbb{U}.
Theorem (Garbulińska & K.)

Let \(G \) denote the Gurarii space. There exists a norm 1 linear operator \(v : G \to G \) satisfying the following conditions:

1. For every norm 1 linear operator \(f : X \to Y \) between separable Banach spaces, there exist isometric embeddings \(i : X \to G \), \(j : Y \to G \) such that \(v \circ i = j \circ f \).

2. Given linear isometries \(g : A_0 \to A_1 \), \(h : B_0 \to B_1 \) such that \(A_0, A_1, B_0, B_1 \subseteq G \) are finite-dimensional spaces and \(h \circ v = v \circ g \), given \(\varepsilon > 0 \), there exist bijective isometries \(G : G \to G \) and \(H : G \to G \) extending \(g \) and \(h \), respectively, and such that \(\| H \circ v - v \circ G \| < \varepsilon \).

Furthermore, the conditions above determine \(v \) up to an isometry.
Theorem (Garbulińska & K.)

Let G denote the Gurarii space. There exists a norm 1 linear operator $v : G \to G$ satisfying the following conditions:

1. For every norm 1 linear operator $f : X \to Y$ between separable Banach spaces, there exist isometric embeddings $i : X \to G$, $j : Y \to G$ such that $v \circ i = j \circ f$.

2. Given linear isometries $g : A_0 \to A_1$, $h : B_0 \to B_1$ such that $A_0, A_1, B_0, B_1 \subseteq G$ are finite-dimensional spaces and $h \circ v = v \circ g$, given $\varepsilon > 0$, there exist bijective isometries $G : G \to G$ and $H : G \to G$ extending g and h, respectively, and such that $\|H \circ v - v \circ G\| < \varepsilon$.

Furthermore, the conditions above determine v up to an isometry.
Theorem (Garbulińska & K.)

Let \mathcal{G} denote the Gurarii space. There exists a norm 1 linear operator $v : \mathcal{G} \to \mathcal{G}$ satisfying the following conditions:

1. For every norm 1 linear operator $f : X \to Y$ between separable Banach spaces, there exist isometric embeddings $i : X \to \mathcal{G}$, $j : Y \to \mathcal{G}$ such that $v \circ i = j \circ f$.

2. Given linear isometries $g : A_0 \to A_1$, $h : B_0 \to B_1$ such that $A_0, A_1, B_0, B_1 \subseteq \mathcal{G}$ are finite-dimensional spaces and $h \circ v = v \circ g$, given $\varepsilon > 0$, there exist bijective isometries $G : \mathcal{G} \to \mathcal{G}$ and $H : \mathcal{G} \to \mathcal{G}$ extending g and h, respectively, and such that

$$\|H \circ v - v \circ G\| < \varepsilon.$$

Furthermore, the conditions above determine v up to an isometry.
Theorem (Garbulińska & K.)

Let G denote the Gurarii space. There exists a norm 1 linear operator $v : G \to G$ satisfying the following conditions:

1. For every norm 1 linear operator $f : X \to Y$ between separable Banach spaces, there exist isometric embeddings $i : X \to G$, $j : Y \to G$ such that $v \circ i = j \circ f$.

2. Given linear isometries $g : A_0 \to A_1$, $h : B_0 \to B_1$ such that $A_0, A_1, B_0, B_1 \subseteq G$ are finite-dimensional spaces and $h \circ v = v \circ g$, given $\varepsilon > 0$, there exist bijective isometries $G : G \to G$ and $H : G \to G$ extending g and h, respectively, and such that $\|H \circ v - v \circ G\| < \varepsilon$.

Furthermore, the conditions above determine v up to an isometry.
Theorem

Let X be a separable Banach space. Then there exist a separable Banach space $G(X) \supseteq X$ and a norm one linear operator $u : G(X) \to X$ such that $u \upharpoonright X = \text{id}_X$ and the following conditions are satisfied:

1. For every separable Banach space Y, for every norm one linear operator $f : Y \to X$ there exists a linear isometric embedding $i : Y \to G(X)$ such that $f = u \circ i$.

2. For every finite sets $S, T \subseteq G(X)$, for every $\varepsilon > 0$, for every isometry $h : S \to T$ such that $u \circ h = u$, there exists an isometry $H : G(X) \to G(X)$ satisfying $H \upharpoonright S = h$ and $\|u \circ H - u\| < \varepsilon$.

Furthermore, the conditions above determine u up to an isometry.
Theorem

Let X be a separable Banach space. Then there exist a separable Banach space $G(X) \supseteq X$ and a norm one linear operator $u: G(X) \to X$ such that $u \upharpoonright X = \text{id}_X$ and the following conditions are satisfied:

1. For every separable Banach space Y, for every norm one linear operator $f: Y \to X$ there exists a linear isometric embedding $i: Y \to G(X)$ such that $f = u \circ i$.

2. For every finite sets $S, T \subseteq G(X)$, for every $\varepsilon > 0$, for every isometry $h: S \to T$ such that $u \circ h = u$, there exists an isometry $H: G(X) \to G(X)$ satisfying $H \upharpoonright S = h$ and $\|u \circ H - u\| < \varepsilon$.

Furthermore, the conditions above determine u up to an isometry.
Theorem

Let X be a separable Banach space. Then there exist a separable Banach space $G(X) \supseteq X$ and a norm one linear operator $u : G(X) \to X$ such that $u \upharpoonright X = \text{id}_X$ and the following conditions are satisfied:

1. For every separable Banach space Y, for every norm one linear operator $f : Y \to X$ there exists a linear isometric embedding $i : Y \to G(X)$ such that $f = u \circ i$.

2. For every finite sets $S, T \subseteq G(X)$, for every $\varepsilon > 0$, for every isometry $h : S \to T$ such that $u \circ h = u$, there exists an isometry $H : G(X) \to G(X)$ satisfying $H \upharpoonright S = h$ and $\|u \circ H - u\| < \varepsilon$.

Furthermore, the conditions above determine u up to an isometry.
Theorem

Let X be a separable Banach space. Then there exist a separable Banach space $G(X) \supseteq X$ and a norm one linear operator $u: G(X) \to X$ such that $u \upharpoonright X = \text{id}_X$ and the following conditions are satisfied:

1. For every separable Banach space Y, for every norm one linear operator $f: Y \to X$ there exists a linear isometric embedding $i: Y \to G(X)$ such that $f = u \circ i$.

2. For every finite sets $S, T \subseteq G(X)$, for every $\varepsilon > 0$, for every isometry $h: S \to T$ such that $u \circ h = u$, there exists an isometry $H: G(X) \to G(X)$ satisfying $H \upharpoonright S = h$ and $\|u \circ H - u\| < \varepsilon$.

Furthermore, the conditions above determine u up to an isometry.
Theorem (Wojtaszczyk 1972, Lusky 1977)

Given a separable Banach space X, the following conditions are equivalent:

(a) X is an isometric L^1 predual.

(b) X is linearly isometric to a 1-complemented subspace of G.

(c) There exists a norm 1 projection $P: G \to G$ such that $\text{im } P$ is linearly isometric to X and $\text{ker } P$ is linearly isometric to G.

W.Kubiś (http://www.ujk.edu.pl/~wkubis/)
Classical Fraïssé theory

The setup: Fraïssé class

- \mathcal{F} is a class of finitely generated structures.
- Joint Embedding Property: Given $X, Y \in \mathcal{F}$, there is $Z \in \mathcal{F}$ such that both $X \hookrightarrow Z$ and $Y \hookrightarrow Z$.
- Amalgamation Property: Given embeddings $i: Z \hookrightarrow X, j: Z \hookrightarrow Y$ with $Z, X, Y \in \mathcal{F}$, there exists $W \in \mathcal{F}$ such that for some embeddings the diagram

\[
\begin{array}{ccc}
Z & \xrightarrow{i} & X \\
\downarrow j & & \downarrow \\
Y & \xrightarrow{} & W
\end{array}
\]

commutes.
Classical Fraïssé theory

The setup: Fraïssé class

- \mathcal{F} is a class of finitely generated structures.
- **Joint Embedding Property:** Given $X, Y \in \mathcal{F}$, there is $Z \in \mathcal{F}$ such that both $X \hookrightarrow Z$ and $Y \hookrightarrow Z$.
- **Amalgamation Property:** Given embeddings $i: Z \hookrightarrow X$, $j: Z \hookrightarrow Y$ with $Z, X, Y \in \mathcal{F}$, there exists $W \in \mathcal{F}$ such that for some embeddings the diagram

\[
\begin{array}{ccc}
Z & \xrightarrow{i} & X \\
\downarrow j & & \downarrow \\
Y & \xrightarrow{j} & W
\end{array}
\]

commutes.
Classical Fraïssé theory

The setup: Fraïssé class

- \mathcal{F} is a class of finitely generated structures.
- **Joint Embedding Property:** Given $X, Y \in \mathcal{F}$, there is $Z \in \mathcal{F}$ such that both $X \hookrightarrow Z$ and $Y \hookrightarrow Z$.
- **Amalgamation Property:** Given embeddings $i: Z \hookrightarrow X$, $j: Z \hookrightarrow Y$ with $Z, X, Y \in \mathcal{F}$, there exists $W \in \mathcal{F}$ such that for some embeddings the diagram

\[
\begin{array}{ccc}
Z & \xrightarrow{i} & X \\
\downarrow{j} & & \downarrow{}
\end{array}
\begin{array}{ccc}
\downarrow{j} & & \downarrow{}
\end{array}
\begin{array}{ccc}
Y & \xrightarrow{} & W
\end{array}
\]

commutes.
Fraïssé theorem

\[\sigma \mathcal{F} := \left\{ \bigcup_{n \in \omega} X_n : \{X_n\}_{n \in \omega} \subseteq \mathcal{F} \text{ is a chain} \right\} \]

Theorem

Let \(\mathcal{F} \) be a countable Fraïssé class. Then there exists a unique, up to isomorphism, countable structure \(U = \text{Flim } \mathcal{F} \), satisfying the following conditions.

1. \(U \in \sigma \mathcal{F} \).
2. Given \(\mathcal{F} \)-structures \(X \subseteq Y \), given an embedding \(e : X \hookrightarrow U \), there exists an embedding \(f : Y \hookrightarrow U \) such that \(f \upharpoonright X = e \).
3. Every \(\mathcal{F} \)-structure embeds into \(U \).
Fraïssé theorem

$$\sigma \mathcal{F} := \left\{ \bigcup_{n \in \omega} X_n : \{X_n\}_{n \in \omega} \subseteq \mathcal{F} \text{ is a chain} \right\}$$

Theorem

Let \mathcal{F} be a countable Fraïssé class. Then there exists a unique, up to isomorphism, countable structure $U = \text{Flim } \mathcal{F}$, satisfying the following conditions.

1. $U \in \sigma \mathcal{F}$.
2. Given \mathcal{F}-structures $X \subseteq Y$, given an embedding $e : X \hookrightarrow U$, there exists an embedding $f : Y \hookrightarrow U$ such that $f \upharpoonright X = e$.
3. Every \mathcal{F}-structure embeds into U.
Fraïssé theorem

\[\sigma \mathcal{F} := \left\{ \bigcup_{n \in \omega} X_n : \{X_n\}_{n \in \omega} \subseteq \mathcal{F} \text{ is a chain} \right\} \]

Theorem

Let \(\mathcal{F} \) be a **countable** Fraïssé class. Then there exists a unique, up to isomorphism, countable structure \(U = \text{Flim } \mathcal{F} \), satisfying the following conditions.

1. \(U \in \sigma \mathcal{F} \).
2. Given \(\mathcal{F} \)-structures \(X \subseteq Y \), given an embedding \(e : X \hookrightarrow U \), there exists an embedding \(f : Y \hookrightarrow U \) such that \(f \upharpoonright X = e \).
3. Every \(\mathcal{F} \)-structure embeds into \(U \).
Theorem

Let \mathcal{F} be a countable Fraïssé class. Then there exists a unique, up to isomorphism, countable structure $U = \text{Flim} \mathcal{F}$, satisfying the following conditions.

1. $U \in \sigma \mathcal{F}$.
2. Given \mathcal{F}-structures $X \subseteq Y$, given an embedding $e : X \hookrightarrow U$, there exists an embedding $f : Y \hookrightarrow U$ such that $f \upharpoonright X = e$.
3. Every \mathcal{F}-structure embeds into U.

$\sigma \mathcal{F} := \left\{ \bigcup_{n \in \omega} X_n : \{X_n\}_{n \in \omega} \subseteq \mathcal{F} \text{ is a chain} \right\}$
Fraïssé theorem

\[\sigma \mathcal{F} := \left\{ \bigcup_{n \in \omega} X_n : \{X_n\}_{n \in \omega} \subseteq \mathcal{F} \text{ is a chain} \right\} \]

Theorem

Let \(\mathcal{F} \) be a countable Fraïssé class. Then there exists a unique, up to isomorphism, countable structure \(U = \text{Flim } \mathcal{F} \), satisfying the following conditions.

1. \(U \in \sigma \mathcal{F} \).
2. Given \(\mathcal{F} \)-structures \(X \subseteq Y \), given an embedding \(e: X \hookrightarrow U \), there exists an embedding \(f: Y \hookrightarrow U \) such that \(f \upharpoonright X = e \).
3. Every \(\mathcal{F} \)-structure embeds into \(U \).
Main ingredient: pushouts

A pushout square

\[
\begin{array}{ccc}
 y & \xrightarrow{g'} & w \\
 \uparrow^{g} & & \uparrow^{f'} \\
 Z & \xrightarrow{f} & X \\
\end{array}
\]
Main ingredient: pushouts

A pushout square

\[
\begin{array}{ccc}
 y & \rightarrow & w \\
 \uparrow g & & \uparrow g' \\
 Z & \rightarrow & X \\
 \downarrow f & & \downarrow f' \\
 & \downarrow \bar{f} & \\
 & V & \\
\end{array}
\]
Main ingredient: pushouts

A pushout square

\[
\begin{array}{c}
\text{y} \\
g' \\
g \\
\end{array}
\quad \begin{array}{c}
w \\
g \\
\end{array}
\quad \begin{array}{c}
v \\
\bar{g} \\
\end{array}
\quad \begin{array}{c}
x \\
f' \\
f \\
\end{array}
\quad \begin{array}{c}
z \\
f \\
\end{array}
\]

\text{f} \quad \text{h} \quad \bar{f}
Mixed pushouts

Definition

Let $\mathcal{K} \subseteq \mathcal{L}$ be two categories. We say that \mathcal{K} has mixed pushouts in \mathcal{L} if for every \mathcal{K}-arrow $i: C \rightarrow A$, for every \mathcal{L}-arrow $f: C \rightarrow B$, there exist a \mathcal{K}-arrow $j: B \rightarrow W$ and an \mathcal{L}-arrow $g: A \rightarrow W$ such that the diagram

\[
\begin{array}{ccc}
A & \xrightarrow{g} & W \\
\uparrow i & & \uparrow j \\
C & \xrightarrow{f} & B
\end{array}
\]

commutes.
Let \mathcal{M} be a countable Fraïssé class of finitely generated models, with the mixed pushout property. Let W denote the Fraïssé limit of \mathcal{M}. Then there exists a unique (up to isomorphism) homomorphism $L : W \to W$ satisfying the following conditions.

(a) For every $X, Y \in \sigma\mathcal{M}$, for every homomorphism $F : X \to Y$ there exist embeddings $I_X : X \to W$ and $I_Y : Y \to W$ such that $L \circ I_X = I_Y \circ F$.

(b) Given finitely generated substructures x_0, x_1, y_0, y_1 of W such that $L[x_i] \subseteq y_i$ for $i < 2$, given isomorphisms $h_i : x_i \to y_i$ for $i < 2$ such that $L \circ h_0 = h_1 \circ L$, there exist automorphisms $H_i : W \to W$ extending h_i for $i < 2$, and such that $L \circ H_0 = H_1 \circ L$.
Let \mathcal{M} be a countable Fraïssé class of finitely generated models, with the mixed pushout property. Let W denote the Fraïssé limit of \mathcal{M}. Then there exists a unique (up to isomorphism) homomorphism $L: W \to W$ satisfying the following conditions.

(a) For every $X, Y \in \sigma \mathcal{M}$, for every homomorphism $F: X \to Y$ there exist embeddings $I_X: X \to W$ and $I_Y: Y \to W$ such that $L \circ I_X = I_Y \circ F$.

(b) Given finitely generated substructures x_0, x_1, y_0, y_1 of W such that $L[x_i] \subseteq y_i$ for $i < 2$, given isomorphisms $h_i: x_i \to y_i$ for $i < 2$ such that $L \circ h_0 = h_1 \circ L$, there exist automorphisms $H_i: W \to W$ extending h_i for $i < 2$, and such that $L \circ H_0 = H_1 \circ L$.
Theorem

Let \mathcal{M} be a countable Fraïssé class of finitely generated models, with the mixed pushout property. Let W denote the Fraïssé limit of \mathcal{M}. Then there exists a unique (up to isomorphism) homomorphism $L: W \to W$ satisfying the following conditions.

(a) For every $X, Y \in \sigma \mathcal{M}$, for every homomorphism $F: X \to Y$ there exist embeddings $I_X: X \to W$ and $I_Y: Y \to W$ such that $L \circ I_X = I_Y \circ F$.

(b) Given finitely generated substructures x_0, x_1, y_0, y_1 of W such that $L[x_i] \subseteq y_i$ for $i < 2$, given isomorphisms $h_i: x_i \to y_i$ for $i < 2$ such that $L \circ h_0 = h_1 \circ L$, there exist automorphisms $H_i: W \to W$ extending h_i for $i < 2$, and such that $L \circ H_0 = H_1 \circ L$.
Theorem (Pech & Pech 2012)

Let \mathcal{M} be as before and let $X \in \sigma \mathcal{M}$. Then there exists $U(X) \in \sigma \mathcal{M}$ such that $X \subseteq U(X)$, and there exists a homomorphism $u : U(X) \rightarrow X$ satisfying

1. For every $Y \in \sigma \mathcal{M}$ and for every homomorphism $f : Y \rightarrow X$ there is an embedding $i : Y \rightarrow U(X)$ such that $u \circ i = f$.

2. For every finitely generated substructures $S, T \subseteq U(X)$, for every isomorphism $h : S \rightarrow T$ such that $u \circ h = u$, there exists an isomorphism $H : U(X) \rightarrow U(X)$ satisfying $H \upharpoonright S = h$ and $u \circ H = u$.
Theorem (Pech & Pech 2012)

Let \mathcal{M} be as before and let $X \in \sigma \mathcal{M}$. Then there exists $U(X) \in \sigma \mathcal{M}$ such that $X \subseteq U(X)$, and there exists a homomorphism $u: U(X) \to X$ satisfying

1. For every $Y \in \sigma \mathcal{M}$ and for every homomorphism $f: Y \to X$ there is an embedding $i: Y \to U(X)$ such that $u \circ i = f$.

2. For every finitely generated substructures $S, T \subseteq U(X)$, for every isomorphism $h: S \to T$ such that $u \circ h = u$, there exists an isomorphism $H: U(X) \to U(X)$ satisfying $H \restriction S = h$ and $u \circ H = u$.

W.Kubiš (http://www.ujk.edu.pl/~wkubis/)
Theorem (Pech & Pech 2012)

Let \mathcal{M} be as before and let $X \in \sigma \mathcal{M}$. Then there exists $U(X) \in \sigma \mathcal{M}$ such that $X \subseteq U(X)$, and there exists a homomorphism $u : U(X) \to X$ satisfying

1. For every $Y \in \sigma \mathcal{M}$ and for every homomorphism $f : Y \to X$ there is an embedding $i : Y \to U(X)$ such that $u \circ i = f$.

2. For every finitely generated substructures $S, T \subseteq U(X)$, for every isomorphism $h : S \to T$ such that $u \circ h = u$, there exists an isomorphism $H : U(X) \to U(X)$ satisfying $H \upharpoonright S = h$ and $u \circ H = u$.
The key tool

Definition

A sequence

\[u_0 \rightarrow u_1 \rightarrow u_2 \rightarrow \cdots \]

is Fraïssé

if for every \(n \), for every \(K \)-arrow \(f: u_n \rightarrow y \) there exist \(m \geq n \) and a \(K \)-arrow \(g: y \rightarrow u_m \) such that \(g \circ f = u_m^m \).

\[u_n \rightarrow u_m \]

\[y \]

\[f \]

\[g \]
The key tool

Definition

A sequence

\[u_0 \rightarrow u_1 \rightarrow u_2 \rightarrow \cdots \]

is Fraïssé if for every \(n \), for every \(\mathcal{K} \)-arrow \(f: u_n \rightarrow y \) there exist \(m \geq n \) and a \(\mathcal{K} \)-arrow \(g: y \rightarrow u_m \) such that \(g \circ f = u_n^m \).

\[u_n \quad \xrightarrow{f} \quad y \quad \xleftarrow{g} \quad u_m \]
Fix a class \mathcal{M} of finitely generated models. Let \mathcal{K} be the category whose objects are homomorphisms $f: X \to Y$, where $X, Y \in \mathcal{M}$. A \mathcal{K}-arrow from $f: X \to Y$ to $g: Z \to V$ is a pair of embeddings $\langle i, j \rangle$ satisfying $g \circ i = j \circ f$.

Claim

If \mathcal{M} is countable and has the mixed pushout property then \mathcal{K} has a Fraïssé sequence.
Fix a class \(\mathcal{M} \) of finitely generated models. Let \(\mathcal{K} \) be the category whose objects are homomorphisms \(f: X \to Y \), where \(X, Y \in \mathcal{M} \). A \(\mathcal{K} \)-arrow from \(f: X \to Y \) to \(g: Z \to V \) is a pair of embeddings \(\langle i, j \rangle \) satisfying \(g \circ i = j \circ f \).

Claim

If \(\mathcal{M} \) is countable and has the mixed pushout property then \(\mathcal{K} \) has a Fraïssé sequence.
Now fix $X \in \sigma \mathcal{M}$. Let \mathcal{L} be the category whose objects are homomorphisms $f : A \to X$, where $A \in \mathcal{M}$. An \mathcal{L}-arrow from $f : A \to X$ to $g : B \to X$ is an embedding $i : A \to B$ such that $g \circ i = f$.

Claim

If \mathcal{M} is countable and has the mixed pushout property then \mathcal{L} has a Fraïssé sequence.
References

THE END
References

THE END