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THE PROBLEM

e A. Horn and A Tarski 1948
Does there exist an ordering which is o-finite cc but not
o-bounded cc?

e Answer: Consistently yes.
e (under the assumption of the existence of a Suslin tree)



TODORCEVIC ORDERING

e For a topological Hausdorff space X, let the Todorcevic
ordering be

T(X)={FC X : Fiscompact & |FI <w}

WhereFlSFQifF]_QanndF]fij2:F2d_
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THE SPECKER ORDERING

(S, <s) Suslin tree
s~tiffVreS:r<ss«<r<st
every equivalence class of ~: =< ordering of type w*

lexicographical order < on S by s < t if either s <g t or
s £s t and there are s’ <g s and t’ <g t such that s’ ~ t/
and s’ <t

the interval topology 7< on (S, <)



THE RESULT

e The ordering T(S, 7<) is is o-finite cc but not o-bounded cc.



P is not o-bounded cc.

notation: For any s € S choose in the ordering < increasing
I(s, k) and decreasing r(s, k) for k < w such that

sup{/(s, k) : k <w} =s=inf{r(s, k) : k <w}

by contradiction: P = U P, such that there are at most n
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pairwise disjoint elements in P,

define f, : S — n+ 1, such that f,(s) is the maximal length
of an antichain which is a subset of the set
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for n < w choose in Py(r(s,n)) an antichain {F,;};f(n and
Sni >s r(s,n) such that s,; € (F,;)9 for n < w and i < f(n)
{5n,i}n<w,i<f(n) converges to s (if not finite)

F = {snitncwicrny Ur(s, Mlncw U {s} € P

F is orthogonal with all F,; for n < w and i < f(n)

F has to be contained in some P,

fa(s) > f(n) + 1, a contradiction
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Penm={F€EP : k(F)=k&|F!=n&|R(F) =m}
P = Uk,n,m<w Pk7n7m

all Py, m are finite-cc:

by contradiction: A = {F;}i<, C P 7.m is an infinite
antichain for some fixed k, i, m
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Let (F))? = {s"}n<n and R(F;) = {r™}m<m be increasingly

enumerated and put F” = F N I(s", k)\{s/}.

F\N(F)? = Upep F" U {r™} m<m is the set of isolated points
of F,'

wlog n < n either all s7"'s are equal or are pairwise different

for any m < m either all r/™'s are equal or are pairwise
different
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We say that {i,j} € [w]?, i <j, has colour

(L,n,n' 1) ifs]e FJ-"/ & s < sj’/
(Ln,n',r) ifsPeF &s!>s"
(2,n,m) ifs’=r"

(3,n,n') ifs"eF

(4,n,m) if s/ =r"

for n,n’ < A and m< m.
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P 1S o-FINITE CC

for any {i,j} € [w]? there is a point which is isolated in F;
and not isolated in F; or vice versa

any pair {i/,j} obtains at least one colour

Ramsey's theorem: A’ C A infinite homogeneous in one
colour

Derive a contradiction for each colour.
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OUTLOOK

e Assuming Martin's axiom, the above constructed example for
an Aronshajn tree is even o-bounded cc.

e Is it true that under this assumption the notions o-bounded cc
and o-finite cc coinside?
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