monotone normality
DEFINITION.
DEFINITION.

The space X is **monotonically normal (MN)** iff it is T_1 (i.e. all singletons are closed)
DEFINITION.

The space X is monotonically normal (MN) iff it is T_1 (i.e. all singletons are closed) and it has a monotone normality operator H that "halves" neighbourhoods:
DEFINITION.

The space X is **monotonically normal (MN)** iff it is T_1 (i.e. all singletons are closed) and it has a **monotone normality operator H** that "halves" neighbourhoods:

H assigns to every $\langle x, U \rangle$, with $x \in U$ open, an open set $H(x, U)$ s. t.
DEFINITION.

The space X is **monotonically normal (MN)** iff it is T_1 (i.e. all singletons are closed) and it has a **monotone normality operator** H that "halves" neighbourhoods:

H assigns to every $\langle x, U \rangle$, with $x \in U$ open, an open set $H(x, U)$ s. t.

(i) $x \in H(x, U) \subset U$,

$István Juhász (Rényi Institute)$
DEFINITION.

The space X is monotonically normal (MN) iff it is T_1 (i.e. all singletons are closed) and it has a monotone normality operator H that "halves" neighbourhoods:

H assigns to every $\langle x, U \rangle$, with $x \in U$ open, an open set $H(x, U)$ s.t.

(i) $x \in H(x, U) \subset U$,

and

(ii) if $H(x, U) \cap H(y, V) \neq \emptyset$ then $x \in V$ or $y \in U$.
DEFINITION.

The space \(X \) is **monotonically normal (MN)** iff it is \(T_1 \) (i.e. all singletons are closed) and it has a **monotone normality operator** \(H \) that "halves" neighbourhoods:

\(H \) assigns to every \(\langle x, U \rangle \), with \(x \in U \) open, an open set \(H(x, U) \) s.t.

(i) \(x \in H(x, U) \subset U \),

and

(ii) if \(H(x, U) \cap H(y, V) \neq \emptyset \) then \(x \in V \) or \(y \in U \).

FACT. Metric spaces
DEFINITION.

The space X is **monotonically normal (MN)** iff it is T_1 (i.e. all singletons are closed) and it has a **monotone normality operator** H that "halves" neighbourhoods:

H assigns to every $\langle x, U \rangle$, with $x \in U$ open, an open set $H(x, U)$ s.t.

(i) $x \in H(x, U) \subset U$,

and

(ii) if $H(x, U) \cap H(y, V) \neq \emptyset$ then $x \in V$ or $y \in U$.

FACT. Metric spaces and linearly ordered spaces are MN.
DEFINITION.

The space X is monotonically normal (MN) iff it is T_1 (i.e. all singletons are closed) and it has a monotone normality operator H that "halves" neighbourhoods:

H assigns to every $\langle x, U \rangle$, with $x \in U$ open, an open set $H(x, U)$ s. t.

(i) $x \in H(x, U) \subset U$,

and

(ii) if $H(x, U) \cap H(y, V) \neq \emptyset$ then $x \in V$ or $y \in U$.

FACT. Metric spaces and linearly ordered spaces are MN.

QUESTION. Are MN spaces maximally resolvable?
DEFINITION.
DEFINITION.

(i) \(D \subset X \) is strongly discrete if there are pairwise disjoint open sets \(\{ U_x : x \in D \} \) with \(x \in U_x \) for all \(x \in D \).
DEFINITION.
(i) $D \subset X$ is strongly discrete if there are pairwise disjoint open sets
$\{U_x : x \in D\}$ with $x \in U_x$ for all $x \in D$.

(ii) X is an SD space if it is T_1 and every point $x \in X$ is an SD limit.
DEFINITION.
(i) $D \subset X$ is strongly discrete if there are pairwise disjoint open sets
$\{U_x : x \in D\}$ with $x \in U_x$ for all $x \in D$.

(ii) X is an SD space if it is T_1 and every point $x \in X$ is an SD limit.

THEOREM. (Sharma and Sharma, 1987)
Every SD space is ω-resolvable.
DEFINITION.

(i) $D \subset X$ is strongly discrete if there are pairwise disjoint open sets \(\{U_x : x \in D\} \) with $x \in U_x$ for all $x \in D$.

(ii) X is an SD space if it is T_1 and every point $x \in X$ is an SD limit.

THEOREM. (Sharma and Sharma, 1987)

Every SD space is ω-resolvable.

THEOREM. (DTTW, 2002)

Crowded MN spaces are SD, hence ω-resolvable.
DEFINITION.
(i) $D \subset X$ is **strongly discrete** if there are pairwise disjoint open sets $\{U_x : x \in D\}$ with $x \in U_x$ for all $x \in D$.
(ii) X is an **SD space** if it is T_1 and every point $x \in X$ is an **SD limit**.

THEOREM. (Sharma and Sharma, 1987)
Every SD space is ω-resolvable.

THEOREM. (DTTW, 2002)
Crowded MN spaces are SD, hence ω-resolvable.

PROBLEM. (Ceder and Pearson, 1967)
Are ω-resolvable spaces **maximally** resolvable?
DEFINITION. X is a **DSD space** if every dense subspace of X is SD.
DEFINITION. X is a **DSD space** if every **dense** subspace of X is SD. Clearly, MN spaces are DSD.

Definition. X is a **DSD space** if every dense subspace of X is SD. Clearly, MN spaces are DSD.
DEFINITION. X is a DSD space if every dense subspace of X is SD. Clearly, MN spaces are DSD.

Main results of [J-S-Sz]

– If κ is measurable then there is a MN space X with $\Delta(X) = \kappa$ that is not ω_1-resolvable.
DEFINITION. X is a DSD space if every dense subspace of X is SD. Clearly, MN spaces are DSD.

Main results of [J-S-Sz]

– If κ is measurable then there is a MN space X with $\Delta(X) = \kappa$ that is not ω_1-resolvable.

– If X is DSD with $|X| < \kappa_\omega$ then X is maximally resolvable.
DEFINITION. X is a DSD space if every dense subspace of X is SD. Clearly, MN spaces are DSD.

Main results of [J-S-Sz]

– If κ is measurable then there is a MN space X with $\Delta(X) = \kappa$ that is not ω_1-resolvable.

– If X is DSD with $|X| < \aleph_\omega$ then X is maximally resolvable.

– From a supercompact cardinal, it is consistent to have a MN space X with $|X| = \Delta(X) = \aleph_\omega$ that is not ω_2-resolvable.
DEFINITION. X is a DSD space if every dense subspace of X is SD. Clearly, MN spaces are DSD.

Main results of [J-S-Sz]

- If κ is measurable then there is a MN space X with $\Delta(X) = \kappa$ that is not ω_1-resolvable.
- If X is DSD with $|X| < \aleph_\omega$ then X is maximally resolvable.
- From a supercompact cardinal, it is consistent to have a MN space X with $|X| = \Delta(X) = \aleph_\omega$ that is not ω_2-resolvable.

This left a number of questions open.
decomposability of ultrafilters
decomposability of ultrafilters

DEFINITION. An ultrafilter \mathcal{F} is μ-descendingly complete iff for any descending $\{A_\alpha : \alpha < \mu\} \subset \mathcal{F}$ we have $\bigcap \{A_\alpha : \alpha < \mu\} \in \mathcal{F}$ (or, equivalently, $\bigcap \{A_\alpha : \alpha < \mu\} \neq \emptyset$).
decomposability of ultrafilters

DEFINITION. An ultrafilter \(\mathcal{F} \) is \(\mu \)-descendingly complete iff for any descending \(\{ A_\alpha : \alpha < \mu \} \subset \mathcal{F} \) we have \(\bigcap \{ A_\alpha : \alpha < \mu \} \in \mathcal{F} \) (or, equivalently, \(\bigcap \{ A_\alpha : \alpha < \mu \} \neq \emptyset \)).

Not \(\mu \)-descendingly complete is called \(\mu \)-decomposable.
DEFINITION. An ultrafilter \mathcal{F} is μ-descendingly complete iff for any descending $\{A_{\alpha} : \alpha < \mu\} \subset \mathcal{F}$ we have $\bigcap\{A_{\alpha} : \alpha < \mu\} \in \mathcal{F}$ (or, equivalently, $\bigcap\{A_{\alpha} : \alpha < \mu\} \neq \emptyset$).

Not μ-descendingly complete is called μ-decomposable.

$\mathcal{F} \in \text{un}(\lambda)$ is maximally decomposable iff it is μ-decomposable for all $\omega \leq \mu \leq \lambda$.
decomposability of ultrafilters

DEFINITION. An ultrafilter \mathcal{F} is μ-descendingly complete iff for any descending $\{A_\alpha : \alpha < \mu\} \subset \mathcal{F}$ we have $\bigcap \{A_\alpha : \alpha < \mu\} \in \mathcal{F}$ (or, equivalently, $\bigcap \{A_\alpha : \alpha < \mu\} \neq \emptyset$).

Not μ-descendingly complete is called μ-decomposable.

$\mathcal{F} \in \text{un}(\lambda)$ is maximally decomposable iff it is μ-decomposable for all $\omega \leq \mu \leq \lambda$. ($\text{un}(\lambda) = \text{set of all uniform ultrafilters on } \lambda$.)
DEFINITION. An ultrafilter \mathcal{F} is μ-descendingly complete iff for any descending $\{A_\alpha : \alpha < \mu\} \subseteq \mathcal{F}$ we have $\bigcap\{A_\alpha : \alpha < \mu\} \in \mathcal{F}$ (or, equivalently, $\bigcap\{A_\alpha : \alpha < \mu\} \neq \emptyset$).

Not μ-descendingly complete is called μ-decomposable.

$\mathcal{F} \in \text{un}(\lambda)$ is maximally decomposable iff it is μ-decomposable for all $\omega \leq \mu \leq \lambda$. ($\text{un}(\lambda) =$ set of all uniform ultrafilters on λ.)

FACTS.
DEFINITION. An ultrafilter F is μ-descendingly complete iff for any descending $\{A_\alpha : \alpha < \mu\} \subset F$ we have $\bigcap\{A_\alpha : \alpha < \mu\} \in F$ (or, equivalently, $\bigcap\{A_\alpha : \alpha < \mu\} \neq \emptyset$).

Not μ-descendingly complete is called μ-decomposable.

$F \in \text{un}(\lambda)$ is maximally decomposable iff it is μ-decomposable for all $\omega \leq \mu \leq \lambda$. ($\text{un}(\lambda) = \text{set of all uniform ultrafilters on } \lambda$.)

FACTS.

– Any "measure" is ω-descendingly complete, hence not ω-decomposable.
decomposability of ultrafilters

DEFINITION. An ultrafilter \mathcal{F} is μ-descendingly complete iff for any descending $\{A_\alpha : \alpha < \mu\} \subset \mathcal{F}$ we have $\bigcap\{A_\alpha : \alpha < \mu\} \in \mathcal{F}$ (or, equivalently, $\bigcap\{A_\alpha : \alpha < \mu\} \neq \emptyset$).

Not μ-descendingly complete is called μ-decomposable.

$\mathcal{F} \in \text{un}(\lambda)$ is maximally decomposable iff it is μ-decomposable for all $\omega \leq \mu \leq \lambda$. ($\text{un}(\lambda) =$ set of all uniform ultrafilters on λ.)

FACTS.

– Any "measure" is ω-descendingly complete, hence not ω-decomposable.

– [Donder, 1988] If there is a not maximally decomposable uniform ultrafilter then there is a measurable cardinal in some inner model.
decomposability of ultrafilters

DEFINITION. An ultrafilter \(\mathcal{F} \) is \(\mu \)-descendingly complete iff for any descending \(\{A_\alpha : \alpha < \mu\} \subset \mathcal{F} \) we have \(\bigcap\{A_\alpha : \alpha < \mu\} \in \mathcal{F} \) (or, equivalently, \(\bigcap\{A_\alpha : \alpha < \mu\} \neq \emptyset \)).

Not \(\mu \)-descendingly complete is called \(\mu \)-decomposable.

\(\mathcal{F} \in \text{un}(\lambda) \) is maximally decomposable iff it is \(\mu \)-decomposable for all \(\omega \leq \mu \leq \lambda \). (\(\text{un}(\lambda) = \) set of all uniform ultrafilters on \(\lambda \).)

FACTS.

– Any "measure" is \(\omega \)-descendingly complete, hence not \(\omega \)-decomposable.

– [Donder, 1988] If there is a not maximally decomposable uniform ultrafilter then there is a measurable cardinal in some inner model.

– [Kunen - Prikry, 1971] If \(\lambda < \aleph_\omega \) then every \(\mathcal{F} \in \text{un}(\lambda) \) is maximally decomposable.

Main results of [J-M]
Main results of [J-M]

(1) TFAEV (for a fixed κ):
Main results of [J-M]

(1) TFAEV (for a fixed κ):

– Every DSD space (of cardinality $< \kappa$) is maximally resolvable.
Main results of [J-M]

(1) TFAEV (for a fixed κ):

– Every DSD space (of cardinality $< \kappa$) is maximally resolvable.
– Every MN space (of cardinality $< \kappa$) is maximally resolvable.
Main results of [J-M]

(1) TFAEV (for a fixed κ):
- Every DSD space (of cardinality $< \kappa$) is maximally resolvable.
- Every MN space (of cardinality $< \kappa$) is maximally resolvable.
- Every uniform ultrafilter (on a cardinal $< \kappa$) is maximally decomposable.

Main results of [J-M]

1. **TFAEV (for a fixed κ):**
 - Every DSD space (of cardinality $< \kappa$) is maximally resolvable.
 - Every MN space (of cardinality $< \kappa$) is maximally resolvable.
 - Every uniform ultrafilter (on a cardinal $< \kappa$) is maximally decomposable.

2. **TFAEC**
Main results of [J-M]

(1) TFAEV (for a fixed κ):
- Every DSD space (of cardinality $< \kappa$) is maximally resolvable.
- Every MN space (of cardinality $< \kappa$) is maximally resolvable.
- Every uniform ultrafilter (on a cardinal $< \kappa$) is maximally decomposable.

(2) TFAEC
- There is a measurable cardinal.
Main results of [J-M]

(1) TFAEV (for a fixed κ):
– Every DSD space (of cardinality $< \kappa$) is maximally resolvable.
– Every MN space (of cardinality $< \kappa$) is maximally resolvable.
– Every uniform ultrafilter (on a cardinal $< \kappa$) is maximally decomposable.

(2) TFAEC
– There is a measurable cardinal.
– There is a MN space that is not maximally resolvable.
Main results of [J-M]

(1) TFAEV (for a fixed κ):

- Every DSD space (of cardinality $< \kappa$) is maximally resolvable.
- Every MN space (of cardinality $< \kappa$) is maximally resolvable.
- Every uniform ultrafilter (on a cardinal $< \kappa$) is maximally decomposable.

(2) TFAEC

- There is a measurable cardinal.
- There is a MN space that is not maximally resolvable.
- There is a MN space X with $|X| = \Delta(X) = \kappa_\omega$ that is not ω_1-resolvable.
DEFINITION.
DEFINITION.

– F is a filtration if $\text{dom}(F) = T$ is an infinitely branching tree.
DEFINITION.

– F is a filtration if $\text{dom}(F) = T$ is an infinitely branching tree (of height ω)
DEFINITION.

– F is a filtration if $\text{dom}(F) = T$ is an infinitely branching tree (of height ω) and, for each $t \in T$, $F(t)$ is a filter on $S(t)$ that contains all co-finite subsets of $S(t)$.
DEFINITION.

– F is a filtration if $\text{dom}(F) = T$ is an infinitely branching tree (of height ω) and, for each $t \in T$, $F(t)$ is a filter on $S(t)$ that contains all co-finite subsets of $S(t)$.

– For $G \subset T$, $G \in \tau_F$ iff

$$ t \in G \Rightarrow G \cap S(t) \in F(t) , $$
DEFINITION.

– F is a filtration if $\text{dom}(F) = T$ is an infinitely branching tree (of height ω) and, for each $t \in T$, $F(t)$ is a filter on $S(t)$ that contains all co-finite subsets of $S(t)$.

– For $G \subseteq T$, $G \in \tau_F$ iff

\[
t \in G \Rightarrow G \cap S(t) \in F(t),
\]

– $X(F) = \langle T, \tau_F \rangle$ is called a filtration space.
DEFINITION.

– *F* is a filtration if \(\text{dom}(F) = T \) is an infinitely branching tree (of height \(\omega \)) and, for each \(t \in T \), \(F(t) \) is a filter on \(S(t) \) that contains all co-finite subsets of \(S(t) \).

– For \(G \subseteq T \), \(G \in \tau_F \) iff

\[
t \in G \Rightarrow G \cap S(t) \in F(t),
\]

– \(X(F) = \langle T, \tau_F \rangle \) is called a filtration space.

FACT. [J-S-Sz] Every filtration space \(X(F) \) is MN:
DEFINITION.

– F is a filtration if $\text{dom}(F) = T$ is an infinitely branching tree (of height ω) and, for each $t \in T$, $F(t)$ is a filter on $S(t)$ that contains all co-finite subsets of $S(t)$.

– For $G \subset T$, $G \in \tau_F$ iff

$$ t \in G \Rightarrow G \cap S(t) \in F(t), $$

– $X(F) = \langle T, \tau_F \rangle$ is called a filtration space.

FACT. [J-S-Sz] Every filtration space $X(F)$ is MN: For $s \in V \in \tau_F$ put

$$ H(s, V) = \{ t \in V : s \leq t \text{ and } [s, t] \subset V \} $$
irresolvability of ultrafiltration spaces
irresolvability of ultrafiltration spaces

THEOREM. [J-S-Sz] If F is an ultrafiltration and μ is a regular cardinal s.t. $F(t)$ is μ-descendingly complete for all $t \in T = \text{dom}(F)$,
THEOREM. [J-S-Sz]

If F is an ultrafiltration and μ is a regular cardinal s.t. $F(t)$ is μ-descendingly complete for all $t \in T = \text{dom}(F)$, then $X(F)$ is hereditarily μ^+-irresolvable.
irresolvability of ultrafiltration spaces

THEOREM. [J-S-Sz]

If F is an ultrafiltration and μ is a regular cardinal s.t. $F(t)$ is μ-descendingly complete for all $t \in T = \text{dom}(F)$, then $X(F)$ is hereditarily μ^+-irresolvable.

COROLLARY. [J-S-Sz]

If $\mathcal{F} \in \text{un}(\kappa)$ is a measure and $F(t) = \mathcal{F}$ for all $t \in \text{dom}(F) = \kappa^{<\omega}$ then $X(F)$ is hereditarily ω_1-irresolvable.
DEFINITION. [J-M]
DEFINITION. [J-M] F is a λ-filtration if
DEFINITION. [J-M] \(F \) is a \(\lambda \)-filtration if

(i) \(T = \text{dom}(F) \subset \lambda^{<\omega} \),
DEFINITION. [J-M] F is a λ-filtration if

(i) $T = \text{dom}(F) \subset \lambda^{<\omega}$,

(ii) for each $t \in T$ there is $\omega \leq \mu_t \leq \lambda$ s.t.

$$S(t) = \{t \cap \alpha : \alpha < \mu_t\} \text{ and } F(t) \in \text{un}(\mu_t),$$
DEFINITION. [J-M] F is a λ-filtration if

(i) $T = \text{dom}(F) \subset \lambda^{<\omega}$,

(ii) for each $t \in T$ there is $\omega \leq \mu_t \leq \lambda$ s.t.

$$S(t) = \{ t \smallfrown \alpha : \alpha < \mu_t \} \text{ and } F(t) \in \text{un}(\mu_t),$$

(iii) moreover, for any $\mu < \lambda$ and $t \in T$:

$$\{ \alpha : \mu_t \smallfrown \alpha > \mu \} \in F(t).$$
DEFINITION. [J-M] F is a λ-filtration if

(i) $T = \text{dom}(F) \subset \lambda^<\omega$,

(ii) for each $t \in T$ there is $\omega \leq \mu_t \leq \lambda$ s.t.

$$S(t) = \{ t^\frown \alpha : \alpha < \mu_t \} \text{ and } F(t) \in \text{un}(\mu_t),$$

(iii) moreover, for any $\mu < \lambda$ and $t \in T$:

$$\{ \alpha : \mu_t^\frown \alpha > \mu \} \in F(t).$$

NOTE. If F is a λ-filtration then $|X(F)| = \Delta(X(F)) = \lambda$.
DEFINITION. [J-M] F is a λ-filtration if

(i) $T = \text{dom}(F) \subset \lambda^{<\omega}$,

(ii) for each $t \in T$ there is $\omega \leq \mu_t \leq \lambda$ s.t.

$$S(t) = \{ t^\alpha : \alpha < \mu_t \} \text{ and } F(t) \in \text{un}(\mu_t),$$

(iii) moreover, for any $\mu < \lambda$ and $t \in T$:

$$\{ \alpha : \mu_t^\alpha > \mu \} \in F(t).$$

NOTE. If F is a λ-filtration then $|X(F)| = \Delta(X(F)) = \lambda$.

– The λ-filtration F is full if $T = \text{dom}(F) = \lambda^{<\omega}$.
DEFINITION. [J-M] F is a λ-filtration if

(i) $T = \text{dom}(F) \subset \lambda^<\omega$,

(ii) for each $t \in T$ there is $\omega \leq \mu_t \leq \lambda$ s.t.

$$S(t) = \{t^\frown \alpha : \alpha < \mu_t\} \text{ and } F(t) \in \text{un}(\mu_t),$$

(iii) moreover, for any $\mu < \lambda$ and $t \in T$:

$$\{\alpha : \mu_t^\frown \alpha > \mu\} \in F(t).$$

NOTE. If F is a λ-filtration then $|X(F)| = \Delta(X(F)) = \lambda$.

– The λ-filtration F is full if $T = \text{dom}(F) = \lambda^<\omega$.

Full λ-filtrations were considered in [J-S-Sz].
reduction results
THEOREM [J-S-Sz]
THEOREM [J-S-Sz]

For $\kappa \leq \lambda = \text{cf}(\lambda)$, TFAEV
THEOREM [J-S-Sz]

For $\kappa \leq \lambda = \text{cf}(\lambda)$, TFAEV

– Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
THEOREM [J-S-Sz]

For $\kappa \leq \lambda = \text{cf}(\lambda)$, TFAEV

– Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.

– Every MN space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
THEOREM [J-S-Sz]

For $\kappa \leq \lambda = \text{cf}(\lambda)$, TFAEV

- Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
- Every MN space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
- $X(F)$ is κ-resolvable for every full λ-filtration F.
THEOREM [J-S-Sz]
For $\kappa \leq \lambda = \text{cf}(\lambda)$, TFAEV

- Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
- Every MN space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
- $X(F)$ is κ-resolvable for every full λ-filtration F.

THEOREM [J-M]
THEOREM [J-S-Sz]

For $\kappa \leq \lambda = \text{cf}(\lambda)$, TFAEV

- Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
- Every MN space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
- $X(F)$ is κ-resolvable for every full λ-filtration F.

THEOREM [J-M]

For λ singular and $\text{cf}(\lambda)^+ < \kappa \leq \lambda$, TFAEV
THEOREM [J-S-Sz]

For $\kappa \leq \lambda = \text{cf}(\lambda)$, TFAEV

- Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
- Every MN space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
- $X(F)$ is κ-resolvable for every full λ-filtration F.

THEOREM [J-M]

For λ singular and $\text{cf}(\lambda)^+ < \kappa \leq \lambda$, TFAEV

- Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
THEOREM [J-S-Sz]

For $\kappa \leq \lambda = \text{cf}(\lambda)$, TFAEV

- Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
- Every MN space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
- $X(F)$ is κ-resolvable for every full λ-filtration F.

THEOREM [J-M]

For λ singular and $\text{cf}(\lambda)^+ < \kappa \leq \lambda$, TFAEV

- Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
- Every MN space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
THEOREM [J-S-Sz]
For $\kappa \leq \lambda = \text{cf}(\lambda)$, TFAEV

- Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
- Every MN space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
- $X(F)$ is κ-resolvable for every full λ-filtration F.

THEOREM [J-M]
For λ singular and $\text{cf}(\lambda)^+ < \kappa \leq \lambda$, TFAEV

- Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
- Every MN space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
- $X(F)$ is κ-resolvable for every λ-filtration F.
THEOREM [J-S-Sz]

For $\kappa \leq \lambda = \text{cf}(\lambda)$, TFAEV

– Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
– Every MN space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
– $X(F)$ is κ-resolvable for every full λ-filtration F.

THEOREM [J-M]

For λ singular and $\text{cf}(\lambda)^+ < \kappa \leq \lambda$, TFAEV

– Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
– Every MN space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
– $X(F)$ is κ-resolvable for every λ-filtration F.

NOTE. In both results, the case $\kappa = \lambda$ is of main interest.
idea of proof
Lemma. [J-S-Sz]
If every $x \in X$ is the complete accumulation point of a SD set $Y \subset X$ with $|Y| = \lambda$ then there is a full λ-filtration F and a one-one continuous map $g : X(F) \to X$.
Lemma. [J-S-Sz]

If every \(x \in X \) is the complete accumulation point of a SD set \(Y \subset X \) with \(|Y| = \lambda \) then there is a full \(\lambda \)-filtration \(F \) and a one-one continuous map \(g : X(F) \to X \).

Assume that \(\lambda \) is regular, \(X \) is DSD with \(|X| = \Delta(X) = \lambda \), and \(x \in X \) is not a complete accumulation point of any SD set \(Y \in [X]^{\lambda} \).
Lemma. [J-S-Sz]

If every \(x \in X \) is the complete accumulation point of a SD set \(Y \subset X \) with \(|Y| = \lambda \) then there is a full \(\lambda \)-filtration \(F \) and a one-one continuous map \(g : X(F) \to X \).

Assume that \(\lambda \) is regular, \(X \) is DSD with \(|X| = \Delta(X) = \lambda \), and \(x \in X \) is not a complete accumulation point of any SD set \(Y \in [X]^\lambda \). Then \(x \in T_\lambda(X) \).
Lemma. [J-S-Sz]

If every $x \in X$ is the complete accumulation point of a SD set $Y \subset X$ with $|Y| = \lambda$ then there is a full λ-filtration F and a one-one continuous map $g : X(F) \to X$.

Assume that λ is regular, X is DSD with $|X| = \Delta(X) = \lambda$, and $x \in X$ is not a complete accumulation point of any SD set $Y \in [X]^\lambda$. Then $x \in T_\lambda(X)$. But if $T_\lambda(X)$ is dense in X, then X is λ-resolvable.
Lemma. [J-S-Sz]

If every \(x \in X \) is the complete accumulation point of a SD set \(Y \subset X \) with \(|Y| = \lambda \) then there is a full \(\lambda \)-filtration \(F \) and a one-one continuous map \(g : X(F) \to X \).

Assume that \(\lambda \) is regular, \(X \) is DSD with \(|X| = \Delta(X) = \lambda \), and \(x \in X \) is not a complete accumulation point of any SD set \(Y \in [X]^\lambda \). Then \(x \in T_\lambda(X) \). But if \(T_\lambda(X) \) is dense in \(X \), then \(X \) is \(\lambda \)-resolvable.

This takes care of the case when \(\lambda \) is regular.
Lemma. [J-S-Sz]

If every $x \in X$ is the complete accumulation point of a SD set $Y \subset X$ with $|Y| = \lambda$ then there is a full λ-filtration F and a one-one continuous map $g : X(F) \to X$.

Assume that λ is regular, X is DSD with $|X| = \Delta(X) = \lambda$, and $x \in X$ is not a complete accumulation point of any SD set $Y \in [X]^{\lambda}$. Then $x \in T_\lambda(X)$. But if $T_\lambda(X)$ is dense in X, then X is λ-resolvable.

This takes care of the case when λ is regular.

The singular case (proved in [J-M]) is similar but more complicated.
\(\lambda \)-resolvability of \(\lambda \)-filtration spaces

István Juhász (Rényi Institute)
THEOREM [J-M]

\(\lambda \)-resolvability of \(\lambda \)-filtration spaces
THEOREM [J-M]

If $\kappa \leq \lambda$ and F is a λ-filtration s.t.
THEOREM [J-M]

If $\kappa \leq \lambda$ and F is a λ-filtration s.t.

(i) for every $t \in T = \text{dom}(F)$, if $\mu_t \geq \kappa$ then $F(t)$ is κ-decomposable,
THEOREM [J-M]

If $\kappa \leq \lambda$ and F is a λ-filtration s.t.

(i) for every $t \in T = \text{dom}(F)$, if $\mu_t \geq \kappa$ then $F(t)$ is κ-decomposable,

(ii) for every $t \in T = \text{dom}(F)$ and $\mu \leq \kappa$,

$$\{ \alpha < \mu_t : F(t \cap \alpha) \text{ is } \mu\text{-decomposable} \} \in F(t) ,$$
\(\lambda \)-resolvability of \(\lambda \)-filtration spaces

THEOREM [J-M]

If \(\kappa \leq \lambda \) and \(F \) is a \(\lambda \)-filtration s.t.

(i) for every \(t \in T = \text{dom}(F) \), if \(\mu_t \geq \kappa \) then \(F(t) \) is \(\kappa \)-decomposable,

(ii) for every \(t \in T = \text{dom}(F) \) and \(\mu \leq \kappa \),

\[
\{ \alpha < \mu_t : F(t \cap \alpha) \text{ is } \mu \text{-decomposable} \} \in F(t),
\]

then \(X(F) \) is \(\kappa \)-resolvable.
\(\lambda \)-resolvability of \(\lambda \)-filtration spaces

THEOREM [J-M]

If \(\kappa \leq \lambda \) and \(F \) is a \(\lambda \)-filtration s.t.

(i) for every \(t \in T = \text{dom}(F) \), if \(\mu_t \geq \kappa \) then \(F(t) \) is \(\kappa \)-decomposable,

(ii) for every \(t \in T = \text{dom}(F) \) and \(\mu \leq \kappa \),

\[\{ \alpha < \mu_t : F(t \cap \alpha) \text{ is } \mu \text{-decomposable} \} \in F(t), \]

then \(X(F) \) is \(\kappa \)-resolvable.

COROLLARY [J-M]

István Juhász (Rényi Institute)

resolvable

Hejnice 2012

12 / 12
\(\lambda \)-resolvability of \(\lambda \)-filtration spaces

THEOREM [J-M]

If \(\kappa \leq \lambda \) and \(F \) is a \(\lambda \)-filtration s.t.

(i) for every \(t \in T = \text{dom}(F) \), if \(\mu_t \geq \kappa \) then \(F(t) \) is \(\kappa \)-decomposable,

(ii) for every \(t \in T = \text{dom}(F) \) and \(\mu \leq \kappa \),

\[
\{ \alpha < \mu_t : F(t \cap \alpha) \text{ is } \mu \text{-decomposable} \} \in F(t),
\]

then \(X(F) \) is \(\kappa \)-resolvable.

COROLLARY [J-M]

If every \(F \in \text{un}(\mu) \) is maximally decomposable whenever \(\omega \leq \mu \leq \lambda \),

then \(X(F) \) is \(\lambda \)-resolvable for any \(\lambda \)-filtration \(F \).