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@) ifH(x,U)NnH(y,V)#0Dthenx e Vory e U.

FACT. Metric spaces and linearly ordered spaces are MN.

QUESTION. Are MN spaces maximally resolvable?
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THEOREM. (Sharma and Sharma, 1987)
Every SD space is w-resolvable.

THEOREM. (DTTW, 2002)
Crowded MN spaces are SD, hence w-resolvable.

PROBLEM. (Ceder and Pearson, 1967)
Are w-resolvable spaces maximally resolvable?
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DEFINITION. X is a DSD space if every dense subspace of X is SD.
Clearly, MN spaces are DSD.

Main results of [J-S-Sz]

— If k is measurable then there is a MN space X with A(X) = &
that is not wq-resolvable.

—If X is DSD with |X| < R, then X is maximally resolvable.

— From a supercompact cardinal, it is consistent to have a MN space
X with |X| = A(X) = ¥, that is not w,-resolvable.

This left a number of questions open.
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w < < A (un(X) = set of all uniform ultrafilters on \.)

FACTS.

— Any "measure" is w-descendingly complete, hence not
w-decomposable.

— [Donder, 1988] If there is a not maximally decomposable uniform
ultrafilter then there is a measurable cardinal in some inner model.

— [Kunen - Prikry, 1971] If A < X, then every F € un()) is maximally
decomposable.
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(1) TFAEV (for a fixed x):
— Every DSD space (of cardinality < ) is maximally resolvable.
— Every MN space (of cardinality < x) is maximally resolvable.

— Every uniform ultrafilter (on a cardinal < ) is maximally
decomposable.

(2) TFAEC
— There is a measurable cardinal.
— There is a MN space that is hot maximally resolvable.

— There is a MN space X with |[X| = A(X) = ¥, thatis
not ws-resolvable.
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— F is afiltration if dom(F) = T is an infinitely branching tree
(of height w) and, for eacht € T, F(t) is a filter on S(t) that contains
all co-finite subsets of S(t).

—ForGcCT, Geriff

teG= GNS(t) e F(t),

—X(F) = (T, 7e) is called a filtration space.

FACT. [J-S-Sz] Every filtration space X(F)is MN: For s € V € 7 put

H(s,V)={teV:s<tand[s,t]C V}
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irresolvability of ultrafiltration spaces

If F is an ultrafiltration and p is a regular cardinal s.t. F(t) is
u-descendingly complete for allt € T = dom(F), then X(F) is
hereditarily ;. "-irresolvable.

COROLLARY. [J-S-Sz]

If 7 € un(k) is a measure and F(t) = F for all t € dom(F) = x<“ then
X(F) is hereditarily w;-irresolvable.
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Mfiltrations

DEFINITION. [J-M] F is a A-filtration if
(i) T =dom(F) C A=¥,

(i) foreacht € T thereisw < iy < A s.t.

St)={t"a:a<u} and F(t) € un(u),

(iii) moreover, forany y < Aandt € T:

{os o > p} € F(1).
NOTE. If F is a Afiltration then |X(F)| = A(X(F)) = A.
— The Mfiltration F is full if T = dom(F) = A=“.

Full \-filtrations were considered in [J-S-Sz].
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THEOREM [J-M]
For A singular and cf(\)™ < x < )\, TFAEV

— Every DSD space X with |[X| = A(X) = )\ is k-resolvable.
— Every MN space X with [X| = A(X) = X is s-resolvable.

— X(F) is k-resolvable for every A\-filtration F.

NOTE. In both results, the case x = )\ is of main.interest.
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idea of proof

If every x € X is the complete accumulation point of a SD set Y C X
with |Y | = \ then there is a full A-filtration F and a one-one continuous
map g : X(F) — X.

Assume that \ is regular, X is DSD with [X| = A(X) = A, and x € X
is not a complete accumulation point of any SD set Y € [X]*. Then
x € Ty(X). Butif T)(X) is dense in X, then X is A-resolvable.

This takes care of the case when X is regular.

The singular case (proved in [J-M]) is similar but more complicated.
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(i) forevery t € T =dom(F), if ux > « then F(t) is x-decomposable,
(if) foreveryt € T = dom(F) and x < &,

{a < : F(t"a) is u-decomposable} € F(t),

then X (F) is x-resolvable.

COROLLARY [J-M]

If every F € un(u) is maximally decomposable whenever w < u < A,
then X (F) is A-resolvable for any A-filtration F.
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