
RESOLVABILITY OF TOPOLOGICAL SPACES

István Juhász

Alfréd Rényi Institute of Mathematics

Hejnice, January/February 2012

István Juhász (Rényi Institute) resolvable Hejnice 2012 1 / 14



intro

DEFINITION. (Hewitt, 1943, Pearson, 1963)

– A topological space X is κ-resolvable iff it has κ disjoint dense
subsets.
– X is maximally resolvable iff it is ∆(X )-resolvable, where

∆(X ) = min{|G| : G 6= ∅ open in X} .

FACTS.

– Compact Hausdorff, metric, and linearly ordered spaces are
maximally resolvable.

– There is a countable, regular (≡ T3 ), dense-in-itself space X
(i.e. |X | = ∆(X ) = ω) that is irresolvable (≡ not 2-resolvable ).
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π-networks

LEMMA. (Elkin, 1969)
If {Y ⊂ X : Y is κ− resolvable} is a π-network in the space X
then X is κ-resolvable.

PROOF. {Yi : i ∈ I} be a maximal disjoint system of κ-resolvable
subspaces of X , {Di,α : α < κ} be disjoint dense sets in Yi for i ∈ I.
Clearly, then Dα =

⋃
i∈I Di,α for α < κ are disjoint dense sets in X .

COROLLARY 1
If every open G ⊂ X with |G| = ∆(G) has a κ-resolvable subspace
then X is κ-resolvable.

COROLLARY 2
If X is irresolvable then there is an open Y ⊂ X that is OHI. So, X is
irresolvable iff there is an ultrafilter on X generated by open sets.
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Bernstein-Kuratowski

DEFINITION. (i) A is a Bκ-system if |A| = κ and |A| = κ for all A ∈ A.
(ii) X is a Bκ-space if it has a Bκ-system π-network.

THEOREM. Bernstein-Kuratowski
If A is a Bκ-system then there is a disjoint family D with |D| = κ s.t.
D ∩ A 6= ∅ for all A ∈ A and D ∈ D.

COROLLARY
(i) Any Bκ-space is κ-resolvable.
(ii) Let C be a class of spaces that is open hereditary and π(X ) ≤ |X |
for all X ∈ C.Then every member of C is maximally resolvable.

EXAMPLES. Metric spaces, locally compact Hausdorff spaces,
GO spaces (≡ subpaces of LOTS).
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Gδ-resolvable

THEOREM. J-Sz
Every compact T2 space X is maximally Gδ-resolvable
(≡ Xδ is maximally resolvable).

PROOF. Enough to show: |X | = ∆(Xδ) = κ > ω implies π(Xδ) ≤ κ.

(i) If κ = κω then even w(Xδ) ≤ w(X )ω ≤ κ.

(ii) κ < κω let λ be minimal with λω > κ, then µ < λ implies µω < λ.

S = {x ∈ X : χ(x ,X ) < λ} is Gδ-dense in X : If H ⊂ X were closed Gδ

with χ(x ,X ) = χ(x ,H) ≥ λ for all x ∈ H then |H| ≥ 2λ ≥ λω > κ
by the Čech-Pospišil thm, contradiction.

But χ(x ,Xδ) ≤ χ(x ,X )ω < λ ≤ κ for x ∈ S, so π(Xδ) ≤ κ.
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ls(X )

DEFINITION. A space is left (right) separated if it has a well-order in
which every final (initial) segment is open.

ls(X ) = min{|L| : X = ∪L ∧ ∀L ∈ L is left sep’d}.

LEMMA. (Pavlov, 2002)
If ls(G) ≥ κ for all open G ⊂ X then X is κ-resolvable.

PROOF. Every space has a dense left separated subspace.
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countably compact spaces

THEOREM. (Pytkeev, 2006)
Every crowded countably compact T3 space X is ω1-resolvable.

NOTE. This fails for T2!

PROOF. Tkachenko (1979): If Y is countably compact T3 with
ls(Y ) ≤ ω then Y is scattered. But every open G ⊂ X includes a
regular closed Y , hence ls(G) ≥ ls(Y ) ≥ ω1.

PROBLEM.
Is every crowded countably compact T3 space X c-resolvable?

NOTE: ∆(X ) ≥ c.
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ideal lemma

LEMMA
Assume that I is a κ-complete ideal on X (κ ≥ ω) and D ⊂ X is dense
with |D| ≤ κ s.t. for any x ∈ D and Y ∈ I there is Z ∈ I for which
Y ∩ Z = ∅ and x ∈ Z . Then X is κ-resolvable.

PROOF. Set D = {xα : α < κ} s.t. ∀ x ∈ D, ax = {α : x = xα} ∈ [κ]κ.
By transf. rec’n on α < κ define Zα ∈ I s.t. (∪β<αZβ) ∩ Zα = ∅ and
xα ∈ Zα. For fixed i < κ set

Si = ∪{Zαx,i : x ∈ D},

where αx ,i is the i th member of ax . Then Si is dense because D ⊂ Si .
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Tκ-points

EXAMPLE. For a regular κ, the ideal [X ]<κ is κ-complete.

DEFINITION. (i) For κ regular, x ∈ X is a Tκ-point if for every
Y ∈ [X ]<κ there is Z ∈ [X ]<κ with Y ∩ Z = ∅ and x ∈ Z .
(ii) For κ singular, x ∈ X is a Tκ-point if there is µ < κ s.t. for every
Y ∈ [X ]<κ there is Z ∈ [X ]<µ with Y ∩ Z = ∅ and x ∈ Z .
(iii) Tκ(X ) denotes the set of all Tκ-points of X .

LEMMA
For any κ, if there is D ⊂ Tκ(X ) dense with |D| ≤ κ then X is
κ-resolvable.

PROOF (for singular κ). Put D = {xα : α < κ} s.t. ∀ x ∈ D,
{α : x = xα} ∈ [κ]κ. Define {Zα : α < κ} disjoint s.t. |Zα| ≤ α and
xα ∈ Zα if µxα ≤ α. Then use ax = {α : x = xα ∧ µx ≤ α} ∈ [κ]κ

to obtain the disjoint dense sets Si = ∪{Zαx,i : x ∈ D}, for i < κ.
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Tκ-points

LEMMA
If κ is regular and Tκ(X ) = X then X is κ-resolvable.

PROOF. Tκ(X ) = X implies Tκ(Y ) = Y for all open Y ⊂ X , hence it
suffices to show that X has a κ-resolvable subspace.
By regularity of κ, for any A ∈ [X ]<κ there is B ∈ [X ]<κ s.t. A ∩ B = ∅
and A ⊂ B.
So, we may define disjoint sets {Aα : α < κ} ⊂ [X ]<κ s.t.

∪β<αAβ ⊂ Aα

for each α < κ. Then Y = ∪{Aα : α < κ} is κ-resolvable because
∪{Aα : α ∈ a} is dense in Y for any a ∈ [κ]κ.
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Bκ-points

DEFINITION. (i) p ∈ X is a Bκ-point if there is a Bκ-system (i.e. κ sets
of size κ) that forms a local π-network at p.

(ii) For Q ⊂ CARD, p ∈ X is a BQ-point if for each κ ∈ Q there is a
Bκ-system Bκ s.t. ∪{Bκ : κ ∈ Q} forms a local π-network at p.

EXAMPLES. (i) If the one-one sequence {xα : α < κ} converges to p
then p is a Bκ-point.
The converse fails, even for κ = ω: Any infinite compact T2 space has
a Bω-point.

(ii) If x ∈ A and each y ∈ A is a BQy -point with |A| ≤ min Qy ,
then x is a BQ-point for Q = ∪{Qy : y ∈ A}.
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Pytkeev spaces

DEFINITION. X is a Pytkeev space if for every non-closed set A ⊂ X
there are a Bκ-point p and B ∈ [A]≤κ s.t. p ∈ B \ A.

EXAMPLES. (i) B = {xα : α < κ} ⊂ A converges to p.

(ii) χ(p,A) = ψ(p,A) = κ ≥ ω.

(iii) By (i) pseudoradial spaces, and by (ii) k -spaces are Pytkeev.

THEOREM. (Pytkeev, 1983)
Every Pytkeev space is maximally resolvable.

LEMMA.
Assume that X is a Pytkeev space and Z ⊂ X is < λ-closed
(i.e. A ∈ [Z ]<λ implies A ⊂ Z ). Then every y ∈ Z \ Z is a BQ-point
where λ ≤ min Q.

István Juhász (Rényi Institute) resolvable Hejnice 2012 12 / 14



Pytkeev spaces

DEFINITION. X is a Pytkeev space if for every non-closed set A ⊂ X
there are a Bκ-point p and B ∈ [A]≤κ s.t. p ∈ B \ A.

EXAMPLES. (i) B = {xα : α < κ} ⊂ A converges to p.

(ii) χ(p,A) = ψ(p,A) = κ ≥ ω.

(iii) By (i) pseudoradial spaces, and by (ii) k -spaces are Pytkeev.

THEOREM. (Pytkeev, 1983)
Every Pytkeev space is maximally resolvable.

LEMMA.
Assume that X is a Pytkeev space and Z ⊂ X is < λ-closed
(i.e. A ∈ [Z ]<λ implies A ⊂ Z ). Then every y ∈ Z \ Z is a BQ-point
where λ ≤ min Q.

István Juhász (Rényi Institute) resolvable Hejnice 2012 12 / 14



Pytkeev spaces

DEFINITION. X is a Pytkeev space if for every non-closed set A ⊂ X
there are a Bκ-point p and B ∈ [A]≤κ s.t. p ∈ B \ A.

EXAMPLES. (i) B = {xα : α < κ} ⊂ A converges to p.

(ii) χ(p,A) = ψ(p,A) = κ ≥ ω.

(iii) By (i) pseudoradial spaces, and by (ii) k -spaces are Pytkeev.

THEOREM. (Pytkeev, 1983)
Every Pytkeev space is maximally resolvable.

LEMMA.
Assume that X is a Pytkeev space and Z ⊂ X is < λ-closed
(i.e. A ∈ [Z ]<λ implies A ⊂ Z ). Then every y ∈ Z \ Z is a BQ-point
where λ ≤ min Q.

István Juhász (Rényi Institute) resolvable Hejnice 2012 12 / 14



Pytkeev spaces

DEFINITION. X is a Pytkeev space if for every non-closed set A ⊂ X
there are a Bκ-point p and B ∈ [A]≤κ s.t. p ∈ B \ A.

EXAMPLES. (i) B = {xα : α < κ} ⊂ A converges to p.

(ii) χ(p,A) = ψ(p,A) = κ ≥ ω.

(iii) By (i) pseudoradial spaces, and by (ii) k -spaces are Pytkeev.

THEOREM. (Pytkeev, 1983)
Every Pytkeev space is maximally resolvable.

LEMMA.
Assume that X is a Pytkeev space and Z ⊂ X is < λ-closed
(i.e. A ∈ [Z ]<λ implies A ⊂ Z ). Then every y ∈ Z \ Z is a BQ-point
where λ ≤ min Q.

István Juhász (Rényi Institute) resolvable Hejnice 2012 12 / 14



Pytkeev spaces

DEFINITION. X is a Pytkeev space if for every non-closed set A ⊂ X
there are a Bκ-point p and B ∈ [A]≤κ s.t. p ∈ B \ A.

EXAMPLES. (i) B = {xα : α < κ} ⊂ A converges to p.

(ii) χ(p,A) = ψ(p,A) = κ ≥ ω.

(iii) By (i) pseudoradial spaces, and by (ii) k -spaces are Pytkeev.

THEOREM. (Pytkeev, 1983)
Every Pytkeev space is maximally resolvable.

LEMMA.
Assume that X is a Pytkeev space and Z ⊂ X is < λ-closed
(i.e. A ∈ [Z ]<λ implies A ⊂ Z ). Then every y ∈ Z \ Z is a BQ-point
where λ ≤ min Q.

István Juhász (Rényi Institute) resolvable Hejnice 2012 12 / 14



Pytkeev spaces

DEFINITION. X is a Pytkeev space if for every non-closed set A ⊂ X
there are a Bκ-point p and B ∈ [A]≤κ s.t. p ∈ B \ A.

EXAMPLES. (i) B = {xα : α < κ} ⊂ A converges to p.

(ii) χ(p,A) = ψ(p,A) = κ ≥ ω.

(iii) By (i) pseudoradial spaces, and by (ii) k -spaces are Pytkeev.

THEOREM. (Pytkeev, 1983)
Every Pytkeev space is maximally resolvable.

LEMMA.
Assume that X is a Pytkeev space and Z ⊂ X is < λ-closed
(i.e. A ∈ [Z ]<λ implies A ⊂ Z ). Then every y ∈ Z \ Z is a BQ-point
where λ ≤ min Q.

István Juhász (Rényi Institute) resolvable Hejnice 2012 12 / 14



Pytkeev spaces

DEFINITION. X is a Pytkeev space if for every non-closed set A ⊂ X
there are a Bκ-point p and B ∈ [A]≤κ s.t. p ∈ B \ A.

EXAMPLES. (i) B = {xα : α < κ} ⊂ A converges to p.

(ii) χ(p,A) = ψ(p,A) = κ ≥ ω.

(iii) By (i) pseudoradial spaces, and by (ii) k -spaces are Pytkeev.

THEOREM. (Pytkeev, 1983)
Every Pytkeev space is maximally resolvable.

LEMMA.
Assume that X is a Pytkeev space and Z ⊂ X is < λ-closed
(i.e. A ∈ [Z ]<λ implies A ⊂ Z ). Then every y ∈ Z \ Z is a BQ-point
where λ ≤ min Q.

István Juhász (Rényi Institute) resolvable Hejnice 2012 12 / 14



Pytkeev spaces

DEFINITION. X is a Pytkeev space if for every non-closed set A ⊂ X
there are a Bκ-point p and B ∈ [A]≤κ s.t. p ∈ B \ A.

EXAMPLES. (i) B = {xα : α < κ} ⊂ A converges to p.

(ii) χ(p,A) = ψ(p,A) = κ ≥ ω.

(iii) By (i) pseudoradial spaces, and by (ii) k -spaces are Pytkeev.

THEOREM. (Pytkeev, 1983)
Every Pytkeev space is maximally resolvable.

LEMMA.
Assume that X is a Pytkeev space and Z ⊂ X is < λ-closed
(i.e. A ∈ [Z ]<λ implies A ⊂ Z ). Then every y ∈ Z \ Z is a BQ-point
where λ ≤ min Q.

István Juhász (Rényi Institute) resolvable Hejnice 2012 12 / 14



Pytkeev spaces

DEFINITION. X is a Pytkeev space if for every non-closed set A ⊂ X
there are a Bκ-point p and B ∈ [A]≤κ s.t. p ∈ B \ A.

EXAMPLES. (i) B = {xα : α < κ} ⊂ A converges to p.

(ii) χ(p,A) = ψ(p,A) = κ ≥ ω.

(iii) By (i) pseudoradial spaces, and by (ii) k -spaces are Pytkeev.

THEOREM. (Pytkeev, 1983)
Every Pytkeev space is maximally resolvable.

LEMMA.
Assume that X is a Pytkeev space and Z ⊂ X is < λ-closed
(i.e. A ∈ [Z ]<λ implies A ⊂ Z ). Then every y ∈ Z \ Z is a BQ-point
where λ ≤ min Q.

István Juhász (Rényi Institute) resolvable Hejnice 2012 12 / 14



PROOF.

PROOF OF LEMMA. Assume not. Then A = Z ∪ {y ∈ Z : ...} is not
closed, so there is a a Bκ-point p and B ∈ [A]≤κ s.t. p ∈ B \ A.
We have κ < λ, as o.w. Q = {κ} implied p ∈ A. As Z is < λ-closed,
we may assume B ⊂ {y ∈ Z : ...}. But then p is a BQ-point with
Q = ∪{Qy : y ∈ B}, contradiction.

PROOF OF THEOREM. It suffices to show that if Y ⊂ X is open with
|Y | = ∆(Y ) = λ then Y has a λ-resolvable subspace.

1) If Tλ(Y ) is dense in Y then Y is λ-resolvable.

2) O.w. Tλ(Y ) = ∅ can be assumed. Consider the case λ regular. Then
for every y ∈ Y there is A ∈ [Y ]<λ s.t. y /∈ B whenever B ∈ [Y \ A]<λ.
There is, in X , a < λ-closed Z ⊃ Y \ A with y ∈ Z \ Z . So, y is a
BQ-point with λ ≤ min Q, hence it is a Bλ-point as Y is open and
|Y | = λ. Then Y has a Bλ-system π-network and so is λ-resolvable.

The case of singular λ is similar but more technical.
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COROLLARY

COROLLARY (Pytkeev)
Assume that µ ≥ ω and for every x ∈ X there is some κ ≥ µ s.t. x is a
Bκ-point. Then X is µ-resolvable.

PROOF. If τ is the topology of X , by Zorn’s lemma there is a maximal
topology % ⊃ τ s.t. if B witnesses that (for some κ ≥ µ) x is a Bκ-point
w.r.t. τ then the same is true w.r.t. %.

Then 〈X , %〉 is Pytkeev: If Y ⊂ X is not %-open then, by maximality,
there is a Bκ-point (w.r.t. %) x ∈ Y and a witness B for this s.t.
B \ Y 6= ∅ for all B ∈ B. So, there is Z ∈ [X \ Y ]≤κ with x ∈ Z

%
.

Thus 〈X , %〉 is maximally resolvable, while ∆(X , %) ≥ µ, by definition.
Consequently, X is µ-resolvable.
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