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intro

DEFINITION. (Hewitt, 1943, Pearson, 1963)

— A topological space X is x-resolvable iff it has « disjoint dense
subsets.
— X is maximally resolvable iff it is A(X)-resolvable, where

A(X) =min{|G| : G # 0 open in X} .

FACTS.

— Compact Hausdorff, metric, and linearly ordered spaces are
maximally resolvable.

— There is a countable, regular (= T3 ), dense-in-itself space X
(i.e. |X| = A(X) = w) that is irresolvable (= not 2-resolvable ).
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(i) X is a B,-space if it has a B,-system w-network.

THEOREM. Bernstein-Kuratowski

If Ais a B,-system then there is a disjoint family D with |D| = « s.t.
DNA+#(forall Ac Aand D € D.

v

COROLLARY

(i) Any B,-space is k-resolvable.
(i) Let C be a class of spaces that is open hereditary and =(X) < | X|
for all X € C.Then every member of C is maximally resolvable.

EXAMPLES. Metric spaces, locally compact Hausdorff spaces,
GO spaces (= subpaces of LOTS).
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(= Xj is maximally resolvable).
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(i) If K = k* then even w(Xs) < w(X)“ < k.

(ii) = < k¥ let A be minimal with \ > &, then p < X implies u* < A.

S={xeX:x(x,X)<\}is Gs-dense in X: If HC X were closed G;
with x(x, X) = x(x, H) > M forall x € H then |H| >2* > \* > &
by the Cech-Pospisil thm, contradiction.

But y(x, X5) < x(x,X)¥ <A< kforx e S, so 7(Xs) < k.

Istvan Juhasz (Rényi Institute) resolvable Hejnice 2012 5/14



Is(X)

Istvan Juhasz (Rényi Institute)

resolvable

Hejnice 2012

6/14



Is(X)

DEFINITION. A space is left (right) separated if it has a well-order in
which every final (initial) segment is open.

Istvan Juhasz (Rényi Institute) resolvable Hejnice 2012 6/14



Is(X)

DEFINITION. A space is left (right) separated if it has a well-order in
which every final (initial) segment is open.

Is(X) =min{|£| : X =UL A VL € L is left sep'd}.

Istvan Juhasz (Rényi Institute) resolvable Hejnice 2012 6/14



Is(X)

DEFINITION. A space is left (right) separated if it has a well-order in
which every final (initial) segment is open.

Is(X) =min{|£| : X =UL A VL € L is left sep'd}.

LEMMA. (Pavlov, 2002)
If Is(G) > « for all open G C X then X is x-resolvable.

Istvan Juhasz (Rényi Institute) resolvable Hejnice 2012 6/14
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DEFINITION. A space is left (right) separated if it has a well-order in
which every final (initial) segment is open.

Is(X) =min{|£| : X =UL A VL € L is left sep'd}.

LEMMA. (Pavlov, 2002)
If Is(G) > « for all open G C X then X is x-resolvable.

PROOF. Every space has a dense left separated subspace.

Istvan Juhasz (Rényi Institute) resolvable Hejnice 2012 6/14



countably compact spaces

Istvan Juhasz (Rényi Institute) resolvable Hejnice 2012 7/14



countably compact spaces

THEOREM. (Pytkeev, 2006)
Every crowded countably compact T3 space X is wi-resolvable.

Istvan Juhasz (Rényi Institute) resolvable Hejnice 2012 7/14



countably compact spaces

THEOREM. (Pytkeev, 2006)

Every crowded countably compact T3 space X is wi-resolvable.
NOTE. This fails for T5!

Istvan Juhasz (Rényi Institute) resolvable Hejnice 2012 7/14



countably compact spaces

THEOREM. (Pytkeev, 2006)

Every crowded countably compact T3 space X is wi-resolvable.

NOTE. This fails for T5!

PROOF. Tkachenko (1979): If Y is countably compact T3 with
Is(Y) < wthen Y is scattered.

Istvan Juhasz (Rényi Institute) resolvable Hejnice 2012 7/14



countably compact spaces

THEOREM. (Pytkeev, 2006)
Every crowded countably compact T3 space X is wi-resolvable.

NOTE. This fails for T5!

PROOF. Tkachenko (1979): If Y is countably compact T3 with
Is(Y) < wthen Y is scattered. But every open G C X includes a
regular closed Y, hence Is(G) > Is(Y) > wj.

Istvan Juhasz (Rényi Institute) resolvable Hejnice 2012 7/14



countably compact spaces

THEOREM. (Pytkeev, 2006)
Every crowded countably compact T3 space X is wi-resolvable.

NOTE. This fails for T5!

PROOF. Tkachenko (1979): If Y is countably compact T3 with
Is(Y) < wthen Y is scattered. But every open G C X includes a
regular closed Y, hence Is(G) > Is(Y) > wj.

PROBLEM.
Is every crowded countably compact T3 space X c-resolvable?

Istvan Juhasz (Rényi Institute) resolvable Hejnice 2012 7/14



countably compact spaces

THEOREM. (Pytkeev, 2006)
Every crowded countably compact T3 space X is wi-resolvable.

NOTE. This fails for 75!
PROOF. Tkachenko (1979): If Y is countably compact T3 with

Is(Y) < wthen Y is scattered. But every open G C X includes a
regular closed Y, hence Is(G) > Is(Y) > wj.

PROBLEM.
Is every crowded countably compact T3 space X c-resolvable?

NOTE: A(X) > c.

Istvan Juhasz (Rényi Institute) resolvable Hejnice 2012 7/14



countably compact spaces

THEOREM. (Pytkeev, 2006)
Every crowded countably compact T3 space X is wi-resolvable.

NOTE. This fails for 75!
PROOF. Tkachenko (1979): If Y is countably compact T3 with

Is(Y) < wthen Y is scattered. But every open G C X includes a
regular closed Y, hence Is(G) > Is(Y) > wj.

PROBLEM.
Is every crowded countably compact T3 space X c-resolvable?

NOTE: A(X) > c.

Istvan Juhasz (Rényi Institute) resolvable Hejnice 2012 7/14



ideal lemma

Istvan Juhasz (Rényi Institute) resolvable Hejnice 2012 8/14



ideal lemma

LEMMA

Assume that 7 is a k-complete ideal on X (x > w) and D C X is dense

with [D| < k s.t. forany x € Dand Y € Z there is Z € T for which
YNZ=0and x € Z.
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(i) For x singular, x € X'is a T,.-point if there is . < x s.t. for every
Y € [X]<" thereis Z ¢ [X]** withYNZ =(and x € Z.

(iii) T.(X) denotes the set of all T,.-points of X.
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If x is regular and T,.(X) = X then X is x-resolvable.
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If x is regular and T,,(X) = X then X is x-resolvable.

PROOF. T.(X) = X implies T.(Y) = Y forall open Y C X, hence it
suffices to show that X has a x-resolvable subspace.
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DEFINITION.
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DEFINITION. (i) p € X is a B,;-point if there is a B,;-system (i.e. s sets
of size k) that forms a local w-network at p.
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(i) For Q c CARD, p € X is a Bg-point if for each « € Q there is a
B..-system B,; s.t. U{B,; : k € Q} forms a local m-network at p.

EXAMPLES. (i) If the one-one sequence {x, : a < k} converges to p
then pis a B,-point.
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DEFINITION. (i) p € X is a B,;-point if there is a B,;-system (i.e. s sets
of size k) that forms a local w-network at p.

(i) For Q c CARD, p € X is a Bg-point if for each « € Q there is a
B..-system B,; s.t. U{B,; : k € Q} forms a local m-network at p.

EXAMPLES. (i) If the one-one sequence {x, : a < k} converges to p
then pis a B,-point.

The converse fails, even for k = w: Any infinite compact T, space has
a B,,-point.

(i) lf xc Aandeach y € Ais a Bg,-point with |A| < min Qy,
then x is a Bg-point for Q = U{Qy : y € A}.
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Pytkeev spaces

DEFINITION. X is a Pytkeev space if for every non-closed set A C X
there are a B,-point p and B € [A|=* s.t. p € B\ A.
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Pytkeev spaces

DEFINITION. X is a Pytkeev space if for every non-closed set A C X
there are a B,-point p and B € [A|=* s.t. p € B\ A.

EXAMPLES. (i) B = {X, : @« < k} C A converges to p.
(i) x(p, Z) = Y(p, Z) =K 2w
(iii) By (i) pseudoradial spaces, and by (ii) k-spaces are Pytkeev.

THEOREM. (Pytkeev, 1983)
Every Pytkeev space is maximally resolvable.

LEMMA.

Assume that X is a Pytkeev space and Z C X'is < A-closed
(i.e. Ac [Z]<) implies A C 2).
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Assume that X is a Pytkeev space and Z C X'is < A-closed
(i.e. Ac [Z]<)implies AC Z). Then every y € Z\ Z is a Bg-point
where A < min Q.
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PROOF.

PROOF OF LEMMA.
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closed, so there is a a B,-point p and B € [A]=* s.t. p € B\ A.
We have k < A\, as o.w. Q = {x} implied p € A.
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PROOF OF THEOREM. It suffices to show that if Y € X is open with
Y| = A(Y) = Athen Y has a \-resolvable subspace.
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PROOF OF THEOREM. It suffices to show that if Y € X is open with
Y| = A(Y) = Athen Y has a \-resolvable subspace.

1) If T\(Y) is dense in Y then Y is A-resolvable.
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we may assume B C {y € Z : ...}. But then p is a Bg-point with

Q = U{Qy : y € B}, contradiction.

PROOF OF THEOREM. It suffices to show that if Y € X is open with
Y| = A(Y) = Athen Y has a \-resolvable subspace.

1) If T\(Y) is dense in Y then Y is A-resolvable.

2) O.w. T\(Y) = () can be assumed.
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Y| = A(Y) = Athen Y has a \-resolvable subspace.
1) If T\(Y) is dense in Y then Y is A-resolvable.

2) O.w. T)\(Y) = 0 can be assumed. Consider the case A regular. Then
forevery y € Y thereis A € [Y]<* s.t. y ¢ Bwhenever B € [Y \ A]<.
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2) O.w. T\(Y) = (0 can be assumed. Consider the case A regular. Then
forevery y € Y thereis A€ [Y]<* s.t. y ¢ Bwhenever B € [Y \ A]<\.
There s, in X, a < A\-closed Z> Y\ Awithy € Z\ Z. So, y is a
Bg-point with A < min Q, hence it is a By-point as Y is open and

Y| = A. Then Y has a B,-system w-network and so is A-resolvable.
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closed, so there is a a B,-point p and B € [A]=* s.t. p € B\ A.

We have k < A\, aso.w. Q = {k} implied p € A. As Z is < A-closed,
we may assume B C {y € Z : ...}. But then p is a Bg-point with

Q = U{Qy : y € B}, contradiction.

PROOF OF THEOREM. It suffices to show that if Y € X is open with
Y| = A(Y) = Athen Y has a \-resolvable subspace.

1) If T\(Y) is dense in Y then Y is A-resolvable.

2) O.w. T\(Y) = (0 can be assumed. Consider the case A regular. Then
forevery y € Y thereis A€ [Y]<* s.t. y ¢ Bwhenever B € [Y \ A]<\.
There s, in X, a < A\-closed Z> Y\ Awithy € Z\ Z. So, y is a
Bg-point with A < min Q, hence it is a By-point as Y is open and

Y| = A. Then Y has a B,-system w-network and so is A-resolvable.

The case of singular A is similar but more technical.
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COROLLARY

COROLLARY (Pytkeev)

Assume that 1 > w and for every x € X there is some « > 1 s.t. xis a
By.-point.
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COROLLARY

COROLLARY (Pytkeev)

Assume that 1 > w and for every x € X there is some « > 1 s.t. xis a
B,.-point. Then X is u-resolvable.

PROOF. If 7 is the topology of X, by Zorn’s lemma there is a maximal
topology o O 7 s.t. if B witnesses that (for some x > u) x is a B,-point
w.r.t. 7 then the same is true w.r.t. o.
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Then (X, o) is Pytkeev: If Y C X is not g-open then, by maximality,
there is a B;-point (w.r.t. o) x € Y and a witness B for this s.t.
B\'Y #0forall B e B.
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topology o O 7 s.t. if B witnesses that (for some x > u) x is a B,-point
w.r.t. 7 then the same is true w.r.t. o.

Then (X, o) is Pytkeev: If Y C X is not g-open then, by maximality,
there is a B,-point (w.r.t. o) x € Y and a witness B for this s.t.
B\ Y # @ forall Be B. So, thereis Z € [X \ Y]=* with x € Z°.

Thus (X, o) is maximally resolvable, while A(X, ¢) > p, by definition.
Consequently, X is p-resolvable.
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