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2-point sets

Definition

A subset of the plane which intersects every line in exactly two
points is called a 2-point set.

Existence

Theorem. (Mazurkiewicz) There exists a 2-point set.

Complexity

Can be a 2-point set Borel?
Theorem. (Bouhjar, Dijkstra, and van Mill) It cannot be Fσ!
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Zoltán Vidnyánszky Coanalytic Transfinite Constructions



2-point sets

Definition

A subset of the plane which intersects every line in exactly two
points is called a 2-point set.

Existence

Theorem. (Mazurkiewicz) There exists a 2-point set.

Complexity

Can be a 2-point set Borel?
Theorem. (Bouhjar, Dijkstra, and van Mill) It cannot be Fσ!
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2-point sets

Inductive proof

Standard proof of the existence:

purely set theoretic construction,
by transfinite induction.

Question

The set of possible choices is very large. Can we construct a
”nice” set?
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Coanalytic sets

Coanalytic sets

The projections of Gδ sets are called analytic (Σ1
1) (or equivalently

the continuous images of the Borel sets). The complements are
called coanalytic (Π1

1).

Regularity

Lebesgue measurability

Baire property

Irregularity

Con(exists an A Π1
1 set such that ω < |A| < 2ω)

Con(∃ an uncountable coanalytic set without a perfect subset)
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Miller’s theorem

Miller’s theorem

Theorem. (A. W. Miller 91’) (V = L) There exists a Π1
1 2-point

set.

Furthermore there exists a Π1
1

Hamel basis

MAD family

Method

Miller’s method is frequently needed, but he does not give a
general condition. The proof is hard, uses effective descriptive set
theory and model theory.
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General method

x ≤T y

Definition. Let x , y ∈ R, x ≤T y iff there is a Turing machine
computing x from y .

Turing-cofinal

Definition. A set X ⊂ R is Turing-cofinal if
(∀z ∈ R)(∃y ∈ X )(y ≤T x).

General method

Theorem 1. (V=L) Let F ⊂ R≤ω × R× R be a coanalytic set.
Assume that for every (A, p) ∈ R≤ω × R the section F(A,p) is
Turing-cofinal.
Then there exists an enumeration of R = {pα : α < ω1} and a
coanalytic set X = {xα : α < ω1}, such that
(∀α < ω1)(xα ∈ F({xn:n∈ω},pα)), where {xn; n ∈ ω} is a certain
enumeration of {xβ : β < α}.
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Effectiveness

Σ0
1(y), Π0

1(y)

Definition. Let {In : n ∈ ω} be a recursive enumeration of the open
intervals with rational endpoints. An open set G is called recursive
in y , iff there exists a subsequence {nk : k ∈ ω} ≤T y , such that
G = ∪k Ink . (the class of these sets is denoted by Σ0

1(y)).

Π0
1(y) = {G c : G ∈ Σ0

1(y)}

We can define these classes similarly for subsets of ω, ω × R, R2

etc. using a recursive enumeration of {n}, {n} × Im, In × Im etc.

The lightface classes

Let us define for n ≥ 2

Σ0
n(y) = {projR(A) : A ⊂ R× ω,A ∈ Π0

n−1(y)},

Π0
n(y) = {Ac : A ∈ Σ0

n(y)}.
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Effectiveness

Projective lightface classes

Σ1
1(y) = {projR(A) : A ⊂ R× R,A ∈ Π0

2(y)},

Π1
1(y) = {Ac : A ∈ Σ1

1(y)},

∆1
1(y) = Σ1

1(y) ∩ Π1
1(y).

Lightface and boldface

Σi
j = ∪y∈RΣi

j(y)

Key theorem

For x , y ⊂ ω if x ∈ ∆1
1(y) then x is called hyperarithmetic in y ,

denoted by x ≤h y .
Theorem. (Spector, Gandy) Suppose that a set A ⊂ R2 is
coanalytic. Then (∃y ≤h x)((x , y) ∈ A) is also coanalytic.
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Strengthening

Cofinality in hyperdegrees

Definition. A set X ⊂ R is called cofinal in hyperdegrees if
(∀z ∈ R)(∃y ∈ X )(z ≤h y).

Stronger version

Theorem 2. (V=L) Let y ∈ R, F ⊂ R≤ω ×R×R be a Π1
1(y) set.

Assume that for every (A, p) ∈ R≤ω × R the section F(A,p) is
cofinal in hyperdegrees. Then there exists an enumeration of
R = {pα : α < ω1} and a Π1

1(y) set X = {xα : α < ω1}, such that
(∀α < ω1)(xα ∈ F({xn:n∈ω},pα)), where {xn : n ∈ ω} is a certain
enumeration of {xβ : β < α}.

Remark

The previous theorem holds true replacing R with Rn, ωω or 2ω.
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Consequences

Miller’s results

Theorem 1. implies Miller’s results: consistent existence of
coanalytic MAD family, 2-point set and Hamel basis.

V=L?

If the condition holds then ωL
1 = ω1. Is it equivalent to

(2ω)L = 2ω?
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Consequences: C 1 curves

Existence

(CH) There exists an uncountable X ⊂ R2 intersecting every C 1

curve in countably many points.

Consistent nonexistence

Theorem (J. Hart, K. Kunen) (PFA) For every uncountable
X ⊂ R2 there exists a C 1 curve intersecting it in uncountably
many points.

Coanalytic in V=L

Theorem 1. implies that under (V=L) there exists an uncountable
coanalytic X ⊂ R2 set intersecting every C 1 curve in countably
many points.

Remark

In almost every case there are no Σ1
1 sets.
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Zoltán Vidnyánszky Coanalytic Transfinite Constructions



Consequences: C 1 curves

Existence

(CH) There exists an uncountable X ⊂ R2 intersecting every C 1

curve in countably many points.

Consistent nonexistence

Theorem (J. Hart, K. Kunen) (PFA) For every uncountable
X ⊂ R2 there exists a C 1 curve intersecting it in uncountably
many points.

Coanalytic in V=L

Theorem 1. implies that under (V=L) there exists an uncountable
coanalytic X ⊂ R2 set intersecting every C 1 curve in countably
many points.

Remark

In almost every case there are no Σ1
1 sets.
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Thank you!
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