Marek Bienias

Independent Bernstein sets and algebraic constructions

Joint with Artur Bartoszewicz and Szymon Głąb (Technical University of Lodz)
Introduction

Background

Recently it has become a trend in Mathematical Analysis to look for large algebraic structures (infinite dimensional vector spaces, closed infinite dimensional vector spaces, algebras) of functions on \mathbb{R} or \mathbb{C} that have certain properties.
Introduction

Background

Recently it has become a trend in Mathematical Analysis to look for large algebraic structures (infinite dimensional vector spaces, closed infinite dimensional vector spaces, algebras) of functions on \mathbb{R} or \mathbb{C} that have certain properties.
The notion of algebrability has its origin in works of Aron, Pérez-García and Seoane-Sepulveda and the following is a slightly simplified version of their definition.

Definition (Aron, Pérez-García and Seoane-Sepulveda)

Let \mathcal{L} be an algebra. A set $A \subseteq \mathcal{L}$ is said to be β-algebrable if there exists an algebra \mathcal{B} so that $\mathcal{B} \subseteq A \cup \{0\}$ and $\text{card}(Z) = \beta$, where β is cardinal number and Z is a minimal system of generators of \mathcal{B}. Here, by $Z = \{z_\alpha : \alpha \in \Lambda\}$ is a minimal system of generators of \mathcal{B}, we mean that $\mathcal{B} = A(Z)$ is the algebra generated by Z, and for every $\alpha_0 \in \Lambda$, $z_{\alpha_0} \notin A(Z \{z_{\alpha_0}\})$. We also say that A is algebrable if A is β-algebrable for β-infinite.
The notion of algebrability has its origin in works of Aron, Pérez-García and Seoane-Sepúlveda and the following is a slightly simplified version of their definition.

Definition (Aron, Pérez-García and Seoane-Sepúlveda)

Let \(\mathcal{L} \) be an algebra. A set \(A \subseteq \mathcal{L} \) is said to be \(\beta \)-algebrable if there exists an algebra \(\mathcal{B} \) so that \(\mathcal{B} \subseteq A \cup \{0\} \) and \(\text{card}(Z) = \beta \), where \(\beta \) is cardinal number and \(Z \) is a minimal system of generators of \(\mathcal{B} \). Here, by \(Z = \{z_\alpha : \alpha \in \Lambda\} \) is a minimal system of generators of \(\mathcal{B} \), we mean that \(\mathcal{B} = \mathcal{A}(Z) \) is the algebra generated by \(Z \), and for every \(\alpha_0 \in \Lambda, z_{\alpha_0} \notin \mathcal{A}(Z\setminus\{z_{\alpha_0}\}) \). We also say that \(A \) is algebrable if \(A \) is \(\beta \)-algebrable for \(\beta \)-infinite.
The notion of algebrability has its origin in works of Aron, Pérez-García and Seoane-Sepúlveda and the following is a slightly simplified version of their definition.

Definition (Aron, Pérez-García and Seoane-Sepúlveda)

Let \mathcal{L} be an algebra. A set $A \subseteq \mathcal{L}$ is said to be β-algebrable if there exists an algebra B so that $B \subseteq A \cup \{0\}$ and $\text{card}(Z) = \beta$, where β is cardinal number and Z is a minimal system of generators of B. Here, by $Z = \{z_\alpha : \alpha \in \Lambda\}$ is a minimal system of generators of B, we mean that $B = \mathcal{A}(Z)$ is the algebra generated by Z, and for every $\alpha_0 \in \Lambda$, $z_{\alpha_0} \notin \mathcal{A}(Z \setminus \{z_{\alpha_0}\})$. We also say that A is algebrable if A is β-algebrable for β-infinite.
We study the following classes of functions:

- Perfectly everywhere surjective (PES), strongly everywhere surjective (SES) and everywhere discontinuous Darboux (EDD) functions;
- Everywhere discontinuous functions that have finitely many values (EDF) and everywhere discontinuous compact to compact functions (EDC);
- Functions that are continuous in fixed closed set C.
We study the following classes of functions:

- Perfectly everywhere surjective (\mathcal{PES}), strongly everywhere surjective (\mathcal{SES}) and everywhere discontinuous Darboux (\mathcal{EDD}) functions;
- Everywhere discontinuous functions that have finitely many values (\mathcal{EDF}) and everywhere discontinuous compact to compact functions (\mathcal{EDC});
- Functions that are continuous in fixed closed set C.
We study the following classes of functions:

- Perfectly everywhere surjective (PES), strongly everywhere surjective (SES) and everywhere discontinuous Darboux (EDD) functions;
- Everywhere discontinuous functions that have finitely many values (EDF) and everywhere discontinuous compact to compact functions (EDC);
- Functions that are continuous in fixed closed set C.
We study the following classes of functions:

- Perfectly everywhere surjective (PES), strongly everywhere surjective (SES) and everywhere discontinuous Darboux (EDD) functions;
- Everywhere discontinuous functions that have finitely many values (EDF) and everywhere discontinuous compact to compact functions (EDC);
- Functions that are continuous in fixed closed set C.
Independent family of sets

Let B be a family of subsets of a set X. We say that the family A is B-independent iff

$$A_{\varepsilon_1}^1 \cap \ldots \cap A_{\varepsilon_n}^n \in B$$

for any distinct $A_i \in A$, any $\varepsilon_i \in \{0, 1\}$ for $i \in \{1, \ldots, n\}$ and $n \in \mathbb{N}$ where $A^0 = X \setminus A$ and $A^1 = A$.

There is an independent family of 2^κ many subsets of κ. Let $\{B_\alpha : \alpha < \mathfrak{c}\}$ be a decomposition of \mathbb{R} into disjoint Bernstein sets.

Let $\{N_\xi : \xi < 2^\mathfrak{c}\}$ be an independent family in \mathfrak{c} such that for every $\xi_1 < \ldots < \xi_n < 2^\mathfrak{c}$ and for any $\varepsilon_i \in \{0, 1\}$ the set $N_{\xi_1}^{\varepsilon_1} \cap \ldots \cap N_{\xi_n}^{\varepsilon_n}$ is nonempty and has cardinality \mathfrak{c}.
Independent family of sets

Let B be a family of subsets of a set X. We say that the family A is B-independent iff

$$A_{e_1} \cap \ldots \cap A_{e_n} \in B$$

for any distinct $A_i \in A$, any $e_i \in \{0, 1\}$ for $i \in \{1, \ldots, n\}$ and $n \in \mathbb{N}$ where $A^0 = X \setminus A$ and $A^1 = A$.

There is an independent family of 2^κ many subsets of κ.

Let $\{B_\alpha : \alpha < c\}$ be a decomposition of \mathbb{R} into disjoint Bernstein sets.

Let $\{N_\xi : \xi < 2^c\}$ be an independent family in c such that for every $\xi_1 < \ldots < \xi_n < 2^c$ and for any $e_i \in \{0, 1\}$ the set $N_{\xi_1}^{e_1} \cap \ldots \cap N_{\xi_n}^{e_n}$ is nonempty and has cardinality c.
Independent family of sets

Let B be a family of subsets of a set X. We say that the family A is B-independent iff

$$A_{1}^{\varepsilon_{1}} \cap ... \cap A_{n}^{\varepsilon_{n}} \in B$$

for any distinct $A_{i} \in A$, any $\varepsilon_{i} \in \{0, 1\}$ for $i \in \{1, ..., n\}$ and $n \in \mathbb{N}$ where $A^{0} = X \setminus A$ and $A^{1} = A$.

There is an independent family of 2^{κ} many subsets of κ. Let $\{B_{\alpha} : \alpha < \varsigma\}$ be a decomposition of \mathbb{R} into disjoint Bernstein sets.

Let $\{N_{\xi} : \xi < 2^{\varsigma}\}$ be an independent family in ς such that for every $\xi_{1} < ... < \xi_{n} < 2^{\varsigma}$ and for any $\varepsilon_{i} \in \{0, 1\}$ the set $N_{\xi_{1}}^{\varepsilon_{1}} \cap ... \cap N_{\xi_{n}}^{\varepsilon_{n}}$ is nonempty and has cardinality ς.
Independent family of sets

Let B be a family of subsets of a set X. We say that the family A is B-independent iff

$$A_1^{\varepsilon_1} \cap ... \cap A_n^{\varepsilon_n} \in B$$

for any distinct $A_i \in A$, any $\varepsilon_i \in \{0, 1\}$ for $i \in \{1, ..., n\}$ and $n \in \mathbb{N}$ where $A^0 = X \setminus A$ and $A^1 = A$.

There is an independent family of 2^κ many subsets of κ.
Let $\{B_\alpha : \alpha < \mathfrak{c}\}$ be a decomposition of \mathbb{R} into disjoint Bernstein sets.
Let $\{N_\xi : \xi < 2^\mathfrak{c}\}$ be an independent family in \mathfrak{c} such that for every $\xi_1 < ... < \xi_n < 2^\mathfrak{c}$ and for any $\varepsilon_i \in \{0, 1\}$ the set $N_{\xi_1}^{\varepsilon_1} \cap ... \cap N_{\xi_n}^{\varepsilon_n}$ is nonempty and has cardinality \mathfrak{c}.
For $\xi < 2^c$ put

$$B^\xi = \bigcup_{\alpha \in \mathbb{N}^\xi} B_\alpha.$$

Then every set B^ξ is Bernstein. Note that for every $\xi_1 < \ldots < \xi_n < 2^c$ and any $\varepsilon_i \in \{0, 1\}$ the set

$$(B^{\xi_1})^{\varepsilon_1} \cap \ldots \cap (B^{\xi_n})^{\varepsilon_n} = \bigcup_{\alpha \in \mathbb{N}^{\xi_1} \cap \ldots \cap \mathbb{N}^{\xi_n}} B_\alpha$$

is a Bernstein. That means \(\{B^\xi : \xi < 2^c\}\) is the independent family of Bernstein sets.
Let for $\alpha < c$, $g_\alpha : B_\alpha \to \mathbb{C}$ (or \mathbb{R}) be a non-zero function. Let us put

$$f_\xi(x) = \begin{cases} g_\alpha(x) & \text{, when } x \in B_\alpha \text{ and } \alpha \in \mathbb{N}_\xi \\ 0 & \text{otherwise.} \end{cases}$$

Then the family $\{f_\xi : \xi < 2^c\}$ is linearly independent.
Remark

Let P be any non-zero polynomial without constant term and consider the function $P(f_{\xi_1}, ..., f_{\xi_n})$. Let

$$P_s(x) = P(\varepsilon_1 \cdot x, ..., \varepsilon_n \cdot x), s = (\varepsilon_1, ..., \varepsilon_n)$$

Let us observe here that the function $P(f_{\xi_1}, ..., f_{\xi_n})|_{B_\alpha}$ for any $\alpha \in \mathcal{N}_{\xi_1} \cap ... \cap \mathcal{N}_{\xi_n}$ is of the form

$$P(\varepsilon_1 \cdot g_\alpha, ..., \varepsilon_n \cdot g_\alpha) = P_s(g_\alpha)$$
Remark

Then we have two possibilities.

(i) Either at least one of the functions $P_s(x)$ for $s \in \{0, 1\}^n$ is a non-zero polynomial of one variable. If P_s is non-zero, where $s = (\varepsilon_1, \ldots, \varepsilon_n)$, then the function $P(f_{\xi_1}, \ldots, f_{\xi_n})$ is non-zero on the Bernstein set of the form

$$(B_{\xi_1})^{\varepsilon_1} \cap (B_{\xi_2})^{\varepsilon_2} \cap \ldots \cap (B_{\xi_n})^{\varepsilon_n}.$$

(ii) Or every function of a type $P_s(x)$ is a zero function, and then $P(f_{\xi_1}, \ldots, f_{\xi_n})$ is zero function.

Span the algebra by the functions $\{f_{\xi} : \xi < 2^c\}$ and we get an algebra of 2^c many generators.
Remark

Then we have two possibilities.

(i) Either at least one of the functions $P_s(x)$ for $s \in \{0, 1\}^n$ is a non-zero polynomial of one variable. If P_s is non-zero, where $s = (\varepsilon_1, ..., \varepsilon_n)$, then the function $P(f_{\xi_1}, ..., f_{\xi_n})$ is non-zero on the Bernstein set of the form

$$(B^{\xi_1})^{\varepsilon_1} \cap (B^{\xi_2})^{\varepsilon_2} \cap ... \cap (B^{\xi_n})^{\varepsilon_n}.$$

(ii) Or every function of a type $P_s(x)$ is a zero function, and then $P(f_{\xi_1}, ..., f_{\xi_n})$ is zero function.

Span the algebra by the functions $\{f_{\xi} : \xi < 2^c\}$ and we get an algebra of 2^c many generators.
Remark

Then we have two possibilities.

(i) Either at least one of the functions $P_s(x)$ for $s \in \{0, 1\}^n$ is a non-zero polynomial of one variable. If P_s is non-zero, where $s = (\varepsilon_1, \ldots, \varepsilon_n)$, then the function $P(f_{\xi_1}, \ldots, f_{\xi_n})$ is non-zero on the Bernstein set of the form

$$(B_{\xi_1})^{\varepsilon_1} \cap (B_{\xi_2})^{\varepsilon_2} \cap \ldots \cap (B_{\xi_n})^{\varepsilon_n}.$$

(ii) Or every function of a type $P_s(x)$ is a zero function, and then $P(f_{\xi_1}, \ldots, f_{\xi_n})$ is zero function.

Span the algebra by the functions $\{f_\xi : \xi < 2^c\}$ and we get an algebra of 2^c many generators.
Remark

Then we have two possibilities.

(i) Either at least one of the functions $P_s(x)$ for $s \in \{0, 1\}^n$ is a non-zero polynomial of one variable. If P_s is non-zero, where $s = (\varepsilon_1, ..., \varepsilon_n)$, then the function $P(f_{\xi_1}, ..., f_{\xi_n})$ is non-zero on the Bernstein set of the form

$$\left(B^{\xi_1} \right)^{\varepsilon_1} \cap \left(B^{\xi_2} \right)^{\varepsilon_2} \cap ... \cap \left(B^{\xi_n} \right)^{\varepsilon_n}.$$

(ii) Or every function of a type $P_s(x)$ is a zero function, and then $P(f_{\xi_1}, ..., f_{\xi_n})$ is zero function.

Span the algebra by the functions $\{ f_{\xi} : \xi < 2^\xi \}$ and we get an algebra of 2^ξ many generators.
\(\mathbb{K} \) is \(\mathbb{R} \) or \(\mathbb{C} \). The function \(f : \mathbb{K} \rightarrow \mathbb{K} \) is called:

- perfectly everywhere surjective (\(\mathcal{PES}(\mathbb{K}) \)) iff for every perfect set \(P \subseteq \mathbb{K} \), \(f(P) = \mathbb{K} \);
- strongly everywhere surjective (\(\mathcal{SES}(\mathbb{K}) \)) iff it takes every real or complex value \(c \) times on any interval.

The real function is an everywhere discontinuous Darboux function (\(\mathcal{EDD}(\mathbb{R}) \)) iff it is nowhere continuous and maps connected sets to connected sets.

Proposition

Let \(B \subseteq \mathbb{K} \) be a Bernstein set. There exist a function \(f \in \mathcal{PES}(\mathbb{K}) \) that is 0 on the set \(B^0 \).
K is R or C. The function \(f : K \to K \) is called:

- perfectly everywhere surjective (\(\mathcal{PES}(K) \)) iff for every perfect set \(P \subseteq K \), \(f(P) = K \);
- strongly everywhere surjective (\(\mathcal{SES}(K) \)) iff it takes every real or complex value \(c \) times on any interval.

The real function is an everywhere discontinuous Darboux function (\(\mathcal{EDD}(\mathbb{R}) \)) iff it is nowhere continuous and maps connected sets to connected sets.

Proposition

Let \(B \subseteq K \) be a Bernstein set. There exist a function \(f \in \mathcal{PES}(K) \) that is 0 on the set \(B^0 \).
K is \(\mathbb{R} \) or \(\mathbb{C} \). The function \(f : K \to K \) is called:

- perfectly everywhere surjective (\(\text{PES}(K) \)) iff for every perfect set \(P \subseteq K \), \(f(P) = K \);

- strongly everywhere surjective (\(\text{SES}(K) \)) iff it takes every real or complex value \(c \) times on any interval.

The real function is an everywhere discontinuous Darboux function (\(\text{EDD}(\mathbb{R}) \)) iff it is nowhere continuous and maps connected sets to connected sets.

Proposition

Let \(B \subseteq K \) be a Bernstein set. There exist a function \(f \in \text{PES}(K) \) that is 0 on the set \(B^0 \).
The function \(f : K \rightarrow K \) is called:

- perfectly everywhere surjective (\(\mathcal{PES}(K) \)) iff for every perfect set \(P \subseteq K, f(P) = K \);
- strongly everywhere surjective (\(\mathcal{SES}(K) \)) iff it takes every real or complex value \(c \) times on any interval.

The real function is an everywhere discontinuous Darboux function (\(\mathcal{EDD}(\mathbb{R}) \)) iff it is nowhere continuous and maps connected sets to connected sets.

Proposition

Let \(B \subseteq K \) be a Bernstein set. There exist a function \(f \in \mathcal{PES}(K) \) that is 0 on the set \(B^0 \).
K is \mathbb{R} or \mathbb{C}. The function $f : K \to K$ is called:

- perfectly everywhere surjective ($PES(K)$) iff for every perfect set $P \subseteq K$, $f(P) = K$;
- strongly everywhere surjective ($SES(K)$) iff it takes every real or complex value c times on any interval.

The real function is an everywhere discontinuous Darboux function ($EDD(\mathbb{R})$) iff it is nowhere continuous and maps connected sets to connected sets.

Proposition

Let $B \subseteq K$ be a Bernstein set. There exist a function $f \in PES(K)$ that is 0 on the set B^0.
proof (Sketch)

Let $B \subseteq \mathbb{K}$ be a Bernstein set and $\{P_\alpha : \alpha < c\}$ an enumeration of all perfect sets in \mathbb{K} and $\mathbb{K} = \{y_\beta : \beta < c\}$.

Then for every $\alpha < c$ cardinality of $B_\alpha = P_\alpha \cap B$ is continuum. Ennumerate a product $\{B_\alpha : \alpha < c\} \times \{y_\beta : \beta < c\}$ as $\{A_\gamma : \gamma < c\}$, where $A_\gamma = (B_\gamma, y_\gamma)$.

Choose $x_0 \in B_0$ and put $f(x_0) = y_0$.

Assume that for some $\zeta < c$ the points $\{x_\eta : \eta < \zeta\}$ were chosen satisfying $x_\eta \in B_\eta \setminus \{x_\xi : \xi < c\}$ for every $\eta < \zeta$ with $f(x_\eta) = y_\eta$ for every $\eta < \zeta$.

Put $X = \{x_\eta : \eta < \zeta\}$ then $|X| < c$. So there exists a point $x_\zeta \in B_\zeta \setminus X$ and define $f(x_\zeta) = y_\zeta$. By putting $f(x) = 0$ for every $x \in \mathbb{K} \setminus \{x_\xi : \xi < c\}$ we are done.
proof (Sketch)

Let $B \subseteq \mathbb{K}$ be a Bernstein set and $\{P_\alpha : \alpha < c\}$ an enumeration of all perfect sets in \mathbb{K} and $\mathbb{K} = \{y_\beta : \beta < c\}$.

Then for every $\alpha < c$ cardinality of $B_\alpha = P_\alpha \cap B$ is continuum.

Enumerate a product $\{B_\alpha : \alpha < c\} \times \{y_\beta : \beta < c\}$ as $\{A_\gamma : \gamma < c\}$, where $A_\gamma = (B_\gamma, y_\gamma)$.

Choose $x_0 \in B_0$ and put $f(x_0) = y_0$.

Assume that for some $\zeta < c$ the points $\{x_\eta : \eta < \zeta\}$ were chosen satisfying $x_\eta \in B_\eta \setminus \{x_\xi : \xi < c\}$ for every $\eta < \zeta$ with $f(x_\eta) = y_\eta$ for every $\eta < \zeta$.

Put $X = \{x_\eta : \eta < \zeta\}$ then $|X| < c$. So there exists a point $x_\zeta \in B_\zeta \setminus X$ and define $f(x_\zeta) = y_\zeta$. By putting $f(x) = 0$ for every $x \in \mathbb{K} \setminus \{x_\xi : \xi < c\}$ we are done.
proof (Sketch)

Let $B \subseteq \mathbb{K}$ be a Bernstein set and $\{P_\alpha : \alpha < c\}$ an enumeration of all perfect sets in \mathbb{K} and $\mathbb{K} = \{y_\beta : \beta < c\}$. Then for every $\alpha < c$ cardinality of $B_\alpha = P_\alpha \cap B$ is continuum. Enumerate a product $\{B_\alpha : \alpha < c\} \times \{y_\beta : \beta < c\}$ as $\{A_\gamma : \gamma < c\}$, where $A_\gamma = (B_\gamma, y_\gamma)$.

Choose $x_0 \in B_0$ and put $f(x_0) = y_0$. Assume that for some $\zeta < c$ the points $\{x_\eta : \eta < \zeta\}$ were chosen satisfying $x_\eta \in B_\eta \setminus \{x_\xi : \xi < c\}$ for every $\eta < \zeta$ with $f(x_\eta) = y_\eta$ for every $\eta < \zeta$.

Put $X = \{x_\eta : \eta < \zeta\}$ then $|X| < c$. So there exists a point $x_\zeta \in B_\zeta \setminus X$ and define $f(x_\zeta) = y_\zeta$. By putting $f(x) = 0$ for every $x \in \mathbb{K} \setminus \{x_\xi : \xi < c\}$ we are done.
proof (Sketch)

Let $B \subseteq \mathbb{K}$ be a Bernstein set and $\{P_\alpha : \alpha < c\}$ an enumeration of all perfect sets in \mathbb{K} and $\mathbb{K} = \{y_\beta : \beta < c\}$.

Then for every $\alpha < c$ cardinality of $B_\alpha = P_\alpha \cap B$ is continuum.

Enumerate a product $\{B_\alpha : \alpha < c\} \times \{y_\beta : \beta < c\}$ as $\{A_\gamma : \gamma < c\}$, where $A_\gamma = (B_\gamma, y_\gamma)$.

Choose $x_0 \in B_0$ and put $f(x_0) = y_0$.

Assume that for some $\zeta < c$ the points $\{x_\eta : \eta < \zeta\}$ were chosen satisfying $x_\eta \in B_\eta \setminus \{x_\xi : \xi < c\}$ for every $\eta < \zeta$ with $f(x_\eta) = y_\eta$ for every $\eta < \zeta$.

Put $X = \{x_\eta : \eta < \zeta\}$ then $|X| < c$. So there exists a point $x_\zeta \in B_\zeta \setminus X$ and define $f(x_\zeta) = y_\zeta$. By putting $f(x) = 0$ for every $x \in \mathbb{K} \setminus \{x_\xi : \xi < c\}$ we are done.
proof (Sketch)

Let $B \subseteq \mathbb{K}$ be a Bernstein set and $\{P_\alpha : \alpha < c\}$ an enumeration of all perfect sets in \mathbb{K} and $\mathbb{K} = \{y_\beta : \beta < c\}$.
Then for every $\alpha < c$ cardinality of $B_\alpha = P_\alpha \cap B$ is continuum.
Enumerate a product $\{B_\alpha : \alpha < c\} \times \{y_\beta : \beta < c\}$ as $\{A_\gamma : \gamma < c\}$, where $A_\gamma = (B_\gamma, y_\gamma)$.
Choose $x_0 \in B_0$ and put $f(x_0) = y_0$.
Assume that for some $\zeta < c$ the points $\{x_\eta : \eta < \zeta\}$ were chosen satisfying $x_\eta \in B_\eta \setminus \{x_\xi : \xi < c\}$ for every $\eta < \zeta$ with $f(x_\eta) = y_\eta$ for every $\eta < \zeta$.
Put $X = \{x_\eta : \eta < \zeta\}$ then $|X| < c$. So there exists a point $x_\zeta \in B_\zeta \setminus X$ and define $f(x_\zeta) = y_\zeta$. By putting $f(x) = 0$ for every $x \in \mathbb{K} \setminus \{x_\xi : \xi < c\}$ we are done.
proof (Sketch)

Let $B \subseteq \mathbb{K}$ be a Bernstein set and $\{P_\alpha : \alpha < c\}$ an enumeration of all perfect sets in \mathbb{K} and $\mathbb{K} = \{y_\beta : \beta < c\}$.

Then for every $\alpha < c$ cardinality of $B_\alpha = P_\alpha \cap B$ is continuum. Enumerate a product $\{B_\alpha : \alpha < c\} \times \{y_\beta : \beta < c\}$ as $\{A_\gamma : \gamma < c\}$, where $A_\gamma = (B_\gamma, y_\gamma)$.

Choose $x_0 \in B_0$ and put $f(x_0) = y_0$.

Assume that for some $\zeta < c$ the points $\{x_\eta : \eta < \zeta\}$ were chosen satisfying $x_\eta \in B_\eta \setminus \{x_\xi : \xi < c\}$ for every $\eta < \zeta$ with $f(x_\eta) = y_\eta$ for every $\eta < \zeta$.

Put $X = \{x_\eta : \eta < \zeta\}$ then $|X| < c$. So there exists a point $x_\zeta \in B_\zeta \setminus X$ and define $f(x_\zeta) = y_\zeta$. By putting $f(x) = 0$ for every $x \in \mathbb{K} \setminus \{x_\xi : \xi < c\}$ we are done.
The following theorems hold and the proof is using a family of independent Bernstein sets.

Theorem
The set $PES(\mathbb{C})$ is 2^c-algebrable.

Theorem
The set $SES(\mathbb{C}) \setminus PES(\mathbb{C})$ is 2^c-algebrable.

Theorem
The set $EDD(\mathbb{R})$ is 2^c-algebrable.
The following theorems hold and the proof is using a family of independent Bernstein sets.

Theorem
The set $\mathcal{PES}(\mathbb{C})$ is 2^c-algebrable.

Theorem
The set $\mathcal{SES}(\mathbb{C}) \setminus \mathcal{PES}(\mathbb{C})$ is 2^c-algebrable.

Theorem
The set $\mathcal{EDD}(\mathbb{R})$ is 2^c-algebrable.
The following theorems hold and the proof is using a family of independent Berstein sets.

Theorem
The set \(\mathcal{PES}(\mathbb{C}) \) is \(2^c \)-algebrable.

Theorem
The set \(\mathcal{SES}(\mathbb{C}) \setminus \mathcal{PES}(\mathbb{C}) \) is \(2^c \)-algebrable.

Theorem
The set \(\mathcal{EDD}(\mathbb{R}) \) is \(2^c \)-algebrable.
The following theorems hold and the proof is using a family of independent Bernstein sets.

Theorem
The set $\mathcal{PES}(\mathbb{C})$ is 2^c-algebrable.

Theorem
The set $\mathcal{SES}(\mathbb{C}) \setminus \mathcal{PES}(\mathbb{C})$ is 2^c-algebrable.

Theorem
The set $\mathcal{EDD}(\mathbb{R})$ is 2^c-algebrable.
The set $\mathcal{EDF}(\mathbb{R})$ is the set of all nowhere continuous real functions with $|f(\mathbb{R})| < \omega$.

$\mathcal{EDC}(\mathbb{R})$ is the set of all nowhere continuous compact-to-compact functions.

Theorem

The set $\mathcal{EDF}(\mathbb{R})$ is $2^\mathfrak{c}$-algebrable but it is not strongly 1-algebrable.

Corollary

The set $\mathcal{EDC}(\mathbb{R})$ is $2^\mathfrak{c}$-algebrable.
$\mathcal{EDF}(\mathbb{R})$ is the set of all nowhere continuous real functions with $|f(\mathbb{R})| < \omega$.
$\mathcal{EDC}(\mathbb{R})$ is the set of all nowhere continuous compact-to-compact functions.

Theorem
The set $\mathcal{EDF}(\mathbb{R})$ is 2^c-algebrable but it is not strongly 1-algebrable.

Corollary
The set $\mathcal{EDC}(\mathbb{R})$ is 2^c-algebrable.
$\mathcal{EDF}(\mathbb{R})$ is the set of all nowhere continuous real functions with $|f(\mathbb{R})| < \omega$.

$\mathcal{EDC}(\mathbb{R})$ is the set of all nowhere continuous compact-to-compact functions.

Theorem

The set $\mathcal{EDF}(\mathbb{R})$ is $2^\mathfrak{c}$-algebrable but it is not strongly 1-algebrable.

Corollary

The set $\mathcal{EDC}(\mathbb{R})$ is $2^\mathfrak{c}$-algebrable.
Let $C \subsetneq \mathbb{R}$ be a fixed closed subset of \mathbb{R}. We consider functions $f : \mathbb{R} \to \mathbb{R}$ that are continuous only in the points of C.

Theorem

The set of all functions $f : \mathbb{R} \to \mathbb{R}$ that are continuous only in the points of C is 2^c-algebraizable.
Let $C \subseteq \mathbb{R}$ be a fixed closed subset of \mathbb{R}. We consider functions $f : \mathbb{R} \to \mathbb{R}$ that are continuous only in the points of C.

Theorem

The set of all functions $f : \mathbb{R} \to \mathbb{R}$ that are continuous only in the points of C is 2^c-algebrable.
proof (Sketch)

Let \([1, 2] = \{ r_\alpha : \alpha < c \}\) and
\(g : \mathbb{R} \to \mathbb{R}\) be such that \(g(x) = d(x, C)\). Then \(g\) is zero only on the set \(C\).

Put \(g_\alpha(x) = r_\alpha \cdot g(x)\) and \(f_\xi\) as in the general method.

If each function \(P_s(x)\) is zero then \(P(f_{\xi_1}, \ldots, f_{\xi_n})\) is zero function.
If \(P_{s_0}(x)\) is non-zero for some \(s_0 \in \{0, 1\}^n\). Then \(P(f_{\xi_1}, \ldots, f_{\xi_n})\) is continuous in any point of \(C\) and suppose that is continuous in a point \(x_0 \not\in C\).
proof (Sketch)

Let \([1, 2] = \{r_\alpha : \alpha < c\}\) and \(g : \mathbb{R} \to \mathbb{R}\) be such that \(g(x) = d(x, C)\). Then \(g\) is zero only on the set \(C\).

Put \(g_\alpha(x) = r_\alpha \cdot g(x)\) and \(f_\xi\) as in the general method.

If each function \(P_s(x)\) is zero then \(P(f_{\xi_1}, ..., f_{\xi_n})\) is zero function.

If \(P_{s_0}(x)\) is non-zero for some \(s_0 \in \{0, 1\}^n\). Then \(P(f_{\xi_1}, ..., f_{\xi_n})\) is continuous in any point of \(C\) and suppose that is continuous in a point \(x_0 \notin C\).
proof (Sketch)

Let $[1, 2] = \{ r_\alpha : \alpha < c \}$ and $g : \mathbb{R} \to \mathbb{R}$ be such that $g(x) = d(x, C)$. Then g is zero only on the set C.

Put $g_\alpha(x) = r_\alpha \cdot g(x)$ and f_ξ as in the general method.

If each function $P_s(x)$ is zero then $P(f_{\xi_1}, ..., f_{\xi_n})$ is zero function.

If $P_{s_0}(x)$ is non-zero for some $s_0 \in \{0, 1\}^n$. Then $P(f_{\xi_1}, ..., f_{\xi_n})$ is continuous in any point of C and suppose that is continuous in a point $x_0 \notin C$.
proof (Sketch)

Let $[1, 2] = \{r_\alpha : \alpha < c\}$ and $g : \mathbb{R} \rightarrow \mathbb{R}$ be such that $g(x) = d(x, C)$. Then g is zero only on the set C.

Put $g_\alpha(x) = r_\alpha \cdot g(x)$ and f_ξ as in the general method.

If each function $P_s(x)$ is zero then $P(f_{\xi_1}, ..., f_{\xi_n})$ is zero function.

If $P_{s_0}(x)$ is non-zero for some $s_0 \in \{0, 1\}^n$. Then $P(f_{\xi_1}, ..., f_{\xi_n})$ is continuous in any point of C and suppose that is continuous in a point $x_0 \notin C$.
proof continued

$P(f_{\xi_1}, \ldots, f_{\xi_n})$ is zero on the Bernstein set

$$\bigcup_{\alpha \in N_0^{\xi_1} \cap N_0^{\xi_2} \cap \ldots \cap N_0^{\xi_n}} B_\alpha.$$

For every $\beta \in N_0^{\xi_1} \cap N_0^{\xi_2} \cap \ldots \cap N_0^{\xi_n}$ there exist a sequence $(x_n)_{n \in \mathbb{N}} \subseteq B_\beta$ such that $x_n \to x_0$. Hence by the continuity of polynomial of one variable we get that $P_{s_0}(g_\beta(x_0)) = 0$ for any such β.

Since for $\alpha \neq \beta$ we have that $g_\alpha(x_0) = r_\alpha \cdot g(x_0) \neq r_\beta \cdot g(x_0) = g_\beta(x_0)$ so $P_{s_0}(g_\beta(x_0))$ as a polynomial of one variable β, that has infinitely many zeros, is zero function - contradiction.
$P(f_{\xi_1}, \ldots, f_{\xi_n})$ is zero on the Bernstein set

$$\bigcup_{\alpha \in N_{\xi_1}^0 \cap N_{\xi_2}^0 \cap \ldots \cap N_{\xi_n}^0} B_\alpha.$$

For every $\beta \in N_{\xi_1}^{\varepsilon_1} \cap N_{\xi_2}^{\varepsilon_2} \cap \ldots \cap N_{\xi_n}^{\varepsilon_n}$ there exist a sequence $(x_n)_{n \in \mathbb{N}} \subseteq B_\beta$ such that $x_n \to x_0$. Hence by the continuity of polynomial of one variable we get that $P_{s_0}(g_\beta(x_0)) = 0$ for any such β.

Since for $\alpha \neq \beta$ we have that $g_\alpha(x_0) = r_\alpha \cdot g(x_0) \neq r_\beta \cdot g(x_0) = g_\beta(x_0)$ so $P_{s_0}(g_\beta(x_0))$ as a polynomial of one variable β, that has infinitely many zeros, is zero function - contradiction.
Proof continued

\[P(f_{\xi_1}, \ldots, f_{\xi_n}) \] is zero on the Bernstein set

\[\bigcup_{\alpha \in N_{\xi_1}^0 \cap N_{\xi_2}^0 \cap \ldots \cap N_{\xi_n}^0} B_\alpha. \]

For every \(\beta \in N_{\xi_1}^{\varepsilon_1} \cap N_{\xi_2}^{\varepsilon_2} \cap \ldots \cap N_{\xi_n}^{\varepsilon_n} \) there exist a sequence \((x_n)_{n \in \mathbb{N}} \subseteq B_\beta \) such that \(x_n \to x_0 \). Hence by the continuity of polynomial of one variable we get that \(P_{s_0}(g_\beta(x_0)) = 0 \) for any such \(\beta \).

Since for \(\alpha \neq \beta \) we have that

\[g_\alpha(x_0) = r_\alpha \cdot g(x_0) \neq r_\beta \cdot g(x_0) = g_\beta(x_0) \]

so \(P_{s_0}(g_\beta(x_0)) \) as a polynomial of one variable \(\beta \), that has infinitely many zeros, is zero function - contradiction.
Question 1
Is the set $\mathcal{PES}(\mathbb{C})$ strongly 2^c-algebrable? (answered 3 days ago)

Question 2
Is there a function $f \in \mathcal{EDC}(\mathbb{R})$ that has infinitely many values on each interval?

Question 3
Is the set $\mathcal{EDC}(\mathbb{R})$ strongly 1-algebrable (strongly c-algebrable, strongly 2^c-algebrable)?
Question 1
Is the set $\mathcal{PES}(\mathbb{C})$ strongly 2^c-algebrable? (answered 3 days ago)

Question 2
Is there a function $f \in \mathcal{EDC}(\mathbb{R})$ that has infinitely many values on each interval?

Question 3
Is the set $\mathcal{EDC}(\mathbb{R})$ strongly 1-algebrable (strongly c-algebrable, strongly 2^c-algebrable)?
Question 1
Is the set $\mathcal{PES}(\mathbb{C})$ strongly 2^c-algebrable? (answered 3 days ago)

Question 2
Is there a function $f \in \mathcal{EDC}(\mathbb{R})$ that has infinitely many values on each interval?

Question 3
Is the set $\mathcal{EDC}(\mathbb{R})$ strongly 1-algebrable (strongly c-algebrable, strongly 2^c-algebrable)?
Question 1
Is the set $\mathcal{PES}(\mathbb{C})$ strongly 2^c-algebrable? (answered 3 days ago)

Question 2
Is there a function $f \in \mathcal{EDC}(\mathbb{R})$ that has infinitely many values on each interval?

Question 3
Is the set $\mathcal{EDC}(\mathbb{R})$ strongly 1-algebrable (strongly c-algebrable, strongly 2^c-algebrable)?

Thank you for your attention :}