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Introduction

algebrability
Assume that B is a linear algebra, that is, a linear space being also
an algebra. E is x—algebrable if E U {0} contains a k-generated

algebra, i.e.
P(x1,...,xn) € E or P(x1,...,x,) = 0 for distinct generators
X1, ..., Xp and any polynomials P.
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free linear algebras

A is a k-generated free algebra, if there exists a subset
X = {x4 : @ < Kk} of A such that any function f from X to some

algebra A’, can be uniquely extended to a homomorphism from A
into A'.
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free linear algebras

A is a k-generated free algebra, if there exists a subset

X = {x4 : @ < Kk} of A such that any function f from X to some
algebra A’, can be uniquely extended to a homomorphism from A
into A”. A subset X = {x, : @ < K} of a commutative algebra B
generates a free sub-algebra A if and only if for each polynomial P
and any Xa,, Xags -5 Xa, We have P(Xq,, Xays -5 Xa,) = 0 if and only

if P=0.
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Introduction

free linear algebras

A is a k-generated free algebra, if there exists a subset

X = {x4 : @ < Kk} of A such that any function f from X to some
algebra A’, can be uniquely extended to a homomorphism from A
into A”. A subset X = {x, : @ < K} of a commutative algebra B
generates a free sub-algebra A if and only if for each polynomial P
and any Xa,, Xags -5 Xa, We have P(Xq,, Xays -5 Xa,) = 0 if and only
if P=0.

strong algebrability

A subset E of a commutative linear algebra B is strongly
r—algebrable, if there exists a k-generated free algebra A contained
in E U{0}.
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Proposition

The set cgg is w—algebrable in ¢y but is not strongly 1-algebrable.
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Proposition

The set cgg is w—algebrable in ¢y but is not strongly 1-algebrable.

The set ¢ \ J{/P : p > 1} is densely strongly c—algebrable in ¢.

The set of all sequences in /°° which set of limits points is
homeomorphic to the Cantor set is comeager and strongly
c-algebrable.
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Sierpifiski-Zygmund functions

A function f : R — R such that, for any set Z C R of cardinality
the continuum, the restriction f|7 is not a Borel map is called
Sierpinski-Zygmund function.
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A function f : R — R such that, for any set Z C R of cardinality
the continuum, the restriction f|7 is not a Borel map is called
Sierpinski-Zygmund function.

with D. Pellegrino and J. B. Seoane-Septilveda

The set of Sierpinski-Zygmund functions is strongly k-algebrable,
provided there exists a family of x almost disjoint subsets of ¢.
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Sierpifiski-Zygmund functions

A function f : R — R such that, for any set Z C R of cardinality
the continuum, the restriction f|7 is not a Borel map is called
Sierpinski-Zygmund function.

with D. Pellegrino and J. B. Seoane-Septilveda

The set of Sierpinski-Zygmund functions is strongly k-algebrable,
provided there exists a family of x almost disjoint subsets of ¢.

lemma

Let P be a family of non-zero real polynomials with no constant
term and let X be a subset of R both of cardinality less than c.
Then there exists set Y = {y¢ : £ < ¢} such that

P(ye, Ye,s-- -5 Ye,) & X for any n, any polynomial P € P and any
distinct ordinals &; < «¢.
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Sierpifiski-Zygmund functions

Proof. Enumerate Borel functions {g, : @ < ¢} and
R = {xq:a <c}. Let {P, : a < ¢} denote non-zero polynomials
without constant term.
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Sierpifiski-Zygmund functions

Proof. Enumerate Borel functions {g, : @ < ¢} and

R = {xq:a <c}. Let {P, : a < ¢} denote non-zero polynomials
without constant term. At the stage o we use Lemma for

X ={g\(xa) : A< a} and P :={Ps : 8 < a} to define Y,.
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cardinality ¢. For any ¢ < k let {{(£) : £ < ¢} be an increasing
enumeration of N¢ and define f; : R — R by f¢(xq) = Yé(a) Let
(1 <(y<...<(, <K, Pgbea polynomial in n variables, g, be
a Borel function and Z be any subset of R of cardinality ¢. There
is £ < ¢ such that N¢ , Ne,, ..., N are disjoint above &.

Szymon Gigb Strong algebrability of series and sequences



Sierpifiski-Zygmund functions

Proof. Enumerate Borel functions {g, : @ < ¢} and

R = {xq:a <c}. Let {P, : a < ¢} denote non-zero polynomials
without constant term. At the stage o we use Lemma for

X ={g\(xa) : A< a} and P :={Ps: B < a} to define Y. Let
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cardinality ¢. For any ¢ < k let {{(£) : £ < ¢} be an increasing
enumeration of N¢ and define f; : R — R by f¢(xq) = Yé(a) Let
(1 <(y<...<(, <K, Pgbea polynomial in n variables, g, be
a Borel function and Z be any subset of R of cardinality ¢. There
is £ < ¢ such that N, Ne,, ..., N are disjoint above £. Since Z
is of cardinality ¢, there is a < ¢ with a > max{f3,~,&} and

Xo € Z.
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Xo € Z. Since « is greater than &, then fr (xa), e, (Xa), - - -5 fe, (Xa)
are distinct points of Y.
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Proof. Enumerate Borel functions {g, : @ < ¢} and

R = {xq:a <c}. Let {P, : a < ¢} denote non-zero polynomials
without constant term. At the stage o we use Lemma for

X ={g\(xa) : A< a} and P :={Ps: B < a} to define Y. Let
{N¢ : ¢ < K} be a set of almost disjoint subsets of ¢ each of
cardinality ¢. For any ¢ < k let {{(£) : £ < ¢} be an increasing
enumeration of N¢ and define f; : R — R by f¢(xq) = Yé(a) Let
(1 <(y<...<(, <K, Pgbea polynomial in n variables, g, be
a Borel function and Z be any subset of R of cardinality ¢. There
is £ < ¢ such that N, Ne,, ..., N are disjoint above £. Since Z
is of cardinality ¢, there is a < ¢ with a > max{f3,~,&} and

Xo € Z. Since « is greater than &, then fr (xa), e, (Xa), - - -5 fe, (Xa)
are distinct points of Y,. Since « is greater than 8 and +, by
construction Pg(fe,, fe,, ..., f; ) differs from g, at the point

Xo € Z. Therefore Pg(fe ,f;,, ..., f ) is a Sierpifiski-Zygmund
function.
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Sierpifiski-Zygmund functions

corollary

If one of the following set-theoretical assumption holds

@ Martin's Axiom, or
e CH or,
@ ¢t =2°

then the set of Sierpifiski-Zygmund functions is 2°-algebrable.
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Sierpifiski-Zygmund functions

questions

1. Is it necessary to add any additional hypothesis to ZFC in order
to obtain 2¢-algebrability (or even 2°-lineability) of the set of
Sierpinski-Zygmund functions?
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Sierpifiski-Zygmund functions

questions

1. Is it necessary to add any additional hypothesis to ZFC in order
to obtain 2¢-algebrability (or even 2°-lineability) of the set of
Sierpinski-Zygmund functions?

2. Can one prove in ZFC that there is free subalgebra of 2°
generators in RR?YES.

3. Is it provable in ZFC that there is an almost disjoint family of
subsets of ¢ of cardinality 2¢7
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Sierpifiski-Zygmund functions

RR contains a free linear algebra of 2° generators.
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RR contains a free linear algebra of 2° generators.

Proof: Let

P=JRxa,. . xa] x 0 = {(Pa,pa) : @ < c}.
neN
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RR contains a free linear algebra of 2° generators.

Proof: Let

P=JRxa,. . xa] x 0 = {(Pa,pa) : @ < c}.
neN

For a choose a vector X, € R” such that P,(X,) # 0.
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RR contains a free linear algebra of 2° generators.

Proof: Let

P=JRxa,. . xa] x 0 = {(Pa,pa) : @ < c}.
neN

For a choose a vector X, € R" such that P,(X,) # 0. p, € n*
admits a continuous extension p, : Sw — n.Now to each ultrafilter
U € Pw assign the function f; : ¢ — R defined by the formula

We claim that the family F = {fy/}1/c5., C R" is algebraically
independent.
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Sierpifiski-Zygmund functions

RR contains a free linear algebra of 2° generators.

Proof: Let

P=JRxa,. . xa] x 0 = {(Pa,pa) : @ < c}.
neN

For a choose a vector X, € R" such that P,(X,) # 0. p, € n*
admits a continuous extension p, : Sw — n.Now to each ultrafilter
U € Pw assign the function f; : ¢ — R defined by the formula

We claim that the family F = {fy/}1/c5., C R" is algebraically
independent.We need to check that P(fy,,...,fy,) # 0 for any
non-zero polynomial P(xi,...,x,) € Ri[x1,...,x,] and any
pairwise distinct ultrafilters Uy, ..., U, € Sw.



Sierpifiski-Zygmund functions

RR contains a free linear algebra of 2¢ generators.
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Sierpifiski-Zygmund functions

RR contains a free linear algebra of 2¢ generators.

Proof continued: Find a partition w = U; U --- U U, such that
Ui eU; ifand only if i = j.
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Sierpifiski-Zygmund functions

RR contains a free linear algebra of 2¢ generators.

Proof continued: Find a partition w = U; U --- U U, such that
Ui € UY; if and only if i = j.This partition determines p:w — n
such that p~1(i) = U; for every i € n. Then its extension

p : Bw — n has the property p(U;) = i for every i € n.
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Sierpifiski-Zygmund functions

RR contains a free linear algebra of 2¢ generators.

Proof continued: Find a partition w = U; U --- U U, such that

Ui € UY; if and only if i = j.This partition determines p:w — n
such that p~1(i) = U; for every i € n. Then its extension

p : Bw — n has the property p(U;) = i for every i € n.The function
P(fu,...,fu,):2“ — R is not equal to zero at the ordinal « as

P(ﬁ/ﬁa-'-)ﬁ/{n)( ) P(fi/ﬁ( ) ”ﬁ’{"(a)):
= Pa(%a 0 BaUh), - %o © Pua(Un)) =
= PalZa(1). -, Za(n)) = Pa(%a) # 0

by the choice of the vector X,.
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Sierpifiski-Zygmund functions

Using a this method we obtain

PES(C) is strongly 2°¢ algebrable.
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Using a this method we obtain

PES(C) is strongly 2°¢ algebrable.

SES(C) \ PES(C) is strongly 2° algebrable.
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Sierpifiski-Zygmund functions

Using a this method we obtain

PES(C) is strongly 2°¢ algebrable.

SES(C) \ PES(C) is strongly 2° algebrable.

Family of all non-measurable functions is strongly 2 algebrable.
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