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Theorem

Theorem (Friedman, H., 2011)

(GCH) Assume k < X are regular and k is both \-supercompact and
ATt_tall. Then there is a cofinality-preserving forcing P such that in V7,
K is still A\-supercompact, GCH holds in [k, \), but fails at \.

R. Honzik (Charles University) Supercompacts and the continuum Hejnice, February 2012 2/12



Theorem

Theorem (Friedman, H., 2011)

(GCH) Assume k < X are regular and k is both \-supercompact and
Ntt-tall. Then there is a cofinality-preserving forcing P such that in V',
K is still A\-supercompact, GCH holds in [k, \), but fails at \.

A is regular can be a successor, even a successor of a singular cardinal: for
more concreteness, you may assume \ = 1<+,
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Why supercompact cardinals

o Consequences for cardinal arithmetic.

For instance if x is A-supercompact and GCH fails at some « € [k, A],
then it fails unboundedly often below k.

If  is supercompact and GCH fails somewhere above k, then GCH
fails unboundedly often below k.

SCH holds above a supercompact.

o Probably necessary for consistency of interesting combinatorial
statements (such as PFA or MM).

o Lack of inner models — leaves forcing as the only technique. Related
open questions: lower bound in consistency strength; forcing together
L-like properties + and non L-like properties (such as definable
wellorder plus failure of GCH).
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Supercompact and tall cardinals

Assume throughout that x < A\ are regular.
Definition

We say j : V — M with crit point k is a A-supercompact embedding if
A < j(k) and *M C M.
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Supercompact and tall cardinals

Assume throughout that x < A\ are regular.

Definition
We say j : V — M with crit point k is a A-supercompact embedding if
A < j(k) and *M C M.

Definition
We say that an embedding j : V — M with critical point k is A-tall if
A < j(k) and "M C M.

Notice that k is measurable iff k is k-supercompact iff x is x-tall.
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Supercompact and tall cardinals

Lemma

(GCH) Let k < X be regular. Assume that k is A-supercompact and
Att-tall. Then there exists j : V. — M with critical point x such that:

(i) "M C M;
(ii) ATt <j(f'€) < )\-H--I-;
(i) M=\ a)|f:PAxk—V&a< AT}
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Supercompact and tall cardinals

Lemma

(GCH) Let k < X be regular. Assume that k is A-supercompact and
Att-tall. Then there exists j : V. — M with critical point x such that:

(i) "M C M;
(i) ATF < (k) < ATFFS
(i) M= {(F)G'N, Q)| f: PAxk— V&a< AT}

Notice that f's above have domains of size A. In particular if E isin M a
dense open set in j(P) for some forcing P € V, then E can be represented
in V as a certain sequence (D;|i < \) of dense open sets in P.
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Theorem

Theorem

(GCH) Assume k < X are regular and k is both A-supercompact and
MTt-tall. Then there is a cofinality-preserving forcing P such that in V*,
K is still \-supercompact, GCH holds in [k, \), but fails at \.

In order to preserve supercompactness, we look for a forcing P such that:
o Adds new subsets of A and is A-closed.

o Allows an inductive construction of a decreasing sequence of
conditions of length A.

o Works for a successor \.

This points to fusion-based forcings.
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A-Sacks forcing
Assume from now on that A = \'*.
Definition

S(A), A-Sacks forcing, a collection of “naturally defined” perfect trees in

2<* with < equal to inclusion. S(\, ) is the product with supports of size
< A\
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A-Sacks forcing

Assume from now on that A = \'7T.

Definition

S(X), A-Sacks forcing, a collection of “naturally defined” perfect trees in

2<* with < equal to inclusion. S(\, ) is the product with supports of size
<A

“Natural” here means with cof w-splitting.

In our case & = AT, but since we consider a product (not an iteration),
a > 0 can be arbitrary. For i < X and F; C a with |F;| < A we define:

Definition

p<irq<p<q&(VBeF)T2np(B)=""2nq(B).
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A-Sacks forcing

Assume from now on that A = \'7T.

Definition

S(X), A-Sacks forcing, a collection of “naturally defined” perfect trees in

2<* with < equal to inclusion. S(\, ) is the product with supports of size
<A

“Natural” here means with cof w-splitting.

In our case & = AT, but since we consider a product (not an iteration),
a > 0 can be arbitrary. For i < X and F; C a with |F;| < A we define:

Definition

p<irq<p<q&(VBeF)T2np(B)=""2nq(B).

A decreasing sequence under <; r, of length A, a fusion sequence, has
the infimum — dubbed the fusion limit.
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Basic fusion

To check S(\, a) preserves A1, we first fix a dimond sequence:
Definition

Let us fix a ¢ sequence

(Si|i<A&S; Cixi).

For every AC A x A, the set {i < A|S; = AN (i x i)} is stationary.
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Basic fusion

To check S(\, a) preserves A1, we first fix a dimond sequence:
Definition

Let us fix a ¢ sequence

(Si|i<A&S; Cixi).

For every AC A x A, the set {i < A|S; = AN (i x i)} is stationary.
Note that { is implied by GCH at .
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Basic reduction lemma

Lemma (Basic reduction lemma)

Assume p is in S(\, ) and (D;|i < \) is a sequence of dense open sets.
Then there exists a condition q < p, q = fusionlim(p;)i<», such that for

any i < A and any t < q there exists j > i such that the restrictions of
q and t to S; are defined and both are in D;.
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Basic reduction lemma

Lemma (Basic reduction lemma)

Assume p is in S(\, «) and (Dj|i < \) is a sequence of dense open sets.
Then there exists a condition q < p, q = fusionlim(p;);<x, such that for
any i < A and any t < q there exists j > i such that the restrictions of
q and t to S; are defined and both are in D;.

Compare with the case when the cardinal is inaccessible:

Lemma (x inaccessible, or w)

Assume p is in S(k,«) and (Dj|i < k) is a sequence of dense open sets.

Then there exists a condition q < p, q = fusionlimit(p;)i<«, such that if r
is any thinning of q to stems of height i (on a certain < k big subset of

support of q), then r is in D;.

R. Honzik (Charles University) Supercompacts and the continuum Hejnice, February 2012 9/12



Coherent sequences

Definition

Fix p and F = |J F,, C support(p), with |F,| < X for every n < w. Let

i < X have cof w and let (i, | n < w) be cofinal in i. We say that a
sequence (S | n < w) is coherent with respect to p and F if the family
{S;,(8) Tin—1]6(n) < n < w} determines an element of /2 for each § in F.
(Where 0(n) is the least n such that ¢ is in Fp.)
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Coherent sequences

Definition

Fix p and F = |J F, C support(p), with |F,| < A for every n < w. Let

i < X have cof w and let (i, | n < w) be cofinal in /. We say that a
sequence (S; | n < w) is coherent with respect to p and F if the family
{S;,(8) Tin—1]6(n) < n < w} determines an element of /2 for each § in F.
(Where 0(n) is the least n such that ¢ is in Fp.)

Notice that if cf(\) > w, then the number of all sequences (in | n < w)
cofinal in i is at most )/, and so is the number of resulting coherent
sequences. (If cf(\) = w, a little more needs to be done.)
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Rich reduction lemma

Lemma (Rich reduction lemma)

Assume p is in S(\, «) and (Dj|i < \) is a sequence of dense open sets.
Then there exists a condition g < p, q = fusionlim(p;);<x, which is a basic
reduction and moreover: for every i, if j > i has cofinality w and j + 1 was
a non-trivial stage of construction, then for every coherent sequence

(Sj, | i < n), q restricted to the nodes determined by this sequence (if this
restriction makes sense) lies in D;.
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R. Honzik (Charles University) Supercompacts and the continuum Hejnice, February 2012 11 /12



Rich reduction lemma

Lemma (Rich reduction lemma)

Assume p is in S(\, «) and (Dj|i < \) is a sequence of dense open sets.
Then there exists a condition g < p, q = fusionlim(p;);<x, which is a basic
reduction and moreover: for every i, if j > i has cofinality w and j + 1 was
a non-trivial stage of construction, then for every coherent sequence

(Sj, | i < n), q restricted to the nodes determined by this sequence (if this
restriction makes sense) lies in D;.

Thus at such stages j we allow ourselves up to A’ many options (from the
total number of up to A’™ = X\ many options) to thin out to D;.

See blackboard for a “hand-waving proof” that this is enough to prove the
theorem.
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An open question

It was crucial for the proof that the length of the fusion in S(\,A*T)
was equal to the support of j : V — M (the support of j equals the size of
the domains of the relevant f's describing M). For instance, this technique
does not work for S(x, ATT) — too short a fusion, too few clubs in &.
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An open question

It was crucial for the proof that the length of the fusion in S(\,A*T)
was equal to the support of j : V — M (the support of j equals the size of
the domains of the relevant f's describing M). For instance, this technique
does not work for S(x, ATT) — too short a fusion, too few clubs in &.

Question. Is there a k-closed cofinality-preserving forcing P which adds

new subsets of x, but supports a “genuine” fusion of length y for cardinals
i € [k, A]? One can use that k is A-supercompact.
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