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Mathias-Prikry type and Laver-Prikry type forcings

Definition

Let 7 be an ideal on w.

Mathias-Prikry type forcing
(s,FyeMp-ifse[w]“AFEIT*ASNF =20

ordered by

(s, F) < (t,G)ifsDtAFcGAs\tcQG.
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Mathias-Prikry type and Laver-Prikry type forcings
Definition
Let 7 be an ideal on w.
Mathias-Prikry type forcing

(s,FyeMp-ifse[w]“AFEIT*ASNF =20
ordered by

(s, F) < (t,G)ifsDtAFcGAs\tcQG.

Laver-Prikry type forcing

TelrifTCcw”istree Adse T(Vte T(sctvitcs)
andVte T(sct—- Succr(t) ={new:t"neT}eIl)),

where such s € T is called stem of T, denoted stem(T).
L7+ is ordered by inclusion.
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Mathias forcing and Ly add a dominating real. It is depend on filter
¥ whether Mi# adds a dominating real.

Theorem (Canjar)

1. If U is either rapid ultrafilter or not a P-point ultrafilter, then
Mlqs adds a dominating real.

2. If CH holds, there exists an ultrafilter U such that M, doesn’t
add a dominating real.



Introduction

Mathias forcing and Ly add a dominating real. It is depend on filter
¥ whether Mi# adds a dominating real.

Theorem (Canjar)
1. If U is either rapid ultrafilter or not a P-point ultrafilter, then

Mlqs adds a dominating real.

2. If CH holds, there exists an ultrafilter U such that M, doesn’t
add a dominating real.

Question
When does M+ add dominating real?
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Decision property

Laver forcing I and Mathias forcing have decision property.
Theorem

1. For every sentence ¢ of forcing language, for every T € 1L
there exists S < T with stem(S) = stem(T) such that

S Iry, ¢ or S kg, .

2. For every sentence ¢ of forcing language, for every
(s, A) € M, there exists infinite B c A such that

(s, B) Iry ¢ or (s, B) Ikyg —¢.
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Decision property

Laver forcing I and Mathias forcing have decision property.
Theorem

1. For every sentence ¢ of forcing language, for every T € 1L
there exists S < T with stem(S) = stem(T) such that

S Iry, ¢ or S kg, .

2. For every sentence ¢ of forcing language, for every
(s, A) € M, there exists infinite B c A such that

(s, B) Ik ¢ or (s, B) k1 m¢p.

The decision property doesn’t hold for Mathias-Prikry and
Laver-Prikry type forcing in general.
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Decision property, rank argument and 7<%

I<a)

When we use L+, rank argument is important. But we can’t define
rank for Miz= in general. When we use Mg+, 7<¢ is significant.
For an ideal 7 on w,

I ={Aclo]\{0): Ale IVaec A(anl #0)}.

Then 7<“ is an ideal on [w]<* \ {#}.

Theorem
For every sentence ¢ of forcing language, for s € [w]<“ define

Xs={te[w\s]**:AF e I*((sUt)NF=0A(sULF)Ir¢)}

Then if Xs € (<), for every F € T* with s N F = 0, there exists
(sUt,G) <(s,F)suchthat{(s U t,G) ry,. ¢.

If Xs € 1<, for every F € IT* with s N F = @, there exists
(sUt,G) <(s,F)suchthat(s Ut,G) IFy,. 2.
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M7+ and 7<“-positive set

Proof.

1. Suppose Xs € (I<?)*. Let F € 7* withs N F = @. Then
[FI=* N Xs # 0. Let t € Xs N [F]<“. By definition of X, there
exists H € 7* such that (s U t, H) I+ ¢.
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M7+ and 7<“-positive set

Proof.

1. Suppose Xs € (I<?)*. Let F € 7* withs N F = @. Then
[FI=* N Xs # 0. Let t € Xs N [F]<“. By definition of X, there
exists H € 7* such that (s U t, H) I+ ¢.

Since I* isfiter, G=FNH e 1*. Sincet c F,
(sUL,G) < (s,F). So(sUL,G) < (s,Fyand(sUt,G) I+ ¢.

2. Suppose Xs € 7<“.

Letl € 7 suchthat Vx € Xs(x N1 # 0). Let (s, F) € M. Let
H = F\ I € 7*. Then there exists (s U t, G) < (s, H) such
that (s U t, G) decide ¢. Sincet NI = 0, t ¢ Xs. Therefore
(sUt,G)IF —¢.
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Mz« and dominating real

Theorem (Hrusak, Minami)
The following are equivalent.
1. Miy+ adds a dominating real.
2. I<% js not Pt ideal.

Definition
g is P*-ideal if for every decreasing sequence {X, : n € w} of
J-positive set, there exists X € J+ such that X c* X,,.



M7+ and dominating real

Theorem (Hrusak, Minami)
The following are equivalent.
1. Miy+ adds a dominating real.
2. I<“ s not Pt ideal.

Proof. From (1) to (2).
Let g be a Mlz«-name for a dominating real. For f € w® N V, there
exists s¢ € [w]<“, Ff € I* and nf € w such that

(st, Fr) = Yn 2 ns(f(n) < g(n)).
Since cf(?d) > w, there exists s € [w]<* and n € w such that
F={few’:ssf=8An;=n}

is a dominating family. Fix such s € [w]<“ and n € w.
Define

Xs = {t € [w \ max(s)]*“ :
IF € 7*dm > n((s U t, F) decides g(m))}.



M7+ and dominating real

Claim

Xs = {t € [w \ max(s)]*“ :
3F € 7*Am > n((s U t, F) decides g(m))} € (1<*)™.

Letz; = {m>n:3F € 7*((s U t, F) decides g(m))}.
Then define (k;, It) € w X w for t € Xg by

K — max(z;) if 1z¢] < w
'~ 1 min(z; \ max(t)) otherwise.

Choose I; € w so that there exists F € 1* so that
(SULF) I+ g(kt) = k.
Define H: Xs = w X w by H(t) = (ky, It).

Claim
For everym € w, H'[(w \ m) x w] € (I<®)*.
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Let K = {k; : t € Xs}. Let {k; : i € w} be the increasing
enumeration of K. Define Ly = {l; : ki = ki A t € Xs}.

Claim

3°i € w(|Li| = w).

Proof

Assume to the contrary, V=i € w(|Lj] < No). Then we can define
h:w—- wby

max(L;)

if there exists i € w such that m = k; and |Lj|] < Np.
h(m) =

0

otherwise.
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Proof.

Since ¥ is a dominating family, there exists f € ¥ and mg > n
such that Ym > mg(h(m) < f(m)).

However there exists t € H™'[(w \ mp) x w] N [Ff]<* since
H ' [(w \ mp) x w] € (I<°)*.

By definition of h, there exists H € 7* and k; > myg such that

(sUt,H) IF g(kt) < h(kt)(< f(kt))-

However (s, Ff) + Ym > n(f(m) < g(m)) and (s, Fy) is
compatible with (s U t, H). It is contradiction.



M7+ and dominating real

Without loss of generality, we can assume for all i € w |Lj| = No.
Let Y = {H ' [Umsi Li]} for m > n. Then Y41 C Y.

Claim

Ym € (Z<®)* form > n.
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Let Y c* Y, for m > n. We shall show Y € 7<%,
Assume to the contrary that Y € (Z<“)*. Define a function g from
w to w by

max{l; : At € Y(m = k¢)}

if there exists t € Y such that ks = m
g(m) =

0

otherwise.
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Let Y c* Y, for m > n. We shall show Y € 7<%,
Assume to the contrary that Y € (Z<“)*. Define a function g from
w to w by

max{l; : At € Y(m = k¢)}

if there exists t € Y such that ks = m
g(m) =

0

otherwise.

Since ¥ is a dominating family, 3f € ¥ (g <* f). Let mg > n such
that g(m) < f(m) for m > my.
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Let Y c* Y, for m > n. We shall show Y € 7<%,
Assume to the contrary that Y € (Z<“)*. Define a function g from
w to w by

max{l; : At € Y(m = k¢)}

if there exists t € Y such that ks = m
g(m) =

0

otherwise.

Since ¥ is a dominating family, 3f € ¥ (g <* f). Let mg > n such
that g(m) < f(m) form > mg. Since Y c* Y form > n, Fs € T*
and Y € (I<¢)*, thereexists m> mgandt e YN Yy, NF;.
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Let Y c* Y, for m > n. We shall show Y € 7<%,
Assume to the contrary that Y € (Z<“)*. Define a function g from
w to w by

max{l; : At € Y(m = k¢)}

if there exists t € Y such that ks = m
g(m) =

0

otherwise.

Since ¥ is a dominating family, 3f € ¥ (g <* f). Let mg > n such

that g(m) < f(m) form > mg. Since Y c* Ypform > n, Fr € I*
and Y € (I<¢)*, there exists m > mgandt € Y N Yp, N F. Since
t € Y there exists F € 7* such that (s U t, F) = g(m) < g(m).
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Let Y c* Y, for m > n. We shall show Y € 7<%,
Assume to the contrary that Y € (Z<“)*. Define a function g from
w to w by

max{l; : At € Y(m = k¢)}

if there exists t € Y such that ks = m
g(m) =

0

otherwise.

Since ¥ is a dominating family, 3f € ¥ (g <* f). Let mg > n such
that g(m) < f(m) form > mg. Since Y c* Ypform > n, Fr € I*
and Y € (I<¢)*, there exists m > mgandt € Y N Yp, N F. Since
t € Y there exists F € 7* such that (s U t, F) = g(m) < g(m).
However (s, Ff) I+ “Ym > n(f(m) < g(m))"and (s U t,F) is
compatible with (s, Ff). It is contradiction. Therefore Y € 7<“. So
I<¢ s not P*-ideal.



M7+ and dominating real

From (2) to (1). Let (X, : n € w) be a decreasing sequence of
(Z<*)* without pseudointersection in (Z<¢)*. Let (ax : k € w)
be an enumeration of [w]<“ \ {@}. Let agen be a Miz:-name for

M --generic real(C w). Define Miz«-name g for a function from w

to w by

I+ g(n) = min{k : ax C [agen]™” N XnA
max(U{am 1< nAm=g(l)}) <min(ak)}.
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From (2) to (1). Let (X, : n € w) be a decreasing sequence of
(Z<*)* without pseudointersection in (Z<¢)*. Let (ax : k € w)
be an enumeration of [w]<“ \ {@}. Let agen be a Miz:-name for

M --generic real(C w). Define Miz«-name g for a function from w
to w by

I+ g(n) = min{k : ax C [agen]™” N XnA
max(U{am 1< nAm=g(l)}) <min(ak)}.

We shall show g be a dominating real. Let f € ® N V and
(s,F) € M. Let

Is = {ak € [w]“ \ {0} : An € w(ak € Xph A k < f(n))}.

Then Iy c* X, for every n € w. Therefore Iy € 7<“ by definition of
Xn. Letl € 7T suchthatVae lf(anl#0). Then F\ Il € I*and
[F\<“nl =0.



M7+ and dominating real

Claim
Let (t, : n < @) be a sequence of finite subsets of w so that

1. the[sU(F\ D] N X,

2. max(t,) < min(tpy1)

3. 3k € w(th = ax A k < f(n))
Thena < |s].

Proof of Claim.
If t € [F\ ], thent = ax and t € X,, implies k > f(n) by
[F\ <Nl = 0. Soby (2), @ < |s]

Put |s|=m. Then (s, F\ I) < (s, F) and

(s, F\ I) + Yn > m(f(n) < g(n)).
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ultrafilter case

Definition (Laflamme)

An ultrafilter U is strong P-point if for every w-sequence of closed
subset C, € U, there exists a partition of w into finite intervals I,
such that for any sets B, € Cp,

UB.nh) e wu.

n

Theorem (Blass-Laflamme)

Suppose U is an ultrafilter. Then the following are equivalent.
1. U is a strong P-point.
2. U=® is P filter.
3. Mlqs doesn’t add a dominating real.



Thank you!
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Appendix: Ultrafilter

Definition
Let U be afilter on w.

1. U is selective ultrafilter if
Vf € 03U € U(f | Uis one-to-one or constant).

2. U is nowhere dense ultrafilter if
Vf:w — 293U € U(F[U] is nohere dense).

3. Uisrapidif Vf € @*3U € U(|U N f(n)| < n).
4. U is P-point ultrafilter if
Vf € w”3U € U(f I Uis finite-to-one or constant).
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