Sequential properties of measures

Piotr Borodulin–Nadzieja (Wrocław)

Winterschool 2011, Hejnice

joint work with Omar Selim (Norwich)
Space of probability measures

Notation

- K - a (Hausdorff) compact space;
- $\mathbb{N} = \{1, 2, \ldots\}$;
- $P(K)$ - space of probability Borel measures on K.

Weak* convergence

A sequence (μ_n) from $P(K)$ is weak* convergent to μ if

$$\int_K f \, d\mu_n \to \int_K f \, d\mu$$

for each continuous $f : K \to \mathbb{R}$.
Space of probability measures

Notation

- K - a (Hausdorff) compact space;
- $\mathbb{N} = \{1, 2, \ldots\}$;
- $P(K)$ - space of probability Borel measures on K.

Weak* convergence

A sequence (μ_n) from $P(K)$ is weak* convergent to μ if

$$\int_K f \, d\mu_n \to \int_K f \, d\mu$$

for each continuous $f : K \to \mathbb{R}$.
Weak* convergence in 0-dim spaces

Weak* convergence

A sequence \((\mu_n)\) from \(P(K)\) is weak* convergent to \(\mu\) if

\[
\int_K f \, d\mu_n \to \int_K f \, d\mu
\]

for each continuous \(f : K \to \mathbb{R}\).

Remark

If \(K\) is zero–dimensional, then \(\mu_n\) converges weakly to \(\mu\) if and only if

\[
\mu_n(A) \to \mu(A)
\]

for every clopen subset \(A \subseteq K\).
Levels of complexity in $P(K)$

Sequential closures

- $h: K \to h[K] \subseteq P(K)$ defined by $h(x) = \delta_x$ is a homeomorphism;
- $S_0(K) = \text{conv}(\{\delta_x: x \in K\})$;
- let $S_1(K)$ be the weak*–sequential closure of $S_0(K)$;
- generally: let $S_\alpha(K)$ be the weak*–sequential closure of $\bigcup_{\beta < \alpha} S_\beta(K)$;
- $S(K) = S_{\omega_1}(K)$.

Piotr Borodulin–Nadzieja (Wrocław) Sequential properties of measures
Sequential closures

- $h: K \to h[K] \subseteq P(K)$ defined by $h(x) = \delta_x$ is a homeomorphism;
- $S_0(K) = \text{conv}(\{\delta_x : x \in K\})$;
- let $S_1(K)$ be the weak*–sequential closure of $S_0(K)$;
- generally: let $S_\alpha(K)$ be the weak*–sequential closure of $\bigcup_{\beta < \alpha} S_\beta(K)$;
- $S(K) = S_{\omega_1}(K)$.

Levels of complexity in $P(K)$
Levels of complexity in $P(K)$

Sequential closures

- $h: K \rightarrow h[K] \subseteq P(K)$ defined by $h(x) = \delta_x$ is a homeomorphism;
- $S_0(K) = \text{conv}(\{\delta_x : x \in K\})$;
- let $S_1(K)$ be the weak*–sequential closure of $S_0(K)$;
- generally: let $S_\alpha(K)$ be the weak*–sequential closure of $\bigcup_{\beta < \alpha} S_\beta(K)$;
- $S(K) = S_{\omega_1}(K)$.
Levels of complexity in $P(K)$

Sequential closures

- $h: K \to h[K] \subseteq P(K)$ defined by $h(x) = \delta_x$ is a homeomorphism;
- $S_0(K) = \text{conv}(\{\delta_x : x \in K\})$;
- let $S_1(K)$ be the weak*–sequential closure of $S_0(K)$;
- generally: let $S_\alpha(K)$ be the weak*–sequential closure of $\bigcup_{\beta < \alpha} S_\beta(K)$;
- $S(K) = S_{\omega_1}(K)$.

Piotr Borodulin–Nadzieja (Wrocław) Sequential properties of measures
Remark

If \(\mu \in S(K) \), then it has a separable carrier, i.e. a closed set \(F \subseteq K \) with \(\mu(F) = 1 \) (not necessarily the support).

Corollary

Let \(\mathcal{A} = Bor([0,1])/Null \) be the measure algebra and let \(R \) be its Stone space. Then the standard measure \(\lambda \) on \(R \) is in \(P(R) \) but not in \(S(R) \).
Remark
If $\mu \in S(K)$, then it has a separable carrier, i.e. a closed set $F \subseteq K$ with $\mu(F) = 1$ (not necessarily the support).

Corollary
Let $\mathcal{A} = Bor([0, 1])/Null$ be the measure algebra and let R be its Stone space. Then the standard measure λ on R is in $P(R)$ but not in $S(R)$.
Fact

A measure μ is in $S_1(K)$ if and only if it has a uniformly distributed sequence.

Theorems

Many spaces K have property: $P(K) = S_1(K)$. E.g.

- scattered spaces;
- metric spaces;
- 2^{ω_1} [Losert, 79];
- 2^c [Fremlin, 00’s].
Uniform distribution

Fact
A measure μ is in $S_1(K)$ if and only if it has a uniformly distributed sequence.

Theorems
Many spaces K have property: $P(K) = S_1(K)$. E.g.
- scattered spaces;
- metric spaces;
- 2^{ω_1} [Losert, 79];
- 2^c [Fremlin, 00’s].
Theorem (Plebanek, PBN)
If K is Koppelberg compact, then $P(K) = S(K)$.

Problem 1
Is there a space K such that $S_1(K) \neq S(K)$?

Problem 2
Is there a space K such that $S_1(K) \neq S(K) = P(K)$?
Theorem (Plebanek, PBN)
If K is Koppelberg compact, then $P(K) = S(K)$.

Problem 1
Is there a space K such that $S_1(K) \neq S(K)$?

Problem 2
Is there a space K such that $S_1(K) \neq S(K) = P(K)$?
Preliminaries

Problems

Theorem (Plebanek, PBN)
If K is Koppelberg compact, then $P(K) = S(K)$.

Problem 1
Is there a space K such that $S_1(K) \neq S(K)$?

Problem 2
Is there a space K such that $S_1(K) \neq S(K) = P(K)$?
Asymptotic density

Asymptotic density function
We say that $A \subseteq \mathbb{N}$ has a density if the limit

$$\lim_{n \to \infty} \frac{|A \cap \{1, 2, \ldots, n\}|}{n} = d(A)$$

exists.

Density and weak* convergence
If every element of a Boolean algebra $\mathcal{A} \subseteq P(\mathbb{N})$ has a density, then for μ defined on the Stone space K of \mathcal{A} by $\mu(\hat{A}) = d(A)$ for each $A \in \mathcal{A}$ we have

$$\mu(\hat{A}) = \lim_{n \to \infty} \frac{\delta_1(A) + \ldots + \delta_n(A)}{n}.$$
Asymptotic density

Asymptotic density function

We say that \(A \subseteq \mathbb{N} \) has a density if the limit

\[
\lim_{n \to \infty} \frac{|A \cap \{1, 2, \ldots, n\}|}{n} = d(A)
\]

exists.

Density and weak* convergence

If every element of a Boolean algebra \(\mathcal{A} \subseteq P(\mathbb{N}) \) has a density, then for \(\mu \) defined on the Stone space \(K \) of \(\mathcal{A} \) by \(\mu(\widehat{A}) = d(A) \) for each \(A \in \mathcal{A} \) we have

\[
\mu(\widehat{A}) = \lim_{n \to \infty} \frac{\delta_1(A) + \ldots + \delta_n(A)}{n}.
\]
Density and weak* convergence

If every element of a Boolean algebra $\mathcal{A} \subseteq P(\mathbb{N})$ has a density, then for μ defined on the Stone space K of \mathcal{A} by $\mu(\hat{A}) = d(A)$ for each $A \in \mathcal{A}$ we have

$$
\mu(\hat{A}) = \lim_{n \to \infty} \frac{\delta_1(A) + \ldots + \delta_n(A)}{n}.
$$

Corollary

$$
\mu \in S_1(\mathbb{N}) \subseteq S_1(K).
$$
Asymptotic density

Density and weak* convergence

If every element of a Boolean algebra $\mathcal{A} \subseteq P(\mathbb{N})$ has a density, then for μ defined on the Stone space K of \mathcal{A} by $\mu(\hat{A}) = d(A)$ for each $A \in \mathcal{A}$ we have

$$
\mu(\hat{A}) = \lim_{n \to \infty} \frac{\delta_1(A) + \ldots + \delta_n(A)}{n}.
$$

Corollary

$$
\mu \in S_1(\mathbb{N}) \subseteq S_1(K).
$$
Density and weak* convergence

If every element of a Boolean algebra $\mathcal{A} \subseteq P(\mathbb{N})$ has a density, then for μ defined on the Stone space K of \mathcal{A} by $\mu(\hat{A}) = d(A)$ for each $A \in \mathcal{A}$ we have

$$\mu(\hat{A}) = \lim_{n \to \infty} \frac{\delta_1(A) + \ldots + \delta_n(A)}{n}.$$

Corollary

$$\mu \in S_1(\mathbb{N}) \subseteq S_1(K).$$
Relative density

Fix a sequence \((B_n)_{n \in \mathbb{N}}\) of infinite and pairwise disjoint subsets of \(\mathbb{N}\) such that \(\bigcup_n B_n = \mathbb{N}\).

Let \(n \in \mathbb{N}\). Enumerate \(B_n = \{b_1 < b_2 < \ldots\}\). For \(A \subseteq B_n\) let

\[
d_n(A) = d(\{i : b_i \in A\}).
\]

Limit of densities

Let \(d'(A) = \lim_{n \to \infty} d_n(A)\) provided this limit exist. If each element \(A\) of a Boolean algebra \(\mathcal{A} \subseteq P(\mathbb{N})\) is such that \(d'(A)\) exists, then \(\mu \in P(\text{Stone}(\mathcal{A}))\) defined by

\[
\mu(\hat{A}) = d'(A)
\]

is in \(S_2(\mathbb{N})\)
Limit of densities

Relative density

Fix a sequence $(B_n)_{n \in \mathbb{N}}$ of infinite and pairwise disjoint subsets of \(\mathbb{N} \) such that \(\bigcup_n B_n = \mathbb{N} \).

Let \(n \in \mathbb{N} \). Enumerate \(B_n = \{ b_1 < b_2 < \ldots \} \). For \(A \subseteq B_n \) let

\[d_n(A) = d(\{ i : b_i \in A \}). \]

Limit of densities

Let \(d'(A) = \lim_{n \to \infty} d_n(A) \) provided this limit exist. If each element \(A \) of a Boolean algebra \(\mathcal{A} \subseteq P(\mathbb{N}) \) is such that \(d'(A) \) exists, then \(\mu \in P(\text{Stone}(\mathcal{A})) \) defined by

\[\mu(\hat{A}) = d'(A) \]

is in \(S_2(\mathbb{N}) \).
Limit of densities

Relative density

Fix a sequence \((B_n)_{n \in \mathbb{N}}\) of infinite and pairwise disjoint subsets of \(\mathbb{N}\) such that \(\bigcup_n B_n = \mathbb{N}\).

Let \(n \in \mathbb{N}\). Enumerate \(B_n = \{b_1 < b_2 < \ldots\}\). For \(A \subseteq B_n\) let

\[d_n(A) = d(\{i : b_i \in A\}). \]

Limit of densities

Let \(d'(A) = \lim_{n \to \infty} d_n(A)\) provided this limit exist. If each element \(A\) of a Boolean algebra \(\mathcal{A} \subseteq P(\mathbb{N})\) is such that \(d'(A)\) exists, then \(\mu \in P(\text{Stone}(\mathcal{A}))\) defined by

\[\mu(\hat{A}) = d'(A) \]

is in \(S_2(\mathbb{N})\).
The domain of measure

Definition

Let \mathcal{F} be the filter of density 1 sets and let \mathcal{C} be an isomorphic image (via φ) of the Cantor algebra $\text{alg}(2^{<\omega})$ such that

$$d(\varphi(\sigma)) = 1/2^{|\sigma|}$$

for each $\sigma \in 2^{<\omega}$.

Definition

For each $n \in \mathbb{N}$, $B_n = \{b_1 < b_2 < \ldots\}$ and $A \subseteq \mathbb{N}$ let

$$A^n = \{b_i: i \in A\}$$

$$\mathcal{F}^n = \{F^n: F \in \mathcal{F}\}$$

$$\mathcal{C}^n = \{C^n: C \in \mathcal{C}\}$$
The domain of measure

Definition

Let \mathcal{F} be the filter of density 1 sets and let \mathcal{C} be an isomorphic image (via φ) of the Cantor algebra $\text{alg}(2^{<\omega})$ such that

$$d(\varphi(\sigma)) = 1/2^{|\sigma|}$$

for each $\sigma \in 2^{<\omega}$.

Definition

For each $n \in \mathbb{N}$, $B_n = \{b_1 < b_2 < \ldots\}$ and $A \subseteq \mathbb{N}$ let

$$A^n = \{b_i : i \in A\}$$

$$\mathcal{F}^n = \{F^n : F \in \mathcal{F}\}$$

$$\mathcal{C}^n = \{C^n : C \in \mathcal{C}\}$$
First step

Definition

Let \mathcal{B}_n be the Boolean algebra generated by \mathcal{C}^n and \mathcal{F}^n, $n \in \mathbb{N}$.

Let \mathcal{U} consist of sets $U \subseteq \mathbb{N}$ such that

- $U \cap B_n \in \mathcal{B}_n$ for each n;
- $\lim_{n \to \infty} d_n(U \cap B_n) = 1$.

Let \mathbb{A}_0 be the Boolean algebra generated by \mathcal{U} (and K_0 - its Stone space).

Properties

- \mathcal{U} is an ultrafilter on \mathbb{A}_0;
- $\mu = \delta U$;
- $\mu \in S_2(\mathbb{N})$;
- $\mu \notin S_1(K_0 \setminus \{\mathcal{U}\})$.
First step

Definition

Let \mathbb{B}_n be the Boolean algebra generated by \mathcal{C}^n and \mathcal{F}^n, $n \in \mathbb{N}$. Let \mathcal{U} consist of sets $U \subseteq \mathbb{N}$ such that

- $U \cap B_n \in \mathbb{B}_n$ for each n;
- $\lim_{n \to \infty} d_n(U \cap B_n) = 1$.

Let \mathbb{A}_0 be the Boolean algebra generated by \mathcal{U} (and K_0 - its Stone space).

Properties

- \mathcal{U} is an ultrafilter on \mathbb{A}_0;
- $\mu = \delta U$;
- $\mu \in S_2(\mathbb{N})$;
- $\mu \notin S_1(K_0 \setminus \{U\})$.
First step

Definition

Let B_n be the Boolean algebra generated by C^n and F^n, $n \in \mathbb{N}$. Let \mathcal{U} consist of sets $U \subseteq \mathbb{N}$ such that

- $U \cap B_n \in B_n$ for each n;
- $\lim_{n \to \infty} d_n(U \cap B_n) = 1$.

Let A_0 be the Boolean algebra generated by \mathcal{U} (and K_0 - its Stone space).

Properties

- \mathcal{U} is an ultrafilter on A_0;
- $\mu = \delta \mathcal{U}$;
- $\mu \in S_2(\mathbb{N})$;
- $\mu \notin S_1(K_0 \setminus \{\mathcal{U}\})$.
First step

Definition
Let B_n be the Boolean algebra generated by C^n and F^n, $n \in \mathbb{N}$. Let \mathcal{U} consist of sets $U \subseteq \mathbb{N}$ such that
- $U \cap B_n \in B_n$ for each n;
- $\lim_{n \to \infty} d_n(U \cap B_n) = 1$.

Let A_0 be the Boolean algebra generated by \mathcal{U} (and K_0 - its Stone space).

Properties
- \mathcal{U} is an ultrafilter on A_0;
 - $\mu = \delta U$;
 - $\mu \in S_2(\mathbb{N})$;
 - $\mu \notin S_1(K_0 \setminus \{\mathcal{U}\})$.
First step

Definition

Let \mathcal{B}_n be the Boolean algebra generated by \mathcal{C}^n and \mathcal{F}^n, $n \in \mathbb{N}$. Let \mathcal{U} consist of sets $U \subseteq \mathbb{N}$ such that

- $U \cap B_n \in \mathcal{B}_n$ for each n;
- $\lim_{n \to \infty} d_n(U \cap B_n) = 1$.

Let \mathbb{A}_0 be the Boolean algebra generated by \mathcal{U} (and K_0 - its Stone space).

Properties

- \mathcal{U} is an ultrafilter on \mathbb{A}_0;
- $\mu = \delta \mathcal{U}$;
- $\mu \in S_2(\mathbb{N})$;
- $\mu \notin S_1(K_0 \setminus \{\mathcal{U}\})$.
First step

Definition
Let B_n be the Boolean algebra generated by C^n and F^n, $n \in \mathbb{N}$. Let U consist of sets $U \subseteq \mathbb{N}$ such that
- $U \cap B_n \in B_n$ for each n;
- $\lim_{n \to \infty} d_n(U \cap B_n) = 1$.

Let A_0 be the Boolean algebra generated by U (and K_0 - its Stone space).

Properties
- U is an ultrafilter on A_0;
- $\mu = \delta_U$;
- $\mu \in S_2(\mathbb{N})$;
- $\mu \not\in S_1(K_0 \setminus \{U\})$.
First step

Definition
Let \mathcal{B}_n be the Boolean algebra generated by \mathcal{C}^n and \mathcal{F}^n, $n \in \mathbb{N}$. Let \mathcal{U} consist of sets $U \subseteq \mathbb{N}$ such that
- $U \cap B_n \in \mathcal{B}_n$ for each n;
- $\lim_{n \to \infty} d_n(U \cap B_n) = 1$.
Let \mathcal{A}_0 be the Boolean algebra generated by \mathcal{U} (and K_0 - its Stone space).

Properties
- \mathcal{U} is an ultrafilter on \mathcal{A}_0;
- $\mu = \delta_\mathcal{U}$;
- $\mu \in S_2(\mathbb{N})$;
- $\mu \notin S_1(K_0 \setminus \{\mathcal{U}\})$.
Second step

Theorem (Fremlin)

There is a *monomorphism mod* \mathcal{F}

$$\psi: \mathcal{K} \rightarrow \text{Sets with density}$$

such that $d(\psi(R)) = \lambda(R)$ for each R.

Final step

Extend \mathcal{A}_0 to \mathcal{A} by all sets of the form

$$\bigcup_{n} (\psi(R))^n$$

for every $R \in \mathcal{K} \setminus \{0, 1\}$. Let K be its Stone space.
Theorem (Fremlin)

There is a monomorphism mod \mathcal{F}

$$\psi: \mathcal{R} \to \text{Sets with density}$$

such that $d(\psi(R)) = \lambda(R)$ for each R.

Final step

Extend A_0 to A by all sets of the form

$$\bigcup_{n}(\psi(R))^n$$

for every $R \in \mathcal{R} \setminus \{0, 1\}$. Let K be its Stone space.
Corollary

Let $D \subseteq K$ be the (closed) set generated by \mathcal{U}.

- $\mu \in S_2(\mathbb{N})$;
- $\mu \notin S_1(K \setminus D)$;
- $\mu \notin S_1(D)$;
- finally, $\mu \notin S_1(K)$.

Remark

In the same manner for every $\alpha < \omega_1$ we can produce a space K and a measure μ such that $\mu \in S_\alpha(K) \setminus S_\beta(K)$ for each $\beta < \alpha$.
Corollary

Let $D \subseteq K$ be the (closed) set generated by \mathcal{U}.

- $\mu \in S_2(\mathbb{N})$;
- $\mu \notin S_1(K \setminus D)$;
- $\mu \notin S_1(D)$;
- finally, $\mu \notin S_1(K)$.

Remark

In the same manner for every $\alpha < \omega_1$ we can produce a space K and a measure μ such that $\mu \in S_\alpha(K) \setminus S_\beta(K)$ for each $\beta < \alpha$.
Corollary

Let $D \subseteq K$ be the (closed) set generated by \mathcal{U}.

- $\mu \in S_2(\mathbb{N})$;
- $\mu \notin S_1(K \setminus D)$;
- $\mu \notin S_1(D)$;
- finally, $\mu \notin S_1(K)$.

Remark

In the same manner for every $\alpha < \omega_1$ we can produce a space K and a measure μ such that $\mu \in S_{\alpha}(K) \setminus S_{\beta}(K)$ for each $\beta < \alpha$.
Corollary

Let $D \subseteq K$ be the (closed) set generated by \mathcal{U}.

- $\mu \in S_2(\mathbb{N})$;
- $\mu \notin S_1(K \setminus D)$;
- $\mu \notin S_1(D)$;
- finally, $\mu \notin S_1(K)$.

Remark

In the same manner for every $\alpha < \omega_1$ we can produce a space K and a measure μ such that $\mu \in S_\alpha(K) \setminus S_\beta(K)$ for each $\beta < \alpha$.
Corollary

Let $D \subseteq K$ be the (closed) set generated by \mathcal{U}.

- $\mu \in S_2(\mathbb{N})$;
- $\mu \notin S_1(K \setminus D)$;
- $\mu \notin S_1(D)$;
- finally, $\mu \notin S_1(K)$.

Remark

In the same manner for every $\alpha < \omega_1$ we can produce a space K and a measure μ such that $\mu \in S_\alpha(K) \setminus S_\beta(K)$ for each $\beta < \alpha$.
Theorem (Plebanek)

Under CH there is a space K such that

- there is $\mu \in S_2(K) \setminus S_1(K)$
- $S(K) = P(K)$.
Thank you for your attention!

Slides and a preprint concerning the subject will be available on

http://www.math.uni.wroc.pl/~pboro