Sequence Selection Principles for Special Convergences

Jaroslav Šupina

Institute of Mathematics
Faculty of Science of P. J. Šafárik University

31st of January 2011
Hausdorff - normal - perfectly normal topological spaces - X

- real valued functions
- a topological space of real valued continuous, Borel measurable functions with product topology denoted as $\mathcal{C}_p(X), \mathcal{B}_p(X)$, respectively

- discrete convergence of $\langle f_n : n \in \omega \rangle$:

 $$(\forall x \in X)(\exists n_0)(\forall n \in \omega)(n \geq n_0 \rightarrow f_n(x) = f(x))$$

- quasi-normal convergence:

 discrete \rightarrow quasi-normal \rightarrow pointwise
Hausdorff - normal - perfectly normal topological spaces - X

real valued functions

a topological space of real valued continuous, Borel measurable functions with product topology denoted as $C_p(X), \mathcal{B}_p(X)$, respectively

discrete convergence of $\langle f_n : n \in \omega \rangle$:

$$(\forall x \in X)(\exists n_0)(\forall n \in \omega)(n \geq n_0 \rightarrow f_n(x) = f(x))$$

quasi-normal convergence:

- 1970’s - equal convergence - A. Császár and M. Laczkovich

discrete \rightarrow quasi-normal \rightarrow pointwise
Hausdorff - normal - perfectly normal topological spaces - X

real valued functions

a topological space of real valued continuous, Borel measurable functions with product topology denoted as $C_p(X), \mathcal{B}_p(X)$, respectively

discrete convergence of $\langle f_n : n \in \omega \rangle$:

$$(\forall x \in X)(\exists n_0)(\forall n \in \omega)(n \geq n_0 \rightarrow f_n(x) = f(x))$$

quasi-normal convergence:

1970’s - equal convergence - A. Császár and M. Laczkovich

discrete \rightarrow quasi-normal \rightarrow pointwise
Hausdorff - normal - perfectly normal topological spaces - X

real valued functions

a topological space of real valued continuous, Borel measurable functions with product topology denoted as $C_p(X), B_p(X)$, respectively

discrete convergence of $\langle f_n : n \in \omega \rangle$:

$$(\forall x \in X)(\exists n_0)(\forall n \in \omega)(n \geq n_0 \rightarrow f_n(x) = f(x))$$

quasi-normal convergence:

1970’s - equal convergence - A. Császár and M. Laczkovich

discrete \rightarrow quasi-normal \rightarrow pointwise
Hausdorff - normal - perfectly normal topological spaces - X

real valued functions

a topological space of real valued continuous, Borel measurable functions with product topology denoted as $C_p(X), B_p(X)$, respectively

discrete convergence of $\langle f_n : n \in \omega \rangle$:

$$(\forall x \in X)(\exists n_0)(\forall n \in \omega)(n \geq n_0 \rightarrow f_n(x) = f(x))$$

quasi-normal convergence:

- 1970’s - equal convergence - A. Császár and M. Laczkovich

discrete \rightarrow quasi-normal \rightarrow pointwise
Hausdorff - normal - perfectly normal topological spaces - \(X \)

real valued functions

a topological space of real valued \textbf{continuous}, \textbf{Borel} measurable functions with product topology denoted as \(C_p(X), B_p(X) \), respectively

discrete convergence of \(\langle f_n : n \in \omega \rangle \):

\[
(\forall x \in X)(\exists n_0)(\forall n \in \omega)(n \geq n_0 \rightarrow f_n(x) = f(x))
\]

quasi-normal convergence:

1970’s - equal convergence - A. Császár and M. Laczkovich

discrete \(\rightarrow \) quasi-normal \(\rightarrow \) pointwise
Hausdorff - normal - perfectly normal topological spaces - \(X \)

real valued functions

a topological space of real valued \textbf{continuous, Borel} measurable functions with product topology denoted as \(C_p(X), \mathcal{B}_p(X) \), respectively

discrete convergence of \(\langle f_n : n \in \omega \rangle \):

\[
(\forall x \in X)(\exists n_0)(\forall n \in \omega)(n \geq n_0 \rightarrow f_n(x) = f(x))
\]

quasi-normal convergence:

- 1970’s - equal convergence - A. Császár and M. Laczkovich

discrete \(\rightarrow \) quasi-normal \(\rightarrow \) pointwise
Quasi-normal convergence of sequence $\langle f_n : n \in \omega \rangle$

Pointwise convergence
there exists $\langle \varepsilon_n : n \in \omega \rangle$ converging to 0 such that

$$(\forall m \in \omega)(\forall x \in X)(\exists n_0)(\forall n \in \omega)(n \geq n_0 \rightarrow |f_n(x) - f(x)| < \varepsilon_m)$$

Quasi-normal convergence
there exists $\langle \varepsilon_n : n \in \omega \rangle$ converging to 0 such that

$$(\forall x \in X)(\exists n_0)(\forall n \in \omega)(n \geq n_0 \rightarrow |f_n(x) - f(x)| < \varepsilon_n)$$

Uniform convergence
there exists $\langle \varepsilon_n : n \in \omega \rangle$ converging to 0 such that

$$(\exists n_0)(\forall x \in X)(\forall n \in \omega)(n \geq n_0 \rightarrow |f_n(x) - f(x)| < \varepsilon_n)$$
Quasi-normal convergence of sequence $\langle f_n : n \in \omega \rangle$

Pointwise convergence
there exists $\langle \varepsilon_n : n \in \omega \rangle$ converging to 0 such that

$$(\forall m \in \omega)(\forall x \in X)(\exists n_0)(\forall n \in \omega)(n \geq n_0 \rightarrow |f_n(x) - f(x)| < \varepsilon_m)$$

Quasi-normal convergence
there exists $\langle \varepsilon_n : n \in \omega \rangle$ converging to 0 such that

$$(\forall x \in X)(\exists n_0)(\forall n \in \omega)(n \geq n_0 \rightarrow |f_n(x) - f(x)| < \varepsilon_n)$$

Uniform convergence
there exists $\langle \varepsilon_n : n \in \omega \rangle$ converging to 0 such that

$$(\exists n_0)(\forall x \in X)(\forall n \in \omega)(n \geq n_0 \rightarrow |f_n(x) - f(x)| < \varepsilon_n)$$
Quasi-normal convergence of sequence \(\langle f_n : n \in \omega \rangle \)

Pointwise convergence
there exists \(\langle \varepsilon_n : n \in \omega \rangle \) converging to 0 such that
\[
(\forall m \in \omega)(\forall x \in X)(\exists n_0)(\forall n \in \omega)(n \geq n_0 \rightarrow |f_n(x) - f(x)| < \varepsilon_m)
\]

Quasi-normal convergence
there exists \(\langle \varepsilon_n : n \in \omega \rangle \) converging to 0 such that
\[
(\forall x \in X)(\exists n_0)(\forall n \in \omega)(n \geq n_0 \rightarrow |f_n(x) - f(x)| < \varepsilon_n)
\]

Uniform convergence
there exists \(\langle \varepsilon_n : n \in \omega \rangle \) converging to 0 such that
\[
(\exists n_0)(\forall x \in X)(\forall n \in \omega)(n \geq n_0 \rightarrow |f_n(x) - f(x)| < \varepsilon_n)
\]
Quasi-normal convergence of sequence $\langle f_n : n \in \omega \rangle$

Pointwise convergence

there exists $\langle \varepsilon_n : n \in \omega \rangle$ converging to 0 such that

$$(\forall m \in \omega)(\forall x \in X)(\exists n_0)(\forall n \in \omega)(n \geq n_0 \rightarrow |f_n(x) - f(x)| < \varepsilon_m)$$

Quasi-normal convergence

there exists $\langle \varepsilon_n : n \in \omega \rangle$ converging to 0 such that

$$(\forall x \in X)(\exists n_0)(\forall n \in \omega)(n \geq n_0 \rightarrow |f_n(x) - f(x)| < \varepsilon_n)$$

Uniform convergence

there exists $\langle \varepsilon_n : n \in \omega \rangle$ converging to 0 such that

$$(\exists n_0)(\forall x \in X)(\forall n \in \omega)(n \geq n_0 \rightarrow |f_n(x) - f(x)| < \varepsilon_n)$$
Quasi-normal convergence of sequence $\langle f_n : n \in \omega \rangle$

Pointwise convergence
there exists $\langle \varepsilon_n : n \in \omega \rangle$ converging to 0 such that

$$(\forall m \in \omega)(\forall x \in X)(\exists n_0)(\forall n \in \omega)(n \geq n_0 \rightarrow |f_n(x) - f(x)| < \varepsilon_m)$$

Quasi-normal convergence
there exists $\langle \varepsilon_n : n \in \omega \rangle$ converging to 0 such that

$$(\forall x \in X)(\exists n_0)(\forall n \in \omega)(n \geq n_0 \rightarrow |f_n(x) - f(x)| < \varepsilon_n)$$

Uniform convergence
there exists $\langle \varepsilon_n : n \in \omega \rangle$ converging to 0 such that

$$(\exists n_0)(\forall x \in X)(\forall n \in \omega)(n \geq n_0 \rightarrow |f_n(x) - f(x)| < \varepsilon_n)$$
QN-property

X has the property QN if each sequence of continuous functions converging to zero is converging to zero quasi-normally.

- \mathfrak{b}-Sierpiński set is a QN-set
- perfectly normal QN-space is a σ-space

wQN-property

X has the property wQN if each sequence of continuous functions converging to zero has a subsequence converging to zero quasi-normally.

- $\text{QN} = \text{wQN}$ (Laver model), $\text{QN} \neq \text{wQN}$ (any model of $\text{ZFC} + t = \mathfrak{b}$)
- γ-space is a wQN-space
- wQN-set is perfectly meager, perfectly normal wQN-space X has $\text{Ind}(X) = 0$ and possesses the Hurewicz property H^{**}
QN-property

X has the property QN if each sequence of continuous functions converging to zero is converging to zero quasi-normally.

- \mathcal{B}-Sierpiński set is a QN-set
- perfectly normal QN-space is a σ-space

wQN-property

X has the property wQN if each sequence of continuous functions converging to zero has a subsequence converging to zero quasi-normally.

- QN=wQN (Laver model), QN\neqwQN (any model of ZFC + $t = \mathcal{B}$)
- γ-space is a wQN-space
- wQN-set is perfectly meager, perfectly normal wQN-space X has $\text{Ind}(X) = 0$ and possesses the Hurewicz property H^{**}
QN-property

X has the property QN if each sequence of continuous functions converging to zero is converging to zero quasi-normally.

- \mathfrak{b}-Sierpiński set is a QN-set
- perfectly normal QN-space is a σ-space

wQN-property

X has the property wQN if each sequence of continuous functions converging to zero has a subsequence converging to zero quasi-normally.

- QN = wQN (Laver model), QN \neq wQN (any model of ZFC + $t = \mathfrak{b}$)
- γ-space is a wQN-space
- wQN-set is perfectly meager, perfectly normal wQN-space X has $\text{Ind}(X) = 0$ and possesses the Hurewicz property H^{**}
QN-property

X has the property QN if each sequence of continuous functions converging to zero is converging to zero quasi-normally.

- \mathfrak{b}-Sierpiński set is a QN-set
- perfectly normal QN-space is a σ-space

wQN-property

X has the property wQN if each sequence of continuous functions converging to zero has a subsequence converging to zero quasi-normally.

- $\text{QN} \equiv \text{wQN}$ (Laver model), $\text{QN} \neq \text{wQN}$ (any model of $\text{ZFC} + \mathfrak{t} = \mathfrak{b}$)
- γ-space is a wQN-space
- wQN-set is perfectly meager, perfectly normal wQN-space X has $\text{Ind}(X) = 0$ and possesses the Hurewicz property H^{**}
QN-property

X has the property QN if each sequence of continuous functions converging to zero is converging to zero quasi-normally.

- \mathfrak{b}-Sierpiński set is a QN-set
- perfectly normal QN-space is a σ-space

wQN-property

X has the property wQN if each sequence of continuous functions converging to zero has a subsequence converging to zero quasi-normally.

- $\text{QN} = \text{wQN}$ (Laver model), $\text{QN} \neq \text{wQN}$ (any model of $\text{ZFC} + t = \mathfrak{b}$)
- γ-space is a wQN-space
- wQN-set is perfectly meager, perfectly normal wQN-space X has $\text{Ind}(X) = 0$ and possesses the Hurewicz property H^{**}
QN-property

X has the property QN if each sequence of continuous functions converging to zero is converging to zero quasi-normally.

- b-Sierpiński set is a QN-set
- perfectly normal QN-space is a σ-space

wQN-property

X has the property wQN if each sequence of continuous functions converging to zero has a subsequence converging to zero quasi-normally.

- QN\equivwQN (Laver model), QN\neqwQN (any model of $\text{ZFC} + t = b$)
- γ-space is a wQN-space
- wQN-set is perfectly meager, perfectly normal wQN-space X has $\text{Ind}(X) = 0$ and possesses the Hurewicz property H^{**}
$C_p(X)$ possesses the **sequence selection property**, shortly SSP, if for any functions $f, f_n, f_{n,m} : X \rightarrow \mathbb{R}$, $n, m \in \omega$, such that

a) $f_n \rightarrow f$ on X,

b) $f_{n,m} \rightarrow f_n$ on X for every $n \in \omega$,

c) every $f, f_n, f_{n,m}$ is continuous,

there exists $\beta \in \omega \omega$ such that $f_{n,\beta(n)} \rightarrow f$ on X.

$$\langle f_0, m : m \in \omega \rangle$$

$$\langle f_1, m : m \in \omega \rangle$$

$$\langle f_2, m : m \in \omega \rangle$$

$$\langle f_3, m : m \in \omega \rangle$$

...
$C_p(X)$ possesses the **sequence selection property**, shortly **SSP**, if for any functions $f, f_n, f_{n,m}: X \rightarrow \mathbb{R}, n, m \in \omega$, such that

a) $f_n \rightarrow f$ on X,

b) $f_{n,m} \rightarrow f_n$ on X for every $n \in \omega$,

c) every $f, f_n, f_{n,m}$ is continuous,

there exists $\beta \in \omega \omega$ such that $f_{n,\beta(n)} \rightarrow f$ on X.

\[
\langle f_0, m : m \in \omega \rangle \\
\langle f_1, m : m \in \omega \rangle \\
\langle f_2, m : m \in \omega \rangle \\
\langle f_3, m : m \in \omega \rangle \\
\vdots
\]
C_ρ(X) possesses the **sequence selection property**, shortly **SSP**, if for any functions \(f, f_n, f_{n,m} : X \rightarrow \mathbb{R} \), \(n, m \in \omega \), such that

a) \(f_n \longrightarrow f \) on \(X \),

b) \(f_{n,m} \longrightarrow f_n \) on \(X \) for every \(n \in \omega \),

c) every \(f, f_n, f_{n,m} \) is continuous,

there exists \(\beta \in \omega \omega \) such that \(f_{n,\beta(n)} \longrightarrow f \) on \(X \).

\[
\langle f_0, m : m \in \omega \rangle \quad \ldots
\]

\[
\langle f_1, m : m \in \omega \rangle \quad \ldots
\]

\[
\langle f_2, m : m \in \omega \rangle \quad \ldots
\]

\[
\langle f_3, m : m \in \omega \rangle \quad \ldots
\]

\[
\vdots \quad \vdots \quad \vdots \quad \vdots
\]
$C_p(X)$ possesses the **sequence selection property**, shortly SSP, if for any functions $f, f_n, f_{n,m} : X \to \mathbb{R}$, $n, m \in \omega$, such that

a) $f_n \to f$ on X,

b) $f_{n,m} \to f_n$ on X for every $n \in \omega$,

c) every $f, f_n, f_{n,m}$ is continuous,

there exists $\beta \in \omega \omega$ such that $f_{n,\beta(n)} \to f$ on X.

\[
\langle f_0, m : m \in \omega \rangle \quad \bullet \quad \cdots \quad \longrightarrow \quad f_0 \\
\langle f_1, m : m \in \omega \rangle \quad \bullet \quad \cdots \quad \longrightarrow \quad f_1 \\
\langle f_2, m : m \in \omega \rangle \quad \bullet \quad \cdots \quad \longrightarrow \quad f_2 \\
\langle f_3, m : m \in \omega \rangle \quad \bullet \quad \cdots \quad \longrightarrow \quad f_3 \\
\vdots \quad \vdots \\
\ldots \quad \longrightarrow \quad f
\]
C_p(X) possesses the **sequence selection property**, shortly **SSP**, if for any functions \(f, f_n, f_{n,m} : X \to \mathbb{R} \), \(n, m \in \omega \), such that

a) \(f_n \to f \) on \(X \),

b) \(f_{n,m} \to f_n \) on \(X \) for every \(n \in \omega \),

c) every \(f, f_n, f_{n,m} \) is continuous,

there exists \(\beta \in \omega \omega \) such that \(f_{n,\beta(n)} \to f \) on \(X \).

\[
\begin{align*}
\langle f_0, m : m \in \omega \rangle & \quad \bullet \quad \cdots \quad \to \quad f_0 \\
\langle f_1, m : m \in \omega \rangle & \quad \bullet \quad \cdots \quad \to \quad f_1 \\
\langle f_2, m : m \in \omega \rangle & \quad \bullet \quad \cdots \quad \to \quad f_2 \\
\langle f_3, m : m \in \omega \rangle & \quad \bullet \quad \cdots \quad \to \quad f_3 \\
\vdots & \quad \vdots \quad \to \quad f
\end{align*}
\]
$C_p(X)$ possesses the **sequence selection property**, shortly **SSP**, if for any functions $f, f_n, f_{n,m} : X \rightarrow \mathbb{R}, \ n, m \in \omega$, such that

a) $f_n \rightarrow f$ on X,

b) $f_{n,m} \rightarrow f_n$ on X for every $n \in \omega$,

c) every $f, f_n, f_{n,m}$ is continuous,

there exists $\beta \in \omega \omega$ such that $f_{n,\beta(n)} \rightarrow f$ on X.

\[
\begin{align*}
\langle f_0, m : m \in \omega \rangle & \quad \bullet \quad \cdots \quad \rightarrow \quad f_0 \\
\langle f_1, m : m \in \omega \rangle & \quad \bullet \quad \circ \quad \bullet \quad \cdots \quad \rightarrow \quad f_1 \\
\langle f_2, m : m \in \omega \rangle & \quad \bullet \quad \cdots \quad \rightarrow \quad f_2 \\
\langle f_3, m : m \in \omega \rangle & \quad \bullet \quad \cdots \quad \rightarrow \quad f_3 \\
\vdots & \quad \vdots \quad \vdots
\end{align*}
\]
$C_p(X)$ possesses the **sequence selection property**, shortly SSP, if for any functions $f, f_n, f_{n,m} : X \to \mathbb{R}$, $n, m \in \omega$, such that

a) $f_n \to f$ on X,

b) $f_{n,m} \to f_n$ on X for every $n \in \omega$,

c) every $f, f_n, f_{n,m}$ is continuous,

there exists $\beta \in \omega \omega$ such that $f_{n,\beta(n)} \to f$ on X.

\[
\langle f_0, m : m \in \omega \rangle \quad \bullet \quad \ldots \quad \to \quad f_0
\]

\[
\langle f_1, m : m \in \omega \rangle \quad \bullet \quad \ldots \quad \to \quad f_1
\]

\[
\langle f_2, m : m \in \omega \rangle \quad \bullet \quad \ldots \quad \to \quad f_2
\]

\[
\langle f_3, m : m \in \omega \rangle \quad \bullet \quad \ldots \quad \to \quad f_3
\]

\[
\vdots \quad \ldots \quad \to \quad f
\]
Theorem (M. Scheepers, D. H. Fremlin)

Let X be a topological space. Then the following are equivalent:

1. X is a wQN-space;
2. $C_p(X)$ possesses SSP.

X is Fréchet (or Fréchet–Urysohn) if for any $A \subseteq X$ and $x \in \overline{A}$ there is $x_n \in A$, $n \in \omega$ such that $x_n \rightarrow x$.

If $C_p(X)$ is Fréchet, then $C_p(X)$ possesses SSP.
Theorem (M. Scheepers, D. H. Fremlin)

Let X be a topological space. Then the following are equivalent:

1. X is a wQN-space;
2. $C_p(X)$ possesses SSP.

X is Fréchet (or Fréchet–Urysohn) if for any $A \subseteq X$ and $x \in \overline{A}$ there is $x_n \in A$, $n \in \omega$ such that $x_n \rightarrow x$.

If $C_p(X)$ is Fréchet, then $C_p(X)$ possesses SSP.
X satisfies the pointwise–pointwise sequence selection principle, shortly PSP, if for any functions $f, f_n, f_{n,m} : X \rightarrow \mathbb{R}$, $n, m \in \omega$, such that

a) $f_n \rightarrow f$ on X,

b) $f_{n,m} \rightarrow f_n$ on X for every $n \in \omega$,

c) every $f_{n,m}$ is continuous,

there exists an increasing $\beta \in \omega \omega$ such that $f_{n,\beta(n)} \rightarrow f$ on X.

\begin{align*}
\text{PSP} & \quad \text{QSP} & \quad \text{DSP} \\
\text{PSQ} & \quad \text{QSQ} & \quad \text{DSQ} \\
\text{PSD} & \quad \text{QSD} & \quad \text{DSD}
\end{align*}
X satisfies the **quasi-normal–pointwise sequence selection principle**, shortly QSP, if for any functions $f, f_n, f_{n,m} : X \to \mathbb{R}$, $n, m \in \omega$, such that

a) $f_n \overset{\text{QN}}{\to} f$ on X,

b) $f_{n,m} \overset{\text{QN}}{\to} f_n$ on X for every $n \in \omega$,

c) every $f_{n,m}$ is continuous,

there exists an increasing $\beta \in \omega \omega$ such that $f_{n,\beta(n)} \to f$ on X.
X satisfies the **pointwise–quasi-normal sequence selection principle**, shortly **PSQ**, if for any functions $f, f_n, f_{n,m} : X \rightarrow \mathbb{R}$, $n, m \in \omega$, such that

a) $f_n \rightarrow f$ on X,

b) $f_{n,m} \rightarrow f_n$ on X for every $n \in \omega$,

c) every $f_{n,m}$ is continuous,

there exists an increasing $\beta \in \omega \omega$ such that $f_{n,\beta(n)} \overset{QN}{\rightarrow} f$ on X.

<table>
<thead>
<tr>
<th>PSP</th>
<th>QSP</th>
<th>DSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSQ</td>
<td>QSQ</td>
<td>DSQ</td>
</tr>
<tr>
<td>PSD</td>
<td>QSD</td>
<td>DSD</td>
</tr>
</tbody>
</table>
Trivial relations

PSD $\xrightarrow{}$ QSD $\xrightarrow{}$ DSD

PSQ $\xrightarrow{}$ QSQ $\xrightarrow{}$ DSQ

PSP $\xrightarrow{}$ QSP $\xrightarrow{}$ DSP

PSD - a sequence of functions converging to zero would have to converge discretely.
PSD - a sequence of functions converging to zero would have to converge discretely
Trivial relations

\[\text{QSD} \longrightarrow \text{DSD} \]
\[\text{PSQ} \longrightarrow \text{QSQ} \longrightarrow \text{DSQ} \]
\[\text{PSP} \longrightarrow \text{QSP} \longrightarrow \text{DSP} \]

PSD - a sequence of functions converging to zero would have to converge discretely

QSD - a sequence of functions converging to zero quasi-normally would have to converge discretely
Trivial relations

PSD - a sequence of functions converging to zero would have to converge discretely

QSD - a sequence of functions converging to zero quasi-normally would have to converge discretely
Trivial relations

DSD

PSQ → QSQ → DSQ

PSP → QSP → DSP

PSD - a sequence of functions converging to zero would have to converge discretely

QSD - a sequence of functions converging to zero quasi-normally would have to converge discretely
A perfectly normal topological space X

The following are equivalent:

1. X satisfies PSQ;
2. X satisfies QSQ;
3. X satisfies DSD;
4. X is a QN-space.
A perfectly normal topological space X

The following are equivalent:

1. X satisfies PSQ;
2. X satisfies QSQ;
3. X satisfies DSD;
4. X is a QN-space.

(DUPŠ Košice)
Covering properties

- **cover** \(U - \cup U = X \) and \(X \notin U \)

\(S_1(\mathcal{A}, \mathcal{B}) \)-property

For each sequence \(\langle U_n : n \in \omega \rangle \) of covers from \(\mathcal{A} \), there exist sets \(U_n \in U_n \) such that \(\{ U_n : n \in \omega \} \in \mathcal{B} \).

\(U_{\text{fin}}(\mathcal{A}, \mathcal{B}) \)-property

For each sequence \(\langle U_n : n \in \omega \rangle \) of covers from \(\mathcal{A} \) which do not contain a finite subcover, there exist finite subsets \(F_n \subseteq U_n \) such that \(\{ \cup F_n : n \in \omega \} \in \mathcal{B} \).

- **\(\gamma \)-cover** \(U - \) every \(x \in X \) lies in all but finitely many members of \(U \)
 - \(\gamma \) family of all countable open \(\gamma \)-covers \(\Gamma \)
Covering properties

- **cover** $\mathcal{U} - \bigcup \mathcal{U} = X$ and $X \notin \mathcal{U}$

$S_1(\mathcal{A}, \mathcal{B})$-property

For each sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of covers from \mathcal{A}, there exist sets $\mathcal{U}_n \in \mathcal{U}_n$ such that $\{U_n; n \in \omega\} \in \mathcal{B}$.

$U_{\text{fin}}(\mathcal{A}, \mathcal{B})$-property

For each sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of covers from \mathcal{A} which do not contain a finite subcover, there exist finite subsets $\mathcal{F}_n \subseteq \mathcal{U}_n$ such that $\{\bigcup \mathcal{F}_n; n \in \omega\} \in \mathcal{B}$.

- **γ-cover** $\mathcal{U} -$ every $x \in X$ lies in all but finitely many members of \mathcal{U}
- γ family of all countable open γ-covers: Γ
Covering properties

- **cover** \mathcal{U} - $\bigcup \mathcal{U} = X$ and $X \notin \mathcal{U}$

$S_1(\mathcal{A}, \mathcal{B})$-property

For each sequence $\langle U_n : n \in \omega \rangle$ of covers from \mathcal{A}, there exist sets $U_n \in \mathcal{U}_n$ such that $\{U_n ; n \in \omega\} \in \mathcal{B}$.

$U_{\text{fin}}(\mathcal{A}, \mathcal{B})$-property

For each sequence $\langle U_n : n \in \omega \rangle$ of covers from \mathcal{A} which do not contain a finite subcover, there exist finite subsets $\mathcal{F}_n \subseteq \mathcal{U}_n$ such that $\{\bigcup \mathcal{F}_n ; n \in \omega\} \in \mathcal{B}$.

- **γ-cover** \mathcal{U} - every $x \in X$ lies in all but finitely many members of \mathcal{U}

- Family of all countable open γ-covers: Γ
Covering properties

- cover $\mathcal{U} - \bigcup \mathcal{U} = X$ and $X \notin \mathcal{U}$

$S_1(\mathcal{A}, \mathcal{B})$-property

For each sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of covers from \mathcal{A}, there exist sets $U_n \in \mathcal{U}_n$ such that $\{U_n ; n \in \omega\} \in \mathcal{B}$.

$U_{\text{fin}}(\mathcal{A}, \mathcal{B})$-property

For each sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of covers from \mathcal{A} which do not contain a finite subcover, there exist finite subsets $\mathcal{F}_n \subseteq \mathcal{U}_n$ such that $\left\{\bigcup \mathcal{F}_n ; n \in \omega\right\} \in \mathcal{B}$.

- γ-cover \mathcal{U} - every $x \in X$ lies in all but finitely many members of \mathcal{U}
 - family of all countable open γ-covers: Γ
A perfectly normal topological space X

σ-space - every F_σ subset of X is a G_δ subset - Δ^0_2

![Diagram]

1. **Laver model**: $QN = wQN$
2. **ZFC + $t = b$**: there is an $S_1(\Gamma, \Gamma)$-set which is not σ-space
A perfectly normal topological space X

σ-space - every F_σ subset of X is a G_δ subset - Δ^0_2

- σ-space
- Δ^0_2
- F_σ
- G_δ

QN \equiv PSQ \equiv QSQ \equiv DSD

Laver model:

1. $QN = wQN$

2. ZFC + $\mathfrak{b} = \mathfrak{b}$: there is an $S_1(\Gamma, \Gamma)$-set which is not σ-space
A perfectly normal topological space X

σ-space - every F_σ subset of X is a G_δ subset - Δ^0_2

1. **Laver model**: $QN = wQN$
2. **$ZFC + t = b$**: there is an $S_1(\Gamma, \Gamma)$-set which is not σ-space
Any QN-space satisfies the QSQ-principle.

A perfectly normal QN-space is a σ-space.

Let X be a perfectly normal topological space. TFAE:
1. X is a QN-space;
2. any Borel image of X into ω^ω is eventually bounded.
Theorem

Any QN-space satisfies the QSQ-principle.

Theorem (I. Reclaw)

A perfectly normal QN-space is a σ-space.

Theorem (B. Tsaban – L. Zdomskyy)

Let X be a perfectly normal topological space. TFAE:

1. X is a QN-space;
2. any Borel image of X into ω^ω is eventually bounded.
Theorem

Any QN-space satisfies the QSQ-principle.

Theorem (I. Reclaw)

A perfectly normal QN-space is a σ-space.

Theorem (B. Tsaban – L. Zdomskyy)

Let X be a perfectly normal topological space. TFAE:

1. X is a QN-space;
2. any Borel image of X into ω^ω is eventually bounded.
Theorem

*If a normal topological space X satisfies QSQ, then $\text{Ind}(X) = 0$."

Assume that X is a topological space with $\text{Ind}(X) = 0$:
- any Δ^0_2-measurable function $f : X \rightarrow [0, 1]$ is a quasi-normal limit of a sequence of simple Δ^0_2-measurable functions
- any simple Δ^0_2-measurable function $g : X \rightarrow [0, 1]$ is a discrete limit of a sequence of simple continuous functions.

If X is a perfectly normal topological space satisfying QSQ, then any Borel measurable function $f : X \rightarrow [0, 1]$ is a quasi-normal limit of a sequence of continuous functions.
Theorem

*If a normal topological space X satisfies QSQ, then $\text{Ind}(X) = 0$.***

Assume that X is a topological space with $\text{Ind}(X) = 0$:

- any Δ^0_2-measurable function $f : X \to [0, 1]$ is a quasi-normal limit of a sequence of simple Δ^0_2-measurable functions

- any simple Δ^0_2-measurable function $g : X \to [0, 1]$ is a discrete limit of a sequence of simple continuous functions

Theorem

If X is a perfectly normal topological space satisfying QSQ, then any Borel measurable function $f : X \to [0, 1]$ is a quasi-normal limit of a sequence of continuous functions.
Theorem

*If a normal topological space X satisfies QSQ, then $\text{Ind}(X) = 0$.***

Assume that X is a topological space with $\text{Ind}(X) = 0$:

- Any Δ^0_2-measurable function $f : X \to [0, 1]$ is a quasi-normal limit of a sequence of simple Δ^0_2-measurable functions.
- Any simple Δ^0_2-measurable function $g : X \to [0, 1]$ is a discrete limit of a sequence of simple continuous functions.

Theorem

If X is a perfectly normal topological space satisfying QSQ, then any Borel measurable function $f : X \to [0, 1]$ is a quasi-normal limit of a sequence of continuous functions.
Approximation

Theorem

*If a normal topological space X satisfies QSQ, then $\text{Ind}(X) = 0$.***

Assume that X is a topological space with $\text{Ind}(X) = 0$:

- any Δ^0_2-measurable function $f : X \rightarrow [0, 1]$ is a quasi-normal limit of a sequence of simple Δ^0_2-measurable functions
- any simple Δ^0_2-measurable function $g : X \rightarrow [0, 1]$ is a discrete limit of a sequence of simple continuous functions

Theorem

If X is a perfectly normal topological space satisfying QSQ, then any Borel measurable function $f : X \rightarrow [0, 1]$ is a quasi-normal limit of a sequence of continuous functions.
Approximation

Theorem

If a normal topological space X *satisfies* QSQ, *then* $\text{Ind}(X) = 0$.

Assume that X is a topological space with $\text{Ind}(X) = 0$:

- any Δ^0_2-measurable function $f : X \rightarrow [0, 1]$ is a quasi-normal limit of a sequence of simple Δ^0_2-measurable functions
- any simple Δ^0_2-measurable function $g : X \rightarrow [0, 1]$ is a discrete limit of a sequence of simple continuous functions

Theorem

If X *is a perfectly normal topological space satisfying* QSQ, *then any Borel measurable function* $f : X \rightarrow [0, 1]$ *is a quasi-normal limit of a sequence of continuous functions.*
Archangel’skiĭ’s properties \((\alpha_i)\)

For \(i = 1, 2, 3, 4\), a topological space \(Y\) is \((\alpha_i)\)-space if for any \(\langle S_n : n \in \omega \rangle\) of sequences converging to some point \(y \in Y\), there exists a sequence \(S\) converging to \(y\) such that:

\((\alpha_1)\) \(S_n \setminus S\) is infinite for all \(n \in \omega\);

\((\alpha_2)\) \(S_n \cap S\) is infinite for all \(n \in \omega\);

\((\alpha_3)\) \(S_n \cap S\) is infinite for infinitely many \(n \in \omega\);

\((\alpha_4)\) \(S_n \cap S \neq \emptyset\) for infinitely many \(n \in \omega\).

TFAE:

- \(X\) is a \(wQN\)-space;
- \(C_p(X)\) possesses \((\alpha_2)\);
- \(C_p(X)\) possesses \((\alpha_3)\);
- \(C_p(X)\) possesses \((\alpha_4)\).
Archangel’skiǐ’s properties \((\alpha_i)\)

For \(i = 1, 2, 3, 4\), a topological space \(Y\) is \((\alpha_i)\)-space if for any \(\langle S_n : n \in \mathbb{\omega} \rangle\) of sequences converging to some point \(y \in Y\), there exists a sequence \(S\) converging to \(y\) such that:

\((\alpha_1)\) \(S_n \setminus S\) is infinite for all \(n \in \mathbb{\omega}\);

\((\alpha_2)\) \(S_n \cap S\) is infinite for all \(n \in \mathbb{\omega}\);

\((\alpha_3)\) \(S_n \cap S\) is infinite for infinitely many \(n \in \mathbb{\omega}\);

\((\alpha_4)\) \(S_n \cap S \neq \emptyset\) for infinitely many \(n \in \mathbb{\omega}\).

TFAE:

1. \(X\) is a wQN-space;
2. \(C_p(X)\) possesses \((\alpha_2)\);
3. \(C_p(X)\) possesses \((\alpha_3)\);
4. \(C_p(X)\) possesses \((\alpha_4)\).
Archangel’skii’s properties \((\alpha_i)\)

For \(i = 1, 2, 3, 4\), a topological space \(Y\) is \((\alpha_i)\)-space if for any \(\langle S_n : n \in \omega \rangle\) of sequences converging to some point \(y \in Y\), there exists a sequence \(S\) converging to \(y\) such that:

\((\alpha_1)\) \(S_n \setminus S\) is infinite for all \(n \in \omega\);

\((\alpha_2)\) \(S_n \cap S\) is infinite for all \(n \in \omega\);

\((\alpha_3)\) \(S_n \cap S\) is infinite for infinitely many \(n \in \omega\);

\((\alpha_4)\) \(S_n \cap S \neq \emptyset\) for infinitely many \(n \in \omega\).

TFAE:

1. \(X\) is a \(wQN\)-space;
2. \(C_p(X)\) possesses \((\alpha_2)\);
3. \(C_p(X)\) possesses \((\alpha_3)\);
4. \(C_p(X)\) possesses \((\alpha_4)\).
A perfectly normal topological space X

The following conditions are equivalent:

1. X is a QN-space.
2. $C_p(X)$ possesses (α_1);
3. $B_p(X)$ possesses (α_1);
4. $B_p(X)$ possesses (α_2);
5. $B_p(X)$ possesses (α_3);
6. $B_p(X)$ possesses (α_4);
7. $B_p(X)$ possesses SSP;
8. X is a QNB-space;
9. X possesses $wQNB$.
A perfectly normal topological space X

The following conditions are equivalent:

1. X is a QN-space.
2. $C_p(X)$ possesses (α_1);
3. $B_p(X)$ possesses (α_1);
4. $B_p(X)$ possesses (α_2);
5. $B_p(X)$ possesses (α_3);
6. $B_p(X)$ possesses (α_4);
7. $B_p(X)$ possesses SSP;
8. X is a QNB-space;
9. X possesses wQNB.
A perfectly normal topological space \(X \)

The following conditions are equivalent:

1. \(X \) is a QN-space.
2. \(C_p(X) \) possesses \((\alpha_1)\);
3. \(\mathcal{B}_p(X) \) possesses \((\alpha_1)\);
4. \(\mathcal{B}_p(X) \) possesses \((\alpha_2)\);
5. \(\mathcal{B}_p(X) \) possesses \((\alpha_3)\);
6. \(\mathcal{B}_p(X) \) possesses \((\alpha_4)\);
7. \(\mathcal{B}_p(X) \) possesses SSP;
8. \(X \) is a QNB-space;
9. \(X \) possesses \(w\text{QN}_\mathcal{B} \).
A perfectly normal topological space X

The following conditions are equivalent:

1. X is a QN-space.
2. $C_p(X)$ possesses (α_1);
3. $B_p(X)$ possesses (α_1);
4. $B_p(X)$ possesses (α_2);
5. $B_p(X)$ possesses (α_3);
6. $B_p(X)$ possesses (α_4);
7. $B_p(X)$ possesses SSP;
8. X is a QNB-space;
9. X possesses wQNB.
A perfectly normal topological space X

- family of all countable Borel covers / γ-covers: $\mathcal{B} / \mathcal{B}_\Gamma$
- family of all countable closed covers / γ-covers: $\mathcal{F} / \mathcal{F}_\Gamma$

The following conditions are equivalent:

1. X is a QN-space;
2. $\text{Closed}(X)$ is weakly distributive / X possesses $U_{\text{fin}}(\mathcal{F}, \mathcal{F}_\Gamma)$;
3. $\text{Borel}(X)$ is weakly distributive / X possesses $U_{\text{fin}}(\mathcal{B}, \mathcal{B}_\Gamma)$;
4. X possesses the property $S_1(\mathcal{F}_\Gamma, \mathcal{F}_\Gamma)$;
5. X possesses the property $S_1(\mathcal{B}_\Gamma, \mathcal{B}_\Gamma)$;
6. X possesses the property (β_1)/Kočinac’s $\alpha(\Gamma, \Gamma)$;
7. X possesses the property (β_2);
8. X possesses the property (β_3).
A perfectly normal topological space X

- family of all countable Borel covers / γ-covers: $\mathcal{B} / \mathcal{B}_\Gamma$
- family of all countable closed covers / γ-covers: $\mathcal{F} / \mathcal{F}_\Gamma$

The following conditions are equivalent:

1. X is a QN-space;
2. $\text{Closed}(X)$ is weakly distributive / X possesses $U_{\text{fin}}(\mathcal{F}, \mathcal{F}_\Gamma)$;
3. $\text{Borel}(X)$ is weakly distributive / X possesses $U_{\text{fin}}(\mathcal{B}, \mathcal{B}_\Gamma)$;
4. X possesses the property $S_1(\mathcal{F}_\Gamma, \mathcal{F}_\Gamma)$;
5. X possesses the property $S_1(\mathcal{B}_\Gamma, \mathcal{B}_\Gamma)$;
6. X possesses the property $(\beta_1)_1$/Kočinac's $\alpha_1(\Gamma, \Gamma)$;
7. X possesses the property (β_2);
8. X possesses the property (β_3).
A perfectly normal topological space X

- family of all countable Borel covers / γ-covers: $\mathcal{B} / \mathcal{B}_\Gamma$
- family of all countable closed covers / γ-covers: $\mathcal{F} / \mathcal{F}_\Gamma$

The following conditions are equivalent:

1. X is a QN-space;
2. $\text{Closed}(X)$ is weakly distributive / X possesses $U_{\text{fin}}(\mathcal{F}, \mathcal{F}_\Gamma)$;
3. $\text{Borel}(X)$ is weakly distributive / X possesses $U_{\text{fin}}(\mathcal{B}, \mathcal{B}_\Gamma)$;
4. X possesses the property $S_1(\mathcal{F}_\Gamma, \mathcal{F}_\Gamma)$;
5. X possesses the property $S_1(\mathcal{B}_\Gamma, \mathcal{B}_\Gamma)$;
6. X possesses the property (β_1)/Kočinac’s $\alpha_1(\Gamma, \Gamma)$;
7. X possesses the property (β_2);
8. X possesses the property (β_3).
A perfectly normal topological space X

- family of all countable Borel covers / γ-covers: $\mathcal{B} / \mathcal{B}_\Gamma$
- family of all countable closed covers / γ-covers: $\mathcal{F} / \mathcal{F}_\Gamma$

The following conditions are equivalent:

1. X is a QN-space;
2. $\text{Closed}(X)$ is weakly distributive / X possesses $U_{\text{fin}}(\mathcal{F}, \mathcal{F}_\Gamma)$;
3. $\text{Borel}(X)$ is weakly distributive / X possesses $U_{\text{fin}}(\mathcal{B}, \mathcal{B}_\Gamma)$;
4. X possesses the property $S_1(\mathcal{F}_\Gamma, \mathcal{F}_\Gamma)$;
5. X possesses the property $S_1(\mathcal{B}_\Gamma, \mathcal{B}_\Gamma)$;
6. X possesses the property (β_1)/Kočinac’s $\alpha_1(\Gamma, \Gamma)$;
7. X possesses the property (β_2);
8. X possesses the property (β_3).
A perfectly normal topological space X

- family of all countable Borel covers / γ-covers: $\mathcal{B} / \mathcal{B}_\Gamma$
- family of all countable closed covers / γ-covers: $\mathcal{F} / \mathcal{F}_\Gamma$

The following conditions are equivalent:

1. X is a QN-space;
2. $\text{Closed}(X)$ is weakly distributive / X possesses $U_{\text{fin}}(\mathcal{F}, \mathcal{F}_\Gamma)$;
3. $\text{Borel}(X)$ is weakly distributive / X possesses $U_{\text{fin}}(\mathcal{B}, \mathcal{B}_\Gamma)$;
4. X possesses the property $S_1(\mathcal{F}_\Gamma, \mathcal{F}_\Gamma)$;
5. X possesses the property $S_1(\mathcal{B}_\Gamma, \mathcal{B}_\Gamma)$;
6. X possesses the property (β_1)/Kočinac’s $\alpha_1(\Gamma, \Gamma)$;
7. X possesses the property (β_2);
8. X possesses the property (β_3).
Thanks for your attention!