

In the talk we focus on the relation of countable tightness of the space  $P(K)$  of Radon probability measures on a compact Hausdorff space  $K$  and of existence of measures in  $P(K)$  that have uncountable Maharam type. Recall that a topological space  $X$  has countable tightness if any element of the closure of a subset  $A$  of  $X$  lies in the closure of some countable subset of  $A$ . A Maharam type of a Radon probability measure  $\mu$  is the density of the Banach space  $L_1(\mu)$ .

It was proven by Fremlin that, under Martin's axiom and negation of continuum hypothesis, for a compact Hausdorff space  $K$  the existence of a Radon probability of uncountable type is equivalent to the existence of a continuous surjection from  $K$  onto  $[0, 1]^{\omega_1}$ . Hence, under such assumptions, countable tightness of  $P(K)$  implies that there is no Radon probability on  $K$  which has uncountable type. Later, Plebanek and Sobota showed that, without any additional set-theoretic assumptions, countable tightness of  $P(K \times K)$  implies that there is no Radon probability on  $K$  which has uncountable type. It is thus natural to ask whether the implication " $P(K)$  has countable tightness  $\Rightarrow$  every Radon probability on  $K$  has countable type" holds in ZFC.

I will present our joint result with Piotr Koszmider that under diamond principle the answer is negative.

DOI of the paper: <https://doi.org/10.1112/jlms.12988>