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Abstract. The closed null ideal E is the σ-ideal on the Cantor space ω2 generated by subsets

that are simultaneously topologically closed and of Lebesgue measure zero. It is well-known that

every closed null set is meagre, thus E is a subset of the meagre ideal M.

The higher Cantor space is the set of functions κ2, where κ is regular uncountable and κ = κ<κ,

generated by the <κ-box topology. Agostini, Barrera & Dimonte (arXiv:2601.13321) have very

recently put the final nail in the coffin of any attempt to define a suitable notion of Lebesgue

measure on κ2. Nevertheless, we will show that it is possible to generalise the closed null ideal,

using a combinatorial characterisation of E . In fact, we will define three distinct ≤κ-complete

ideals, Hκ, Eκ and BEκ, each contained in the κ-meagre ideal Mκ, and we will argue that each

could be considered the higher analogue of E .

If time permits, we will compare cardinal functions (the additivity, uniformity, covering and

cofinality numbers) of these ideals to other higher cardinal characteristics, such as the bounding,

dominating and splitting numbers.
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