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Equidecompositions

Γ a set of isometries of Rn. A,B ⊆ Rn are Γ-equidecomposable if
there are finite partitions A = ∪kn=1An,B = ∪kn=1Bn and
γ1, . . . , γk ∈ Γ such that Ai = γiBi .

Banach, Tarski (1924): Any two bounded sets of nonempty interior
in R3 are equidecomposable. In particular, the unit ball and the
union of its two disjoint copies are equidecomposable



Circle squaring
Tarski (1925): Are the unit square and the disc of unit area
equidecomposable by isometries?

Laczkovich (1990): Yes! By random translations.

Grabowski, Máthé, Pikhurko (2017): Measurable pieces

Marks, Unger (2017): Borel equidecomposition

Máthé, Noel, Pikhurko (2021): Boolean combinations of Fσ sets



From equidecompositions to perfect matchings

A perfect matching in a graph G is a set of edges such that every
vertex is incident to exactly one of them.

Given a set of isometries Γ, A and B admit a Γ-equidecomposition
iff the bipartite graph (=no odd cycle) with vertex set
V (G ) = A ∪∗ B , and edge set E (G ) = {(a, b) : ∃γ ∈ Γ γa = b}
admits a perfect matching Γ.



Hyperfinite graphings

A graphing is a Borel graph over a standard probability measure
space whose edge set is the countable union of the graph of
measure-preserving bijections.

A graphing is (measurably) hyperfinite if the connectivity relation is
hyperfinite (on a conull set), i.e., a countable increasing union of
finite relations. Equivalently, for every ε > 0 after the removal of a
set of edges of measure ε it has only finite components left.

Connes, Feldmann, Weiss (1981): Every pmp group action of an
amenable group is measurably hyperfinite.



Fractional perfect matchings and ends

A fractional perfect matching in a graph G is a mapping
τ : E (G )→ [0, 1] such that

∑
y :(x ,y)∈E(G) τ((x , y)) = 1 for every

x ∈ V (G ).

Every locally finite hyperfinite graphing with a PM admits a
measurable fractional PM!

Adams (1990):Hyperfinite graphings have at most two ends a.e.

A hyperfinite graphing has zero ends a.e. iff the the components are
finite, two ends iff it has linear growth a.e. and one end a.e. iff it
has superlinear growth. (The growth at vertex x is r 7→ |B(x , r)|.)



Measurable perfect matchings in hyperfinite graphings

Bowen, K, Sabok ’21: A regular hyperfinite bipartite graphing
admits a measurable perfect matching if it is one-ended or the
degree is odd.

Bowen, K, Sabok ’21 : Assume that a hyperfinite bipartite nowhere
two-ended graphing G admits a non-integral measurable fractional
PM τ . Then G admits a measurable PM.

It is not enough that G is nowhere two-ended, see the next slide.
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Why should we look at the MFPM?
Consider a graphing whose orbits are isomorphic to the following
graph (can be obtained by the surgery of a pmp free Z2-action).
The choice on certain edges can be forced: 4-cycles should contain
two edges of every PM, and no edge connecting a 4-cycle and a
vertical line can can be in a PM.



Applications

▶ Settling the question of Lyons-Nazarov for amenable groups:
bipartite Cayley graph has a factor of iid PM iff the group is
not the semidirect product of Z and a finite group of odd size.
(Two-ended amenable groups are such semidirect products.)

▶ Measurable circle squaring: equidecompositions by two
independent sets of translations give a measurable
equidecomposition.

▶ "Finally a real application of this abstract nonsense!"
Timár (2021): Factor PM of optimal tail between Poisson
processes (improving Benjamini-Lyons-Peres-Schramm)

▶ Measurable balanced orientation in a one-ended graphing



Expansion in (bipartite) graphings

Assume λ(N(S) \ S) > ελ(S) if λ(S) ≤ 1
2 .

Includes pmp ergodic actions of Kazhdan Property (T) groups.

Banach-Ruziewicz problem: For n > 1 is the only SO(n)-invariant
finitely additive probability measure on Sn the Lebesgue measure?

Margulis (1980): n ≥ 5

Sullivan (1981): n ≥ 4

Drinfeld (1984): n ≥ 2

Lyons, Nazarov (2011): Every bipartite Cayley graph of a
non-amenable group admits a factor of iid perfect matching.

Grabowski, Máthé, Pikhurko (2017): n ≥ 3,A,B ⊆ Rn bounded
measurable of nonempty interior, λ(A) = λ(B). Then A and B are
measurably equidecomposable.



Graphings without measurable PM

Laczkovich (1988): 2-regular acyclic graphing without MPM.

Conley, Kechris (2013): Modify it to d-regular for even d .

An (essentially) acyclic graphing is called a treeing.

Marks (2013): d-regular treeing without Borel PM for d > 2.

Kechris, Marks (2018): Does every 3-regular treeing admit MPM?



Couplings, permutons, doubly stochastic measures

Given a measure µ on [0, 1]2 let µ1, µ2 be its marginals defined by
µ1(S) = µ(S × [0, 1]), µ2(S) = µ([0, 1]× S)

Conjecture (Gurel-Gurevich, Peled ’13): For every probability
measure µ on [0, 1]2 if µ1 = µ2 = λ and its sections are atomless
then its support contains a.e. the graph of a measure-preserving
bijection of [0, 1], i.e., the support of a determistic coupling.

Proved in special cases related to Poisson thickening.

Losert gave an example of an extreme point in the set of
permutons with full support.



Markov spaces

Double measure space (Lovász): (J,A, λ, η), the node measure λ is
a probability measure on the set of vertices J, which is the standard
Borel space (J,A), and the edge measure η is a symmetric measure
on (J × J,A⊗A). Markov space if η1 = η2 = λ.
Common generalization of graphings and graphons.

A circulation measure α is a signed measure on A2 s.t.
α(S × J) = α(J × S), i.e., α = αT .

Hoffmann’s circulation theorem, MFMC... hold for Markov spaces.

F : J × J → R potential if ∃ p : J → R s.t. F (x , y) = p(x)− p(y).

Lemma: α is a circulation iff
∫
J×J Fdα = 0 for every bounded

measurable potential F .



Main results

K: For every d > 2 there exists a measurably bipartite, d-regular
treeing without antisymmetric circulation. In particular, it has no
MPM.

K: For every d there is a free pmp action of Z∗d
2 without

circulation. No free Z-action on a subset of positive measure and is
not the Schreier graphing of a free pmp action of Fd/2.

K: There exists an atomless coupling µ on [0, 1]2 s.t. supp(µ) does
not contain the support of any other coupling.
In particular, it does not contain the graph of a deterministic
coupling refuting the conjecture of Gurel-Gurevich ad Peled.



Inverse limits of sequences of finite graphs

The inverse limit of G1 ←f1 G2 ←f2 G3 . . . is the graph G with

vertex set V (G ) = J =
{
(xn)

∞
n=1 : ∀n xn ∈ V (Gn), fn(xn+1) = xn

}
,

and edge set E (G ) = {(x , y) : x , y ∈ J,∀n (xn, yn) ∈ E (Gn)}.

We endow J with the topology inherited from the product topology
of the discrete topologies on V (Gn).



From proper sequences to Markov spaces

A sequence of graphs is proper if for every n

1. |f −1
n (u)| = |V (Gn+1|

|V (Gn)| for every n and u ∈ V (Gn),

2. |f −1
n (u, v) ∩ E (Gn+1)| = |E(Gn+1)|

|E(Gn)| ,

3. every graph Gn is regular with degree at least two, and
4. every Gn is bipartite.

Set λ
(
{x : xn ∈ S}

)
:= |S|

|V (Gn)| for every n and S ⊆ V (Gn),
this uniquely extends to the σ-algebra A.
Define η by η

(
{(x , y) : (xn, yn) ∈ Q}

)
:= |Q∩E(Gn)|

|E(Gn)|
for every n and Q ⊆ V (Gn)

2, this uniquely extends to A2.



Basic properties of the inverse limit of a proper sequence

1. V (G ) is a Polish space, E (G ) is a closed subset of
V (G )× V (G ).

2. (J,A, λ) is a probability measure space.

3. (J2,A2, η) is a probability measure space and
η(J2 \ E (G )) = 0.

4. D = (J,A, λ, η) is a double measure space.

5. η1 = η2 = λ, in other words, D is a Markov space.

6. If for some d every Gn is d-regular then (J,A, λ, dη) is a
d-regular graphing.

7. G admits a clopen bipartition.



How to avoid circulations?

Key lemma: {Gn, fn}∞n=1 proper, (J,A, λ, η) its inverse limit.
Assume that ∀ε > 0 ∃N ∀n > N and any orientation
O ∈ Ori(Gn) ∃pO : V (Gn+1)→ R such that

1. |pO(u)− pO(v)| ≤ 1 for every (u, v) ∈ E (Gn+1),

2. |{u ∈ V (Gn+1) : ∃v (u, v) ∈ E (Gn+1), pO(u)− pO(v) ̸=
O(fn(u), fn(v))}| < ε|V (Gn+1)|.

Then there is no non-zero antisymmetric circulation measure α on
A2 s.t. |α|1 ≪ λ, |α|2 ≪ λ and |α|(J × J \ E (G )) = 0.

Hence the only coupling on J × J supported in E (G ) is η, and
E (G ) does not contain a.e. a pmp perfect matching.



The proof of the key lemma
We prove by contradiction, consider α ̸= 0. Since
|α|1 ≪ λ, |α|2 ≪ λ, Radon-Nikodym gives ε > 0 that for S ⊆ J if
λ(S) ≤ ε then |α|(S × J ∪ J × S) < ∥α∥

3 .

Hahn decomposition gives O′ : J2 → {−1, 1} such that∫
J2
O′(x , y) dα(x , y) = ∥α∥.

Since |α|(J × J \ E (G )) = 0, if n is large enough then there is an
orientation O of E (Gn) s.t.∫

J2
O(xn, yn) dα(x , y) >

2∥α∥
3

,

and there is pO : V (Gn+1)→ R for ε by assumption.
S = {x : ∃v ∈ V (Gn+1) (xn+1, v) ∈ E (Gn+1),
pO(xn+1)− pO(v) ̸= O(fn(xn+1), fn(v))}.



Wrapping up

On the one hand,∫
J2

pO(xn+1)− pO(yn+1) dα(x , y) = 0,

since (x , y) 7→ pO(xn+1)− pO(yn+1) is a potential.

On the other hand,
∫
J2 pO(xn+1)− pO(yn+1) dα(x , y) ≥∫

J2 O(xn, yn) dα(x , y)−
∫
S×J∪J×S 2 d |α|(x , y).

This leads to a contradiction, since λ(S) ≤ ε, and hence∫
J2 O(xn, yn) dα(x , y)−

∫
S×J∪J×S 2 d |α|(x , y) >

2∥α∥
3 − 2|α|(S) = 0, a contradiction.



The main building block of the constructions
G finite, d-regular graph and N ∈ N. Define F = F (G ,N).

V (F ) = V (G )× ΠO∈Ori(G)[N]

f : V (F )→ V (G ) and pO : V (F )→ [N] for O ∈ Ori(G ) denote
the projections

E (F ) = {(x , y) : x , y ∈ V (F ), (f (x), f (y)) ∈ E (G ),

∀O ∈ Ori(G ) pO(x)− pO(y) = O(f (x), f (y))}.

1. f is a graph homomorphism.
2. ∀u deg(u) ≤ d , deg(u) = d ⇐⇒ ∀O pO(u) /∈ {1,N}
3. |{u : deg(u) ⪇ d}| ≤ 2|Ori(G)|

N |V (F )|
4. |f −1(u)| = N |Ori(G)| for every u ∈ V (G ).
5. |f −1(u, v) ∩ E (F )| = (N − 1)|Ori(G)| for every (u, v) ∈ E (G ).
6. |{s ∈ f −1(u) : ∄t ∈ f −1(v), (s, t) ∈ E (F )}| =

N |Ori(G)| − (N − 1)|Ori(G)| for every (u, v) ∈ E (G ).
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The constructions

Graphings first! Set G1 = Kd ,d . In order to define Gn+1 take d2

copies of F (Gn, 2n) and a small number of additional vertices to
make it regular. The mappings f , pO can be extended if they are
constant in the neighborhood of every additional vertex.

V (Gn+1) = [d2]× V (Fn) ∪ {(x , j) : x ∈ V (Fn), j ∈
[d(d − degFn(x))]}, and

E (Gn+1) = {((i , x), (i , y)) : (x , y) ∈ E (Fn), i ∈ [d2]}∪{
((i , x), (x , j)) : x ∈ V (Fn),∃k ∈ [d − degFn(x)],

ℓ ∈ [d ], i(d − degFn(x))− k = jd − ℓ
}
.

For the coupling theorem construct Gn+1 from Gn as above and
take its direct product with an edge with loops. This doubles the
degree in every step.



Questions

K: Which finitely generated groups admit a measurable perfect
matching in their Schreier graphing of any pmp free ergodic action
w.r.t. any finite symmetric set of generators?

Infinite Kazhdan, one-ended amenable (for bipartite Cayley graphs)
do, certain two-ended groups do not. Free groups!?

K: Which finitely generated groups admit a measurable balanced
orientation in the Schreier graphing of any pmp free ergodic action
w.r.t. any finite symmetric set of generators?

Infinite Kazhdan, one-ended amenable do, certain two-ended groups
do not. (Z/2Z)∗d does not with the standard set of generators, but
with other generators it does! (d ≥ 2)

K: Other LCL properties?



Thank you!
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