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About this talk:

Introduction to the partite construction

Ramsey results for a broad notion of languages

The talk will be in catgorical language.
Please interrupt to have definitions repeated!
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Section 1

What are Small Ramsey Degrees?
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Definition (Ramsey property).

Let K be a category.

(1) K has the Ramsey property if

∀A,B ∈ K , r ∈ ω :

∃C ∈ K :

∀c ∈ rK(A,C) :

∃b ∈ K (B,C ), k ∈ r :

∀a ∈ K (A,B) :

c(b ◦ a) = k.

∃b ∈ K (B,C ) :

|c (b ◦ −) [K (A,B)]| = 1

C → (B)Ar ,1

(2) A ∈ K has small Ramsey degree d if d is minimal such that

∀B ∈ K , r ∈ ω : ∃C ∈ K : C → (B)Ar ,d .

We say K has finite small Ramey degrees if all A ∈ K have finite
small Ramey degree.
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Section 2

Categorical Languages

Maximilian Strohmeier Categorical Partite Construction 31.01.2025 5 / 25



Definition (Categorical languages).

Let K be a category.

(3) Let X ,Y ∈ K be L-cross-structures.
f ∈ K (X ,Y ) is a L-homomorphism if

∀R ∈ LR :

K
(
arLR (R),X

)
typeL(R)

K
(
arLR (R),Y

)
RX

f ◦−

RY

∀F ∈ LF :

K
(
X , arLF (F )(0)

)
K
(
X , arLF (F )(1)

)
K
(
Y , arLF (F )(0)

)
K
(
Y , arLF (F )(1)

)
FX

⟲−◦f

FY

−◦f

(4) We write L for the category of L-cross-structures and
L-homomorphisms, but will treat it as a subcategory of K.

(5) Analogously we define L-structures, where we have functions.
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Example (Classical structures).

K = Set,

∀F ∈ LF :
(
arLF (F )(0) ∈ ω ∧ arLF (F )(1) = 1

)
,

∀R ∈ LR : arLR (R) ∈ ω,

∀R ∈ LR : typeL(R) = 2 for strong structure homomorphisms or
∀R ∈ LR : typeL(R) = [2] for weak ones.

Example (A more complicated language).

K = Top,

a function with arities intervalls to circles,

a relation for each Sn with arity Sn deciding and mapping to the
homotopy type of contractability.
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Remark (Classification of languages I).

Let K be a category.

(2) Let L be a K-cross-language.

When, for each X ∈ L, K (arLR (R),X ) is a set, each co-function
symbol F ∈ LF corresponds to a functor

L/arLF (F )(0)
→ L/arLF (F )(1)

that commutes with the forgetful functors to L.
Alternatively every co-function symbol F ∈ LF corresponds to a
natural transformation between contravariant functors

K (−, arLF (F )(0)),K (−, arLF (F )(1)) : L → Set.

Lop Set

K(−,arLF (F )(0))

K(−,arLF (F )(1))

F
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K(arLR (R),−)

typeL(R)
R

(2) Let L be a K-cross-language.

When, for each X ∈ L, K (arLR (R),X ) is a set, each co-function
symbol F ∈ LF corresponds to a functor

L/arLF (F )(0)
→ L/arLF (F )(1)

that commutes with the forgetful functors to L.
Alternatively every co-function symbol F ∈ LF corresponds to a
natural transformation between contravariant functors

K (−, arLF (F )(0)),K (−, arLF (F )(1)) : L → Set.

Lop Set

K(−,arLF (F )(0))

K(−,arLF (F )(1))

F
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Definition (Multi-morphisms).

Let K be a category, L a K-(cross-)language and R ∈ LR a relation
symbol.

The 2-category KR
∞ of multi-morphisms of type R has

the same objects as K,

(1-)morphisms for X ,Y ∈ KR
∞ :

KR
∞(X ,Y ) := Cat(K (X ,Y ), typeL(R))

which compose for X ,Y ,Z ∈ KR
∞, φ ∈ KR

∞(X ,Y ), ψ ∈ KR
µ (Y ,Z ) :

ψ ◦ φ : K (X ,Z ) → typeL(R)

h 7→
∨

f∈K(X ,Y ),
g∈K(Y ,Z),

g◦f=h

(
ψ(g) ∧ φ(f )

)
.

and for 2-morphisms we have natural transformations.

It comes with an inclusion K ⊆ KR
µ , defined by mapping morphisms f to

the functor mapping only f to ⊤ and all parallel morphisms to ⊥.
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Lemma (Classification of languages II).

Let K be a category and L a K-(cross-)language.

Every relation symbol R ∈ LR corresponds to a lax cone of L ⊆ K ⊆ KR
∞

with object arLR (R).

1

L K KR
∞

R
arLR (R)

⊆ ⊆

Proof.

∀X ,Y ∈ K , f ∈ K (X ,Y ) :

X

arLR (R)

Y

f

RX

RY

;

;

typeL(R) on-objects-surjectively embedds into a lat-
tice and is hence a partial order, where everything
commutes.

1

L K KR
∞

R
arLR (R)

⊆ ⊆
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Section 3

Language colimits
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Theorem (L-cross-structure colimits).

Let K be a category and L a K-cross-language.

Cocones in K of diagrams in L are (K-isomorphic to) cocones in L and
being a colimit gets preserved.

Proof.

Let Z be a cocone of G : J → L ⊆ K in K .

”Preserving being a colimit” Now we show that the defined cocone
preserves being initial in L. The resulting cross-structure on the
colimit in K is a colimit in L, since every cocone W of G in L is a
cocone in K . The therefore uniquely existing K -morphism from the
colimit defines a K -morphism from the L-structure to the cone such
that everything commutes. So W is in particular a cocone over

J → 1
Z→ L. By the first part of the proof this cocone consisting out

of the existing morphism is in L. The hence existing L-morphism is
unique since L ⊆ K is faithful.
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Proof.

Let Z be a cocone of G : J → L ⊆ K in K .
”Cocone in L” First we define a cocone in L.

”Co-functions”

So the result written out is ∀X ,Y ∈ J, f ∈ J(X ,Y ) :

K
(
G (X ), arLF (F )(1)

)
K
(
Z , arLF (F )(0)

)
K
(
G (Y ), arLF (F )(1)

)

(
Z◦Fop

)
X

(
Z◦Fop

)
Y

−◦G(f ) ⟲

Hence for all X ∈ J the morphisms(
Z ◦ F op

)
X
∈ Set

(
K
(
Z , arLF (F )(0)

)
,K

(
G (X ), arLF (F )(1)

))
extend the natural transformation F to the cocone Z .
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Proof.

Let Z be a cocone of G : J → L ⊆ K in K .
”Cocone in L” First we define a cocone in L.

”Relations” For every relation symbol R ∈ LR , the lax
transformation, which is the associated lax cone in KR

∞, can be
extended to the colimit by vertical composition with the natural
transformation that is the cone Z .

1

J L K KR
∞

1

R
arLR (R)

G ⊆
Z

⊆

Z

;

1

J KR
∞

1

arLR (R)

Z◦R

Z

if J ̸= ∅
; 1 KR

∞

arLR (R)

Z

R◦Z ; (R ◦ Z )0 ∈ KR
∞(arLR (R),Z )

extends the lax cocone R.
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Definition (Blocks).

Let K be a category and L a K-cross-language.

(1) A block is a K-morphism with L-cross-structure domain.

(2) A block-homomorphism is a L-homomorphism between the domains
such that there exists a K-morphism between the codomains such
that the square (diagonally) commutes.

(3) Let Bl be the category of blocks and block-homomorphisms.
Let Blm be Bl restricted to split-monomorphisms in K.

(4) Let Blf be Bl restricted to the Bl-morphisms such that the existing
K-morphism between domains is f (or the identity).
We say that domain objects are Blf -objects whose codomain is the
domain of f and codomain objects are the ones whose codomain is
the codomain of f .

(5) Let G : D → K be a functor.
A G-block is a block in K whose codomain is G (A) for some A in D.
The category BlG of G-blocks has the block-homomorphisms that
commute with a morphism in the image of G.
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Definition (Line diagram).

Let K be a category and L a K-cross-language.

(1) A combinatorial line is a partial function, we interpret it as the set of
all functions that complete it and are constant on the missing values.
We call those constant completions the elements of the line and write
them with the usual ∈.
When we have an element of a line e ∈ l we write im(e \ l) for the
constant value e is completing l with.

(2) Let f ∈ K (U,V ) be a K-morphism, π ∈ K (X ,U) a split-monic
domain object, ρ ∈ K (Y ,V ) be a codomain object and N ∈ ω.
Let J (within this definition) be the category whose objects are the
lines in Blmf (π, ρ)

N and whose non-identity morphisms are the
element of a line relation.

(3) The line diagram of J is the functor G : J → Blf defined by
G (e ∈ l) :∈ im(e \ l) = {σ ∈ Bli0(π, ρ) | l(σ) = e}.
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Theorem (Sebastian Junge; [Jun22, Thm. 1]).

Let K be a category that has colimits (over diagrams where the objects
are lines in Blf ), L a K-cross-language with only strong relations and
f ∈ K (U,V ) be split-monic.

Then for each line diagram G the category Blf has a colimit over G that
is also a cocone over G restricted to the category Blmf .

Proof.

Let π ∈ K (X ,U) be a split-monic domain object and ρ ∈ K (Y ,V ) a
codomain object in Blf .
Let Z ∈ K be the colimit of the forgetful fuctor composed with the
line-diagram. Since, by the definition of blocks, V with ρ and f ◦ π is also
a cocone, let σ ∈ K (Z ,V ) be the uniquely existing morphism.
Since, by the Theorem for L-structure colimits, Z is the colimit in L, σ is a
codomain object. The forgetful functor is an equivalence between line
diagrams and their composition with it. Thus σ is the colimit of the line
diagram in Blf .
Let h ∈ K (V ,X ) be the left-inverse of f ◦ π. Each morphism x ∈ L(X ,Z )
of the colimit is split-monic, since f ◦ π = σ ◦ x is. Similarly, every
y ∈ L(Y ,Z ) of the colimit is split-monic, since it is an inclusion or there is
some e ∈ K (X ,Y ) such that ρ ◦ e = f ◦ π and thus
σ ◦ y ◦ e = ρ ◦ e = f ◦ π. This is indeed a cocone, since ∀e ′ ∈ Blf (π, ρ) :
e ◦ h ◦ ρ ◦ e ′ = e ◦ h ◦ f ◦ π = e. Then for each y the morphisms e ◦ h ◦ ρ
and morphisms e form a cocone with object Y . The uniquely existing
morphism from Z to Y is then the left-inverse of y .
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Section 5

Ramsey Transfer
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Definition (Transfer diagram).

(1) Let F : J → K be a functor and C ∈ J.

The transfer diagram over C and F is the composition of

J/C
forget→ J

F→ K.

(2) If F is a function J(A,B) → K (X ,Y ) then the transfer diagram of
A,B ∈ J over C and F is the appropriate restriction of the above
definition.

Theorem (Transfer Lemma; [Jun22, Lem. 2]).

Let T be a transfer diagram of A,B ∈ J over C and right-invertible F
with a cocone W ∈ K.

C → (B)Ar ,d

⇓

W → (T (B))
T (A)
r ,d

Proof.

([Jun22, Lem. 2]) For X ∈ {A,B}, each morphism in J(X ,C ) corresponds
to an object in the transfer diagram and each of those corresponds to an
arrow in the cocone, which is a morphism in K (T (X ),W ). We define a
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Section 6

Hales-Jewett
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Definition.

Let P be a set.

The category HJ(P) has objects ω and as morphisms in HJ(P)(k ,N) the
k-dimensional combinatorial objects of length N.

Theorem (Generalized Hales-Jewett).

Let P be a finite set.
Then ∀a, b, r ∈ ω : ∃c ∈ ω : c → (b)ar in HJ(P).
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Section 7

Partite Construction
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Theorem (Partite Lemma).

Let K be a locally finite category with finite colimits, L a K-cross-language
and f ∈ K (U,V ) be split monic.

Then split-monic domain objects in Blmf have small Ramsey degree 1.

Proof.

([Jun22, Lem. 2]) Let π ∈ Blf be a split-monic domain object and ρ ∈ Blf
be a codomain object.
Since K (domain(π),domain(ρ)) is finite, so is Blmf (π, ρ) and thus there
are only finitely many Blmf (π, ρ) lines. By Junges Theorem the line
diagram of π and ρ has a cocone in Blmf .
Let P := Blmf (π, ρ), which is finite. By Hales-Jewett
∀r ∈ ω : ∃N ∈ ω : N → (1)0r in HJ(P).
Consider the transfer diagram of 0, 1 ∈ HJ(P) over N and the equivalence
HJ(P)(0, 1) = Blmf (π, ρ). The non-identity arrows of the transfer diagram
are from a function to a proper line and indexed with the constant value
that completes the function accordingly. Thus the transfer diagram is
equivalent to the line diagram with the same objects.
By the Transfer Lemma, ∀r ∈ ω : ∃σ ∈ Blmf : σ → (ρ)πr .
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Theorem (Partite construction).

Let G : D → K be a functor between locally finite categories with
split-monic image. Suppose K has finite colimits and D has a bound
b ∈ ω + 1 on its small Ramsey degrees. Let L be a K-cross-language.

Then the small Ramsey degrees of split-monic objects in BlmG are bounded
by b.

Proof.
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”G -block ρ0”

By the Theorem for L-structure colim-
its the coproduct Y0 :=

⊔
D(V ,W ) Y

is a L-cross-structure.

Note that for
each f ∈ D(V ,W ), inclf is split-
monic. G (W ) with K -morphisms
G (f )◦ρ for f ∈ D(V ,W ) forms a co-
cone, and thus there exists a unique
commuting ρ0 ∈ K (Y0,G (W )).

∃!ρ0 ∈ K (Y0,G (W )) :
∀f ∈ D(V ,W ) : ρ0◦inclf =
G (f ) ◦ ρ.

Y Y0 :=
⊔

D(V ,W ) Y

G (V ) G (W )

inclf

ρ ⟲ ρ0
∃!

G(f )
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For k ∈ n
iteratively define from ρ0, using the Partite Lemma for BlmG(fk )

,

ρk+1 → (ρk)
π
r ,1.
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descendingly iterating for each k ∈ n, gk ∈ BlmG(fk )

(ρk , ρk+1) to be
monochromatic for the restriction of the coloring to morphisms in
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(π, ρn) that factor over ⃝l∈n\(k+1)gl .
Define a coloring of D(U,W ) where the color of fk ∈ D(U,W ) is
the one corresponding to gk for BlmG(fk )

.

Then, since W → (V )Ur ,d , there is a d-chromatic f ∈ D(V ,W ).
Thus, since inclf ∈ BlmG(f )(G (V ),G (W )), ⃝k∈ngk ◦ inclf witnesses
that ρn → (ρ)πr ,d .
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Thank you for your attention!

Sebastian Junge.
Categorical view of the partite lemma in structural ramsey theory.
Applied Categorical Structures, 31:1–13, 2022.
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