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What is a LOTS?

A Linearly Ordered Topological Space (or LOTS) is a linear order
endowed with the open interval topology, call it τ .

A LOTS looks like this: L = 〈κ,≤L,τL〉. We will abuse notation and
write L to denote the linear order, the underlying set and the
topological space... sometimes all three in the same sentence.

A linear order embedding f : A→ B is an injective order-preserving
map. When such a thing exists we can sensibly say (albeit informally)
that B contains a copy of A: there is a suborder of B, call it B′, that is
isomorphic to A.
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LOTS embeddings

A LOTS embedding is a linear order embedding that is also
continuous. In this case not only do we get B′ ∼= A as before but also
{f [u] : u ∈ τA}= {B′∩ v : v ∈ τB}, so it makes sense to say, again
informally, that the LOTS B contains a copy of A.

We can quasi-order the class of all LOs/LOTS by setting A≤ B if and
only if A embeds/LOTS-embeds into B. Similarly, we can quasi-order
the set of all LOs/LOTS of a given cardinality, κ . What are the
consistent properties of these quasi-orders? How do they differ for
LOTS and linear orders?

That is the question we investigate here.
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Universal Linear Orders

Under GCH, the embedding quasi-order for linear orders of size κ has
a unique (up to isomorphism) maximal element. For the countable
case, this is the rationals Q. For κ ≥ ω1, this is a linear order
generalising the density property of the rationals to a property called
κ-saturation:

∀S,T ∈ [Q(κ)]<κ [S < T ⇒ (∃x)S < x < T ].

If κ<κ = κ then there is a unique κ-saturated linear order of size κ

without endpoints, call it Q(κ).

Q(κ) is universal for linear orders of size κ . But κ-saturation implies
that no increasing sequence of length ω (for instance) can have a
supremum in Q(κ), so ω + 1 will not continuously embed into it. So it
is not a universal LOTS!
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An almost universal LOTS...
If we take the completion of Q(κ) under sequences of length less than
κ , then to some extent we get around counterexamples like this. But
again, ω + 1 + ω∗ cannot be continuously mapped into it. (We will
denote this partial completion by Q̄(κ), but note that there are still
sequences of length κ with no sup/inf – so in particular it still has size
κ .)

The following is basically the strongest partial result we can obtain by
tinkering with Q(κ):

Definition
If L is a linear order and x ∈ L, let l(x) = {y ∈ L : y < x} and
r(x) = {y ∈ L : x < y}.

Definition
We say a LOTS, L, of size κ is κ-entwined if for all x ∈ L, sup(l(x)) =
inf(r(x)) = x implies that both the cofinality of l(x) and the coinitiality
of r(x) are equal to κ .
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A simple example of universality

Theorem
(GCH) Q̄(κ) has size κ and is universal for κ-entwined LOTS.

Some other subclasses of LOTS for which universals exist:

I The rationals are universal for all countable LOTS.

I The reals are universal for all separable LOTS of size continuum.

In the general case, however, there is a strong technique for proving
the non-existence of universal LOTS of size κ ≥ 2ω .

Recall that a linear continuum is a linear order that is both dense and
complete. The IVT tells us that if A is a linear continuum and f : A→ B
is continuous and order-preserving, then f [A] must be a convex subset
of B.
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Making use of linear continua:

Lemma
Let [0,1]⊆ R denote the closed unit interval – that is, a copy of R with
endpoints – and [0,1) an isomorphic copy of R with a least point but
no greatest point. Then each of the following is a linear continuum:

I [0,1].

I [0,1).

I R′ = [0,1)× [0,1], ordered lexicographically.

I R′′ = [0,1)× [0,1]× [0,1], ordered lexicographically.

I R0 = R′+ [0,1).

I R1 = R′′+ [0,1).

We will use an infinite sum of copies of R0 and R1 to code subsets of
κ . The following is apparent:
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Making use of linear continua (2):

Lemma
R0 cannot be continuously embedded into R1. Likewise, R1 cannot be
continuously embedded into R0.

Proof.
By the I.V.T., if there was such an embedding then R1 would contain
an interval isomorphic to R0, or vice versa. This is clearly not the
case.

Observation
R0 and R1 both have a least point, so any direct sum of the form
∑α<ζ Riα , where iα ∈ {0,1} and ζ is an ordinal, is also a linear
continuum.

Let X ⊆ κ be unbounded and gX : κ →{0,1} its characteristic
function. Then RX = ∑α<κ RgX (α) is a linear continuum.
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No universal LOTS for κ ≥ 2ω

If X ,Y ∈ [κ]κ are such that there is no α < κ with X \α = Y \α then
there is no LOTS embedding f : RX → RY . Thus we can find 2κ many
LOTS that are pairwise non-embeddable.

Theorem
There is no universal for LOTS of size κ , for κ ≥ 2ω .

Proof.
Assume U is a universal LOTS of size κ . We can find 2κ many linear
continua as above, which are pairwise non-LOTS-embeddable. But
they all must embed continuously into U. So by the IVT we can find 2κ

many pairwise disjoint non-empty convex sets in U, which contradicts
|U|= κ .
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Further results on universality
In fact, we can use this method to show that the quasi-order of
LOTS-embeddability for LOTS of size κ ≥ 2ω has all the following
properties:

I Strictly increasing chains of length κ+.

I Strictly decreasing chains of length η < κ .

I Antichains of size 2κ .

I Dominating number 2κ .

In particular, under GCH we have a universal linear order for every
uncountable cardinal but no universal LOTS at any uncountable
cardinal!

Another technique we can use is to diagonalise over e.g. all functions
from ω to ω1. This allows us to show that certain subclasses of
uncountable LOTS, that do not include linear continua (such as those
that are densely disconnected) do not have universals in most
cardinals.
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The basis question

We have seen that the top of the LOTS embedding quasi-order is
maximally complex for a final section of the class of cardinals,
contrasting with the case for linear orders.

But the bottom of the LOTS embeddability quasi-order resembles
more closely that of the linear order case.

For countable linear orders/LOTS, {ω,ω∗} forms a trivial two element
basis (i.e. every countable linear order always continuously embeds
one of these).

J. Moore’s well-known result says that under PFA there is a five
element basis for the uncountable linear orders, consisting of the
following things:
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The five element basis

I ω1,ω
∗
1 .

I X , an arbitrary ℵ1-dense set of reals of size ℵ1.

I C, an arbitrary non-stationary Countryman line, and its reverse
C∗.

Baumgartner proved that under PFA all ℵ1-dense sets of size ℵ1 are
isomorphic.

An Aronszajn line is a linear order of size ℵ1 that does not embed ω1

or ω∗1 , and has no uncountable separable suborders.

A Countryman line is a type of Aronszajn line such that C×C is the
union of countably many chains in the product order. They exist in
ZFC, as proved by Shelah. Under PFA, any two non-stationary
Countryman lines are either isomorphic or reverse isomorphic.
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A basis for uncountable LOTS

However, the five element basis is not a basis for the uncountable
LOTS. But by adding a few carefully chosen linear orders we can get
an eleven element basis for the uncountable LOTS under PFA. We can
prove that this is the smallest possible basis that can exist for the
uncountable LOTS in any model of ZFC.

The basis consists of:

I ω1 and ω∗1 .

I ω1×ω∗ and ω∗1 ×ω .

I The product of the Countryman line with the integers, C×Z.

I Its reverse, C∗×Z.

I The arbitrary ℵ1-dense set of reals, X .

I X ×2, X ×ω , X ×ω∗ and X ×Z.
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