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Radon-Nikodym Property

A Banach space B has the Radon-Nikodym property
(RNP) if the Radon-Nikodym theorem is true for vec-
tor measures with values in B.

Radon-Nikodym compact space

Space K is called RN-compact if it is a weak*-compact
subspace of some dual Banach space having RNP.

Theorem (Orihuela, Schachermayer, Valdivia 1991)

Compact Hausdorff space is Eberlein iff it is RN and
Corson.
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Theorem (Avilés 2005)

A continuous image of an RN-compact space of
weight < b is RN-compact.

Weight of a space X (or w(X)) is the smallest size of a
basis of X.
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Theorem (Avilés 2005)

A continuous image of an RN-compact space of
weight < b is RN-compact.

| \

Theorem (Avilés and Koszmider 2013)

There is an RN-compact space with a continuous im-
age which is not RN-compact. It has weight c.
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Theorem

There is such RN-compact space of weight wy in many
models with non(M) = wy.




Anything more to do?

Question (Avilés and Koszmider 2013)

Consistently, can there be an RN-compact space of

weight < ¢ with a continuous image which is not RN-
compact?

There is such RN-compact space of weight wy in many
models with non(M) = wy.

More precisely, under {(non(M)) which is true e.g. in
Cohen, Sacks and Miller models where ¢ = w;.
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Construction basis -

Fix infinite A = Ucp<.Ar and Band (Cp, : b € B) with
» each C, is a countable subset of A,
» C, NGy isfinite forb #£ b'.
Furthermore there is a function D : B — w?™" st
given s : A — w there is b € B for which
(%) {a € C,NA;:s(a) = D(b)(t)} is infinite
for each t from infinitely many levels of 2<«.
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Preliminary space

K = AU BU{c} where
> Ais discrete,
» the basis of neighbourhoods of b € B is given by
{{b} U(Cp \ F) : Ffinite},
» K is a compactification of AU B.
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A brief summary of further steps

1. Lg=(Ax2¥)UBU{c}.
2. Lis a subset of Ly x (2¢)8 in a specific way with
> x € (Ax2¥)U{c} gives a unique pointinL,
> x € Bgives a unique function f in (2¢)8\*} and (x,g) € L
iff g agrees with f.
This L is RN-compact.
3. Image of L through a function sending (2+)8 to [0, 1]8
by binary evaluation on each coordinate, is not
RN-compact.

More details in [Avilés and Koszmider 2013].

w(L) =w(K) = |AUB|.
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How to get such AD family?

COE—

(Cp : b e B) C P(A) is an AD family. There is a function
D:B— w?™ st

givens : A — w thereis b € B for which
(%) {a € C,NA;:s(a) = D(b)(t)} is infinite
for each t from infinitely many levels of 2<«.

We will say that such b is a (x)-witness for s.

In our construction, each A; = wq and B = Lim(wy).
We fix a function D and A : B — w(Z™)xw,
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We construct (C, : « € Lim(wq)) with C, C a.
> Fora=¢0+w,letC, = [4, o).
» For a € Lim(Lim(wq)), let C;, be an enumeration of C,,

and
=0\ G

k<n

Fix a bijective e,, : @ — w. Let

Co={a0cAnC:ncwtec2 e(a) < Aa)(t,n)}.

Observation

If, for t's forming co-many levels of 2<¢ for co-many n
A(a)(t,n) is larger than some (e,-image of) a € Cp N At
with s(a) = D(«)(t), then a is a (x)-witness for s.
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Cardinal Invariants

Relational systems and their evaluations

(A,B,R) with R C A x Bis called a relational system.

0(A,B,R) = min{B : B C B,Vqeca Ipecs ORb}

Examples
> 0 =0(w¥,w¥, =%),
> b =0(w¥,w’, "),
» non(M) =0(M,R,F) =d(MNF,;, R, &) = d(w?,w, =)
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Thereis A : wy — 2<% so that for any ¢ € 2“1 the set

{a <wq: 90 [o= A()} is Stationary.

O(A, B,R) [Moore, Hrusak, and Dzamonja 2004]

For any (sufficiently definable) F : 2<¥1 — A, there is
A :wy — Bso that for any § € 2«1 the set

{a <wjy: F(6 |o) RA()} is Stationary.

<>(A7 37 R) = D(A’ 37 R) < w1
in many classical models the converse is also true.
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Our oracle

$(non(M)) on a slightly peculiar space

Forany F : 2<1 — M(w?™ x w?™“*¥), there are D :
w1 = w2 and A : w; — w?*¥ so that for any § € 2«1
the set

{a<wr:F(6 o) Z (D(a), A(ex))} is Stationary.

Let v € 2* encode (Cs : § € Lim(a)) ands:ANa — w. Let Gy
as before - disjoint, enumerated version of ;.

F(8) = {{x,y) € ™ x w?™ "
Vi 3t Y Yacanc, S(a) # x(t) or y(t,n) < e,(a)}



Thank you!

JOHANN

Radon in Vienna Nikodym in Krakéw
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