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Radon-Nikodym compacts

Radon-Nikodym Property

A Banach space B has the Radon-Nikodym property
(RNP) if the Radon-Nikodym theorem is true for vec-
tor measures with values in B.

Radon-Nikodym compact space

Space K is called RN-compact if it is a weak*-compact
subspace of some dual Banach space having RNP.

Theorem (Orihuela, Schachermayer, Valdivia 1991)

Compact Hausdorff space is Eberlein iff it is RN and
Corson.
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Anything more to do?

Question (Avilés and Koszmider 2013)

Consistently, can there be an RN-compact space of
weight < c with a continuous image which is not RN-
compact?

Theorem

There is such RN-compact space of weight ω1 in many
models with non(M) = ω1.
More precisely, under ♢(non(M)) which is true e.g. in
Cohen, Sacks and Miller models where c = ω2.
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Construction basis

Fix infinite A =
⋃̇
t∈2<ωAt and B and ⟨Cb : b ∈ B⟩ with

▶ each Cb is a countable subset of A,
▶ Cb ∩ Cb′ is finite for b ̸= b′.

Furthermore there is a function D : B → ω2<ω st

(⋆)
given s : A → ω there is b ∈ B for which
{a ∈ Cb ∩ At : s(a) = D(b)(t)} is infinite

for each t from infinitely many levels of 2<ω.
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Preliminary space

K = A ∪ B ∪ {c} where
▶ A is discrete,

▶ the basis of neighbourhoods of b ∈ B is given by
{{b} ∪ (Cb \ F) : F finite},

▶ K is a compactification of A ∪ B.
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A brief summary of further steps

1. L0 = (A× 2ω) ∪ B ∪ {c}.

2. L is a subset of L0 × (2ω)B in a specific way with
▶ x ∈ (A× 2ω) ∪ {c} gives a unique point in L,
▶ x ∈ B gives a unique function f in (2ω)B\{x} and ⟨x,g⟩ ∈ L

iff g agrees with f .
This L is RN-compact.

3. Image of L through a function sending (2ω)B to [0,1]B
by binary evaluation on each coordinate, is not
RN-compact.

More details in [Avilés and Koszmider 2013].
Fact

w(L) = w(K) = |A ∪ B|.
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How to get such AD family?

Recall

⟨Cb : b ∈ B⟩ ⊂ P(A) is an AD family. There is a function
D : B → ω2<ω st

(⋆)
given s : A → ω there is b ∈ B for which
{a ∈ Cb ∩ At : s(a) = D(b)(t)} is infinite

for each t from infinitely many levels of 2<ω.

We will say that such b is a (⋆)-witness for s.

In our construction, each At ∼= ω1 and B = Lim(ω1).
We fix a function D and ∆ : B → ω(2<ω)×ω.
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We construct ⟨Cα : α ∈ Lim(ω1)⟩ with Cα ⊆ α.
▶ For α = δ + ω, let Cα = [δ, α).

▶ For α ∈ Lim(Lim(ω1)), let C′
n be an enumeration of C<α

and
Cn = C′

n \
⋃
k<n

C′
k.

Fix a bijective eα : α → ω. Let

Cα = {a ∈ At ∩ Cn : n ∈ ω, t ∈ 2⩽n, e(a) ⩽ ∆(α)(t,n)}.

Observation

If, for t’s forming ∞-many levels of 2<ω for ∞-many n
∆(α)(t,n) is larger than some (eα-image of) a ∈ Cn ∩ At
with s(a) = D(α)(t), then α is a (⋆)-witness for s.
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Cardinal Invariants

Relational systems and their evaluations

(A,B,R) with R ⊆ A× B is called a relational system.

d(A,B,R) = min{B : B ⊆ B,∀a∈A ∃b∈B aRb}

Examples
▶ d = d(ωω, ωω,⩾∗),
▶ b = d(ωω, ωω, ̸⩽∗),
▶ non(M) = d(M,R, ̸∋) = d(M∩ Fσ,R, ̸∋) = d(ωω, ωω,=∞)
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Diamonds

♢

There is ∆ : ω1 → 2<ω1 so that for any δ ∈ 2ω1 the set

{α < ω1 : δ ↾α= ∆(α)} is Stationary.

♢(A,B,R) [Moore, Hrušák, and Džamonja 2004]

For any (sufficiently definable) F : 2<ω1 → A, there is
∆ : ω1 → B so that for any δ ∈ 2ω1 the set

{α < ω1 : F(δ ↾α)R∆(α)} is Stationary.

♢(A,B,R) =⇒ d(A,B,R) ⩽ ω1
in many classical models the converse is also true.
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Our oracle

♢(non(M)) on a slightly peculiar space

For any F : 2<ω1 → M(ω2<ω × ω2<ω×ω), there are D :
ω1 → ω2<ω and ∆ : ω1 → ω2<ω×ω so that for any δ ∈ 2ω1

the set

{α < ω1 : F(δ ↾α) ̸∋ (D(α),∆(α))} is Stationary.

Let γ ∈ 2α encode ⟨Cδ : δ ∈ Lim(α)⟩ and s : A ∩ α → ω. Let Cn
as before – disjoint, enumerated version of Cδ.

F(δ) = {⟨x, y⟩ ∈ ω2<ω × ω2<ω×ω :

∀∞l ∃t∈2l ∀
∞
n ∀a∈At∩Cn s(a) ̸= x(t) or y(t,n) < eα(a)}
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Thank you!

Radon in Vienna Nikodym in Kraków
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