
Inner models from extended logics
(All three lectures in one file)

Jouko Väänänen
University of Helsinki

University of Amsterdam

Winter School, Hejnice, January 2025



1. Basics 1. Tame! 1. Tame? 2. L(aa) 2. CD 2. CH 3. C(L2) 3. HOD1 3. C2(ω) References

Inner model from extended logics

Lecture 1: Extended logics, inner models, examples, L-tameness.

Lecture 2: Stationary logic, a Completeness Theorem, Club
Determinacy, Applications.

Lecture 3: Second order logic, HOD.
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The tutorial is based on

• Inner Models from Extended Logics: Part 1, J. Kennedy,
M. Magidor and J.V. Journal of Mathematical Logic (2021).

• Inner Models from Extended Logics: Part 2, J. Kennedy,
M. Magidor and J.V. Journal of Mathematical Logic. (to
appear)

• Also relevant: Closed and unbounded classes and the
Härtig quantifier model., Ph. Welch, J. Symb. Log. (2022).
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We will learn in this first lecture:

• A new construction of a whole family of inner models.

• Why some of them are not really new.

• Why and how some of them extend known inner models.
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Figure: Map of extended logics
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Possible desirable attributes of extended logics

• Axiomatizable.

• Downward Löwenheim-Skolem Theorem (in some form).

• Compactness Theorem (in some form).

• Can express interesting mathematical properties.

• Abstract Model Theory [1].
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Common inner models

• Cumulative hierarchy V .

• Constructible sets L.

• Hereditarily ordinal definable sets HOD.

• L[µ], L[~E ]

• L(R)

• Chang model Cω1ω1 .
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Possible desirable attributes of inner models

• Forcing absolute.

• Support large cardinals.

• Arise “naturally”.

• Decide questions such as CH.

• Satisfy Axiom of Choice.

8 / 104



1. Basics 1. Tame! 1. Tame? 2. L(aa) 2. CD 2. CH 3. C(L2) 3. HOD1 3. C2(ω) References

No (very) large cardinals in L.

Scott 1961 [12].

• Suppose V = L and κ is (the least) MC with n.u.f. F .

• Let N = V κ.

• Define f ∼ g ⇐⇒ {α < κ : f (α) = g(α)} ∈ U.

• Define [f ] E [g ] ⇐⇒ {α < κ : f (α) ∈ g(α)} ∈ U.

• Let (M,∈) be the Mostowski collapse of (N,E ).

• Let i(a) = [ca].

• i : V → M elementary, i(κ) > κ.

• M |= “i(κ) is the least MC”.

• But M = V , a contradiction.
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Project: Inner models from extended logics

• Replace first order logic by one of the logics in the
Map-of-Logics in order to obtain new inner models with
desirable properties.

• The inner model C (L∗) arises from Gödel’s L by replacing
first order logic Lωω by an extension L∗ of Lωω.
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The inner model L

In 1940 Gödel introduced L [3].



L0 = ∅
Lν =

⋃
α<ν Lα for limit ν

Lα+1 = {X ⊆ Lα : X is Lωω-definable over Lα

i.e. X = {a ∈ Lα : Lα |= ϕ(a, ~b)}
for some ϕ(x , ~y) ∈ Lωω and some ~b ∈ Lα}

L =
⋃
α Lα.

Theorem
L |= ZFC.
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The definition of the inner model C (L∗)



L′0 = ∅
L′ν =

⋃
α<ν L

′
α for limit ν

L′α+1 = {X ⊆ L′α : X is L∗-definable over L′α

i.e. X = {a ∈ L′α : L′α |= ϕ(a, ~b)}
for some ϕ(x , ~y) ∈ L∗ and some ~b ∈ L′α}

C (L∗) =
⋃
α L
′
α.

Theorem
If L∗ has “nice syntax” (e.g. arises from first order logic by adding
a finite number of generalized quantifiers), then C (L∗) |= ZFC.
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Measuring the strengths of logics

• L∗ ≤ L+ if L∗ ⊆ L+.

• L∗ ≤′ L+ if C (L∗) ⊆ C (L+).

• A set theoretic perspective to the strength of logics.
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What if we don’t get anything new...

Definition
A logic L∗ is L-tame, if C (L∗) = L.

Can we characterize L-tame logics? Does L-tameness have model
theoretic content?
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Tameness of L(Q0)

Q0xϕ(x , ~b) ⇐⇒ there are infinitely many x satisfying ϕ(x , ~b).

Theorem ([6])

C (L(Q0)) = L.

Lemma
Suppose µ is an ordinal, and A ⊆ µ such that A ∈ Lκ, κ > µ. If
there is a one-one f : ω → A, then there is such a function f in Lκ.

Proof.
Suppose there isn’t. Since Lκ satisfies AC, there is n < ω and
one-one g : A→ n in L such that g ∈ Lκ. But such a g is a
one-one A→ n also in V , contradicting the existence of f in
V .
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We use induction on α to prove that L′α ⊆ L. Suppose L′α ⊆ L,
and hence L′α ∈ Lγ for some γ. We show that L′α+1 ⊆ L. Suppose
X ∈ L′α+1. Then X is of the form

X = {a ∈ L′α : (L′α,∈) |= ϕ(a, ~b)},

where ϕ(x , ~y) ∈ L(Q0) and ~b ∈ L′α. For simplicity we suppress the
mention of ~b.
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Since we can use induction on ϕ, the only interesting case is

X = {a ∈ L′α : There is a one-one f : ω → Xa},

where (by ind. hyp.)

Xa = {c ∈ L′α : (L′α,∈) |= ψ(c, a)} ∈ Lκ,

for some κ > γ.
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Now the Lemma implies

X = {a ∈ L′α : There is a one-one f : ω → Xa in Lκ},

Finally,

X = {a ∈ Lκ : (Lκ,∈) |= “a ∈ L′α ∧
There is a one-one f : ω → L′α such that for all n
ψ(x , f (n)) is true when relativized to L′α”}.

Thus X ∈ Lκ+1.
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More generally...

Qαxϕ(x , ~b)

⇐⇒

there are at least ℵα many x satisfying ϕ(x , ~b).

• The same proof gives L-tameness of L(Qα0 , . . . ,Qαn) for all
α0, . . . , αn.

• Q{α1,...,αn} says the cardinality is one of {ℵα1 , . . . ,ℵαn}. This
is also L-tame.
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Tameness of the Magidor-Malitz logic L(QMM,2
0 )

QMM,2
0 xyϕ(x , y , ~b) ⇐⇒

there is an infinite set X such that ∀x , y ∈ Xϕ(x , y , ~b).

Theorem ([6])

C (QMM,2
0 ) = L.

Lemma
Suppose µ is an ordinal, and A ∈ Lκ, κ > µ, such that A ⊆ [µ]2. If
there is an infinite B such that [B]2 ⊆ A, then there is such a set
B in Lκ.

Proof.
Blackboard!
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Tameness of the Magidor-Malitz quantifier, assuming 0]

QMM
1 xyϕ(x , y , ~b) ⇐⇒

there is an uncountable set X such that ∀x , y ∈ Xϕ(x , y , ~b).

This is not L-tame in general, but:

Theorem ([6])

If 0] exists, then C (QMM
1 ) = L.
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The story of 0]

“0] exists” means and implies that there is a club class I of
ordinals such that

1. L |= ϕ(γ1, ..., γn)↔ ϕ(γ′1, ..., γ
′
n) whenever

γ1 < ... < γn, γ
′
1 < ... < γ′n are in I and ϕ(x1, ..., xn) is a first

order formula of set theory.

2. Lγ ≺ L whenever γ ∈ I .

3. If γ ∈ Lim(I ), then {X ⊆ γ : ∃δ((I \ δ) ∩ γ ⊆ X )} is an
L-ultrafilter.

4. Rowbottom Property: Suppose γ ∈ Lim(I ). Suppose
C ⊆ [γ]2, where C ∈ L. Then there is B ∈ Uγ such that
[B]2 ⊆ C or [B]2 ∩ C = ∅.
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Lemma
Suppose 0] exists, µ is an ordinal, and A ∈ L such that A ⊆ [µ]2.
If there is an uncountable B such that [B]2 ⊆ A, then there is such
a set B in L.
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How does the Lemma helps us to prove the theorem

• We will use induction on α to prove that L′α ⊆ L.

• We suppose L′α ⊆ L, and hence L′α ∈ Lγ for some canonical
indiscernible γ.

• We show that L′α+1 ⊆ Lγ+1.

• Suppose X ∈ L′α+1.

• Then X is of the form

X = {a ∈ L′α : (L′α,∈) |= ϕ(a, ~b)},

where ϕ(x , ~y) ∈ L(QMM
1 ) and ~b ∈ L′α.

• For simplicity we suppress the mention of ~b.
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Since we can use induction on ϕ, the only interesting case is

X = {a ∈ L′α : There is an uncountable set Y ⊆ L′α

such that [Y ]2 ⊆ Xa},

where (by ind. hyp.)

Xa = {{c , d} ∈ [L′α]2 : (L′α,∈) |= ψ(c , d , a)} ∈ L.
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The Lemma implies

X = {a ∈ L′α : There is an uncountable set Y ⊆ L′α, Y ∈ L

such that [Y ]2 ⊆ Xa},

Since Lγ ≺ L, we have

X = {a ∈ L′α : There is an uncountable set Y ⊆ L′α, Y ∈ Lγ

such that [Y ]2 ⊆ Xa},

Finally,

X = {a ∈ Lγ : (Lγ ,∈) |= “a ∈ L′α ∧
There is an uncountable Y ⊆ L′α such that for all x , y ∈ Y
ψ(x , y , a) is true when relativized to L′α”} ∈ Lγ+1.
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Now the proof of the lemma

• Want to prove: If there is an uncountable B such that
[B]2 ⊆ A, then there is such a set B in L.

• W.l.o.g. |B| = ℵ1, say B = {δi : i < ω1} in increasing order.

• Let I be the canonical closed unbounded class of indiscernibles
for L. Let, for simplicity, δi = τi (α

i ), where αi ∈ I .

• W.l.o.g., τi is a fixed term τ .

• W.l.o.g. the mapping i 7→ αi is strictly increasing in i .

• Let γ = sup{αi : i < ω1}. It is a limit point of I because I is
a club.
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Let
C = {{α, α′} ∈ [γ]2 : {τ(α), τ(α′)} ∈ A}. (1)

Since A ∈ L, also C ∈ L. By the Rowbottom Property there is
B0 ∈ Uγ such that

[B0]2 ⊆ C or [B0]2 ∩ C = ∅. (2)
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Claim: [B0]2 ⊆ C .

To prove this suppose [B0]2 ∩C = ∅. Since B0 ∈ Uγ , there is ξ < γ
such that (I \ ξ) ∩ γ ⊆ B0. We can now find i , j < ω1 such that

ξ < αi < γ, ξ < αj < γ.

Then since by the choice of B,

τ(αi ), τ(αj) ∈ B,

and [B]2 ⊆ A, we have

{τ(αi ), τ(αj)} ∈ A.

Hence
{αi , αj} ∈ C (3)

contrary to the assumption [B0]2 ∩ C = ∅. We have proved the
claim.

29 / 104



1. Basics 1. Tame! 1. Tame? 2. L(aa) 2. CD 2. CH 3. C(L2) 3. HOD1 3. C2(ω) References

So we know [B0]2 ⊆ C . Now we define

B∗ = {τ(α) : α ∈ B0}. (4)

Then B∗ ∈ L, |B∗| = ℵ1.

Claim: [B∗]2 ⊆ A.

Proof of the Claim: Suppose {τ(α), τ(α′)} ∈ [B∗]2, where
{α, α′} ∈ [B0]2. Thus {α, α′} ∈ C i.e. {τ(α), τ(α′)} ∈ A and we
are done.
Lemma proved.

Similarly, for ”there is an uncountable branch”-quantifier.

Consistently, C (QMM
1 ) 6= L.
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A case of non-tameness

Shelah [13] introduced:

Qcof
ω xyϕ(x , y , ~b) ⇐⇒

ϕ(x , y , ~b) defines a linear order of countable cofinality.

Define C ∗ = C (L(Qcof
ω )).

Not L-tame:

Theorem ([6])

If 0] exists, then 0] ∈ C ∗, so C ∗ 6= L.
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• Let I be the canonical set of indiscernibles obtained from 0].

• CLAIM: ordinals ξ which are regular cardinals in L and have
cofinality > ω in V are in I .

• Suppose ξ /∈ I . Note that ξ > min(I ).

• Let δ be the largest element of I ∩ ξ.

• Let λ1 < λ2 < ... be an infinite sequence of elements of I
above ξ.
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• If α < ξ, then α = τnα(γ1, . . . , γmn , λ1, . . . , λrn) for some
γ1, . . . , γmn ∈ I ∩ δ and some rn < ω.

• Let us fix n and consider the set
An = {τk(β1, . . . , βmn , λ1, . . . , λrn) : β1, . . . , βmn < δ, k < ω}.
• Note that An ∈ L and |An|L ≤ |δ|L < ξ, because ξ is a

cardinal in L.

• Let ηn = sup(An).

33 / 104



1. Basics 1. Tame! 1. Tame? 2. L(aa) 2. CD 2. CH 3. C(L2) 3. HOD1 3. C2(ω) References

• Since ξ is regular in L, ηn < ξ.

• Since ξ has cofinality > ω in V , η = supn ηn < ξ.

• But we have now proved that every α < ξ is below η, a
contradiction.

• So we may conclude that necessarily ξ ∈ I .
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Let

X = {ξ ∈ L′ℵω : (L′ℵω ,∈) |= “ξ is regular in L”∧¬Qcf
ω xy(x ∈ y∧y ∈ ξ)}

Now X is an infinite subset of I and X ∈ C (Qcof
ω ). Hence

0] ∈ C (Qcof
ω ):

0] = {pϕ(x1, . . . , xn)q : (Lℵω ,∈) |= ϕ(γ1, . . . , γn)

for some γ1 < ... < γn in X}.

More about C ∗ later.
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A summary of this lecture

• Abstract logics L∗ give rise to inner models C (L∗).

• Some logics are provably L-tame.

• Some logics (Magidor-Malitz logic) are L-tame assuming 0].

• Some logics (cofinality logic) are not L-tame assuming 0].
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Next lecture

• Stationary logic and its inner model C (aa).

• A Completeness Theorem using iterated generic ultrapowers.

• Club Determinacy from a proper class of Woodin cardinals.

• Applications: forcing absoluteness, large cardinals, CH
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This lecture

• Stationary logic and its inner model C (aa).

• A Completeness Theorem using iterated generic ultrapowers.
(Joint work with B. Velickovic)

• Club Determinacy from a proper class of Woodin cardinals.

• Applications: forcing absoluteness, large cardinals, CH
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Stationary logic L(aa)

Suppose we have a model M and a formula ϕ(s, ~b).

I x0 x2 . . .

II x1 x3 . . .

Player II wins if the set {x0, x1, x2, . . .} satisfies ϕ(s, ~b) in M.

We write this M |= aasϕ(s, ~b).

“aa” is short for “almost all”.
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Stationary logic L(aa)

aasϕ(s, a) ⇐⇒ ∀x0∃x1∀x2∃x3 . . . ϕ({x0, x1, x2, . . .}, a)
⇐⇒ {A ∈ Pω1(M) : (M,A) |= ϕ(A, a)}

contains a club of countable subsets M.

Q1xϕ(x , a) ⇐⇒ |{b ∈ M :M |= ϕ(b, a)}| ≥ ℵ1

⇐⇒ ¬aas∀y(ϕ(y)→ s(y)).

Qcof
ω xyϕ(x , y , a) ⇐⇒ aas∀x(∃yϕ(x , y)→ ∃y(ϕ(x , y) ∧ s(y)))

40 / 104



1. Basics 1. Tame! 1. Tame? 2. L(aa) 2. CD 2. CH 3. C(L2) 3. HOD1 3. C2(ω) References

A completeness theorem1 for L(aa)

• Consider
(1) ϕ has a model and
(2) there is a model (of set theory) for “ϕ has a model”.

• We prove (1) and (2) are equivalent.

• The easy direction is (1) =⇒ (2). Follows from Reflection.

• To prove the other direction we start with a countable model
M0 of “ϕ has a model A”.

• We construct an “L(aa)-absolute” (to be explained)
elementary extension Mω1 of M0.

• Then Mω1 satisfies “ϕ has a model jω1(A)”.

• Since Mω1 is “L(aa)-absolute”, ϕ really has a model, and we
have (1).

1[2], [13]
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A completeness theorem for L(aa)

• We build an elementary chain of length ωV
1 .

• M0 →
j01

M1 →
j12

M2 → · · · → Mα →
jαα+1

Mα+1 · · · → Mω1

• Notation: j0α = jα.
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Generic ultrapower

• Let us construct the embedding M0 →
j1

M1.

• W.l.o.g. M0 |= ZFCn.

• Let P = (NS+
ω1

)M , i.e. the stationary subsets of ωM
1 in the

sense of M.

• Let G be P-generic over M0. As M0 is countable, G exists in
V . Note that G contains all clubs of M.

• Let N = {f ∈ M | f : ωM
1 → M}.

• Define f ∼ g ⇐⇒ {α < ωM
1 : f (α) = g(α)} ∈ G .

• Let M1 = N/∼ and j1(a) = [ca], where ca(α) = a.
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A completeness theorem for L(aa)

• (Loś Lemma) For first order ϕ we have

M1 |= ϕ([f1], . . . , [fn]) ⇐⇒

{α ∈ ωM
1 : M0 |= ϕ(f0(α), . . . , fn(α))} ∈ G

• j1 : M0 → M1 is elementary.

• [id ] ∈ j(a) if and only if a ∈ G .

• M1 need not be well-founded.
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A completeness theorem for L(aa)

• j1(α) = “α” i.e. has exactly α predecessors in M1, when
α < ω1.

• supα<ωM
1

(j1(α)) = [id ]

• j1(ωM
1 ) > [id ]

• A new element [id ] is put to the ω1 of the model M1.

• Consequence: ω
Mω1
1 is ℵ1-like.
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Completeness Theorem for L(aa)

• Some hassle arises from the fact that L(aa) has second order
variables in addition to first order variables.

• If the domain of the model is ω1 (or just ℵ1-like with a copy
of ω1 inside, call it E ), we can aa-quantify over countable
ordinals (or initial segments determined by elements of E in
the case of an ℵ1-like ordering with a copy E of ω1 inside)
rather than countable subsets.

• This is because if C is a club of countable subsets of ω1, then
the set D ⊆ C consisting of countable ordinals (or initial
segments determined by elements of E in the case of an
ℵ1-like ordering with a copy E of ω1 inside) that are (as sets)
in C is also a club as a set of countable ordinals.
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Pulling jω1
(A) from Mω1

to V

• M0 |= “A |= ϕ”, and therefore Mω1 |= “jω1(A) |= ϕ”

• We define a model A∗ in V .

• The domain of A∗ is A∗ = {a ∈ Mω1 : Mω1 |= a ∈ ωMω1
1 }

• RA
∗

= {(a, b) ∈ A∗ × A∗ : Mω1 |= “jω1(A) |= R(a, b)”}
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The goal

1. Starting point is A |= ϕ, where ϕ ∈ L(aa).

2. We have reached: Mω1 |= “jω1(A) |= ϕ”.

3. We need to prove by induction on subformulas ψ of ϕ:

(?) A∗ |= ψ ⇐⇒ Mω1 |= “jω1(A) |= ψ”.

4. Then, letting ψ be ϕ, A∗ |= ϕ will follow from (2) and (3)
and we are done.

5. As usual, we need to add parameters to (?) as they arise from
quantifiers.

6. To deal with parameters we adopt a lot constant symbols.
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Some preliminaries

• Let K be a set of ℵ1 new constant symbols. Assume K ∈ M0.

• Let {Sϕ(s,~x),~c : ϕ(s, ~x) ∈ L(aa), ~c ∈ K<ω} be a splitting in V
of ω1 into ω1 disjoint stationary sets.

• When we construct the models Mα we make sure that every
element of Mα which is in ωMα

1 is the value of a constant
symbol from K .

• That is, we keep expanding the models Mα so that every
element of Mα which is in ωMα

1 is the value of a constant
symbol from K .

• Since always the domain of jα(A) is ωMα
1 , and we consider

aa-truth in jα(A) only, we may drop the parameters, because
they are represented by the constant symbols.
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A completeness theorem for L(aa)

• Suppose Mω1 satisfies “jω1(A) |= aa sψ(s)”, and, for
simplicity, there are no parameters.

• Then M0 satisfies “A |= aa sψ(s)”.

• Hence {α < ωM0
1 : M0 |= “A |= ψ′(α)”} is a club and

therefore is in G0, whichever way G0 is chosen. Here ψ′(α) is
obtained from ψ(s) by changing everywhere “s(t)” to t < α.

• Hence M1 |= “A |= ψ′([id0])”.

• Similarly, Mα+1 |= “jα+1(A) |= ψ′([idα])” for all α.

• In the end, Mω1 |= “jω1(A) |= ψ′(jαω1 [idα])” for all α.

• By Ind. Hyp, A∗ |= ψ′(jαω1 [idα]) for all α.

• Hence A∗ |= aa sψ(s).
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A completeness theorem for L(aa)
• Conversely, suppose Mω1 satisfies “jω1(A) 6|= aasψ(s)”.

• Thus Mω1 satisfies “jω1(A) |= stat s¬ψ(s)”.

• Then M0 satisfies A |= stat s¬ψ(s).

• Hence S = {α < ωM0
1 : M0 |= “A |= ¬ψ′(α)”} is stationary

and therefore we can choose G0 so that S is in G0.

• Hence M1 |= “A |= ¬ψ′([id0])”.

• Similarly, Mα+1 |= “jα+1(A) |= ¬ψ′([idα])” for all α. But we
choose Gα so that (the corresponding set) S is in Gα only if
α ∈ Sψ(s),~c , where ~c are the constant occurring in ψ(s).

• In the end, Mω1 |= “jω1(A) |= ¬ψ′(jαω1 [idα])” for all
α ∈ Sψ′(s),~c .

• By Ind. Hyp, A∗ |= ¬ψ′(jαω1 [idα]) for all α ∈ Sψ′(s),~c .

• Hence A∗ |= stat s¬ψ(s).

• Hence A∗ 6|= aa sψ(s).
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The definition of C (aa) = C (L(aa))

Because L(aa) has second order variables, our definition of
C (L(aa)) does not guarantee than C (L(aa)) satisfies Axiom of
Choice. It is an open problem whether it does. Therefore we
modify the construction. We do not know whether it is a proper
modification. Another open problem!

Jensen’s J-hierarchy:

Suppose T is a class.
JT0 = ∅
JTα+1 = rudT (JTα ∪ {JTα })
JTν =

⋃
α<ν J

T
α , for ν = ∪ν.

Here rudT includes the operation x 7→ x ∩ T .
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The definition of C (aa) = C (L(aa))

We define the hierarchy (J ′α), α ∈ Lim, as follows:

Tr = {(α,ϕ(a)) : (J ′α,∈,Tr �α) |= ϕ(a),

ϕ(x̄) ∈ L(aa), a ∈ J ′α, α ∈ Lim},

where
Tr �α = {(β, ψ(a)) ∈ Tr : β ∈ α ∩ Lim},

and
J ′0 = ∅
J ′α+ω = rudTr (J ′α ∪ {J ′α})
J ′ων =

⋃
α<ν J

′
ωα, for ν ∈ Lim

C (aa) =
⋃
α=∪α J

′
α.
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Stationary tower forcing (see e.g. [8])

• Suppose δ is a Woodin cardinal2.

• There is a forcing notion Q = Q<δ such that |Q| = δ and
such that if G ⊆ Q is generic over V then in V [G ]:

• δ is still a cardinal.

• There is an elementary embedding j : V → M where M is a
transitive class such that j(ω1) = δ. and such that Mω ⊆ M.

2A cardinal δ is Woodin, of for all f : δ → δ there is κ < δ, closed under f ,
and i : V → M with critical point κ such that Vj(f (κ)) ⊆ M.
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C ∗ is forcing absolute, assuming PCW

• Suppose P is a po-set.

• Let G be P-generic.

• Choose a Woodin cardinal λ > |P|.
• Let H1 be generic for the stationary tower forcing Q<λ.

• In V [H1] there is a generic embedding j1 : V → M1 such that
V [H1] |= Mω

1 ⊆ M1 and j(ω1) = λ.

• Hence (C ∗)V [H1] = (C ∗)M1 and3

j1 : (C ∗)V → (C ∗)M1 = (C ∗)V [H1] = (C ∗<λ)V .

• Now by elementarity Th((C ∗)V ) = Th((C ∗<λ)V ).

3C∗<λ asks whether the cofinality of a linear order is < λ.
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• Since |P| < λ, λ is still Woodin in V [G ].

• Let H2 be generic for Q<λ over V [G ].

• Let j2 : V [G ]→ M2 be the generic embedding.

• Now V [G ,H2] |= Mω
2 ⊆ M2 and j2(ω1) = λ.

• Hence

j2 : (C ∗)V [G ] → (C ∗)M2 = (C ∗)V [G ,H2] = (C ∗<λ)V [G ] = (C ∗<λ)V ,

• By elementarity (C ∗)V ≡ (C ∗<λ)V ≡ (C ∗)V [G ].
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An important property of C (aa): Club Determinacy

• For all α:

(J ′α,∈,Tr �α) |= ∀x̄ [aasϕ(x̄ , t̄, s) ∨ aas¬ϕ(x̄ , t̄, s)],

where ϕ(x̄ , t̄, s) is any formula in L(aa) and t̄ is a finite
sequence of countable subsets of J ′α.

• CD follows from a proper class of Woodin cardinals [5].

• CD follows from PFA [5].
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How does Club Determinacy follow from PCW?

• After some preliminary forcing and absoluteness steps we still
have a Woodin cardinal δ and a measurable above.

• Now we use stationary tower forcing and j : V → M.

• We compare4 C (aaδ)
V , C (aa)M , level by level, and show,

that they are the same model.

• As we do this, we establish Club Determinacy in V .

4aaδ asks whether there is a club of sets of cardinality < δ satisfying a
formula.
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Theorem ([5])

• Assuming Club Determinacy, every regular κ ≥ ℵ1 is
measurable5 in C (aa).

• Suppose there are a proper class of Woodin cardinals. Then
the first order theory of C (aa) is (set) forcing absolute.

5We take, for a big α, all X ⊆ κ in J ′α which in J ′α satisfy aas(s ∩ κ ∈ X ).
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Proof of the forcing absoluteness of C (aa)

• Suppose P is a forcing notion and δ a Woodin cardinal > |P|.
• Let j : V → M be the (generic) associated elementary

embedding.

• Now C (aa) ≡ (C (aa))M = C (aaδ).

• Let H ⊆ P be generic over V and j ′ : V [H]→ M ′.

• Again: (C (aa))V [H] ≡ (C (aa))M
′

= (C (aaδ))V [H].

• But (C (aaδ))V [H] = C (aaδ), since |P| < δ
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Deeper into C (aa)

Deeper understanding of C (aa) requires development of the theory
of aa-mice.
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Preparation for the definition of aa-premice

• We fix the following notation:
τξ = {R∈,RT ,RT∗} ∪ {Pη : η < ξ}, τ−ξ = τξ \ {RT∗}.
• Here R∈ and RT are binary and RT∗ ,Pη (η < ξ), are unary.

• We use (P)ξ to denote a sequence 〈Pη : η < ξ〉.
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• An aa-premouse is a structure JT
α = (JTα ,∈,T ,T ∗, (P)ξ) in

the vocabulary τξ which is a small copy of C (aa).

• Typically, JT
α is countable, so the semantics of the

aa-quantifier makes no sense, and we consider it syntactically
only.

• Therefore we deal with aa-theories such as T and T ∗.

• T codes the theories of the previous levels.

• T ∗ is the theory of JTα .

• The (P)ξ is a potentially countable initial segment of a club.
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Example

The canonical example of an aa-premouse is

N = (J ′α,∈,Tr �α,Trα),

where Trα = {ϕ(a) : (α,ϕ(a)) ∈ Tr . Note that N ∈ C (aa).
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Suppose (JTα ,∈,T ,T ∗, (P)ξ) is an aa-premouse. We define

ϕ(s, x , a) ∼ ϕ′(s, x , a′)

if and only if

aas (fϕ(s,x ,a)(s) = fϕ′(s,x ,a′)(s)) ∈ T ∗.

The aa-ultrapower of (JTα ,∈,T ,T ∗, (P)ξ), has the set M∗ of
∼-equivalence classes as its domain. For predicates R we define:

RM∗([ϕ1(s, x , a1)], . . . , [ϕn(s, x , an)]) ⇐⇒

aasR(fϕ1(s,x ,a1)(s), . . . , fϕn(s,x ,an)(s)) ∈ T ∗.

The canonical embedding j : J ′α → M∗ is defined by j(a) = [x = a].
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Definition
Let P∗ be a new unary predicate symbol and
(P∗)M

∗
= {j(a) : a ∈ JTα }. We let S∗ consist of

ψ(P∗, [ϕ1(s, x , a)], . . . , [ϕn(s, x , a)]),

where ψ(s, x1, . . . , xn) is a τ -formula of L(aa), and

aasψ(s, fϕ1(s,x ,a)(s), . . . , fϕn(s,x ,a)(s)) ∈ T ∗.
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• We obtain iterates (Mβ,Eβ,Tβ,T
∗
β , (P

β)β) of the
aa-premouse (M0,E0,T0,T

∗
0 , (P)0).

• An aa-premouse (M0,E0,T0,T
∗
0 , (P)0) is an aa-mouse if its

β’th iterate (Mβ,Tβ,T
∗
β , (P

β)β) is well-founded for all
β < ω1.

• In this case we say that the aa-premouse
(M0,E0,T0,T

∗
0 , (P)0) is iterable.
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Proposition

Let 〈(Mβ,Eβ,Tβ,T
∗
β , (P

β)β), jβ,γ : β ≤ γ ≤ ω1〉 be an aa-iteration
of aa-mice. Then for all formulas ϕ(a) of stationary logic in
vocabulary τ−ω1

and all a ∈ Mω1 :

ϕ(a) ∈ T ∗ω1
⇐⇒ (Mω1 ,Eω1 ,Tω1 , (P

ω1)ω1) |= ϕ(a).
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Lemma
Suppose

(M0,∈,T0,T
∗
0 , (P)0) ≺ (J ′ωα,∈,Tr�ωα,Trωα, (P ′)0),

where α is a limit ordinal and M0 is countable. Then Mω1 does not
have new reals over those in M0.

Theorem ([5])

If Club Determinacy holds, then CH holds in C (aa).
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Theorem ([5])

If club determinacy holds, there is a ∆1
3 well-ordering of the reals

in C (aa). The reals form a countable Σ1
3-set.

Proof.
The canonical well-order ≺ of C (aa) satisfies:

x ≺ y ⇐⇒ ∃z ⊆ ω( z codes an aa-mouse M such that

x , y ∈ M and M |= “x ≺ y”).

The right hand side of the equivalence is Σ1
3 and the claim

follows.
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A summary of this lecture

• Stationary logic has a completeness theorem.

• Stationary logic gives rise to C (aa).

• Assuming large cardinals, C (aa) is forcing absolute, has
measurable cardinals, and satisfies CH.
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The next Lecture:

We learn:

• Why the second order constructible universe C (L2) is the
strongest?

• How to force the powerful Henkin quantifier constructible
universe part ways with C (L2)?

• Why quantifying over countable sets gives a perfect (?) inner
model?
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Tutorial Lecture Three

We learn:

• Why the second order constructible universe C (L2) is the
strongest?

• How to force the powerful Henkin quantifier constructible
universe part ways with C (L2)?

• Why quantifying over countable sets gives a perfect (?) inner
model?
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Gödel introduced HOD in 1946 [4].

Theorem ([11])

C (L2) = HOD.
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C (L2) ⊆ HOD

• Let (L′α) be the hierarchy building C (L2).

• We use induction on α to show L′α ∈ HOD.

• Suppose X ∈ L′α+1, i.e. X = {a ∈ L′α : L′α |= ϕ(a, ~b)}, where
ϕ(x , ~y) is a second order formula in the language of set theory
and ~b ∈ L′α.

• Now X = {a : a ∈ L′α ∧ L′α |= ϕ(a, ~b)}, whence X ∈ HOD as
the truth predicate “ |= ” of second order logic is a
set-theoretical predicate.
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C (L2) ⊇ HOD

• Let X ∈ HOD.

• There is a first order ϕ(x , ~y) and ordinals ~β such that for all a

a ∈ X ⇐⇒ ϕ(a, ~β).

• By Levy Reflection there is an α such that X ⊆ Vα and for all
a ∈ Vα

a ∈ X ⇐⇒ Vα |= ϕ(a, ~β).
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• Since we proceed by ∈-induction, we may assume X ⊆ C (L2).

• Let γ be big enough that X ⊆ L′γ and |L′γ | ≥ |Vα|.
• We show now that X ∈ L′γ+1 by giving a second order formula

Φ(x , y , ~z) such that

X = {a ∈ L′γ : L′γ |= Φ(a, α, ~β)}.

• We know
X = {a ∈ L′γ : Vα |= ϕ(a, ~β)}.

• Intuitively, X is the set of a ∈ L′γ such that on L′γ some

(M,E ,P, a∗, ~β∗) ∼= (Vα,∈, α, a, ~β) satisfies ϕ(a∗, ~β∗).
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• We formalize the intuitive idea:

• Let θ(x , ~z) be a second order formula of the vocabulary
{E ,P}, E binary (“∈”), P unary (“the class of all ordinals”),
such that:

• (M,E ,P) |= θ(a∗, ~β∗) ⇐⇒ there is

π : (M,E ,P) ∼= (Vδ,∈, δ)

such that
(Vδ,∈) |= ϕ(π(a∗), π( ~β∗)).
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Assume for a moment we have such a θ.

The following are equivalent, showing that X ∈ L′γ+1:

(1) a ∈ X

(2) L′γ |= ∃M∃E ((M,E , α) |= θ(a, ~β)∧
TC({a}) ∪ α + 1 ∪ ~β ∪ {~β} ⊆ M).
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(1) a ∈ X

(2) L′γ |= ∃M∃E((M,E , α) |= θ(a, ~β)∧ TC({a}) ∪ α+ 1 ∪ ~β ∪ {~β} ⊆ M).

• (1)→ (2) : Suppose a ∈ X . Thus Vα |= ϕ(a, ~β).

• Let M ⊆ L′γ and E ⊆ M2 s. t. α + 1,TC(a), ~β ∈ M and there

is an isomorphism f : (Vα,∈, α, a, ~β) ∼= (M,E ,P, a∗, ~β∗).
Remember |L′γ | ≥ |Vα|.
• We can assume P = α, a∗ = a and ~β∗ = ~β by doing a partial

Mostowski collapse6 for (M,E ), since α + 1,TC(a), ~β ∈ M.

• Then (M,E , α) |= ϕ(a, ~β), whence (M,E , α) |= θ(a, ~β), i.e.
(2).

6In the Mostowski collapse everything that is transitive collapses onto itself.
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(1) a ∈ X

(2) L′γ |= ∃M∃E((M,E , α) |= θ(a, ~β)∧ TC({a}) ∪ α+ 1 ∪ ~β ∪ {~β} ⊆ M).

• (2)→ (1) : Suppose M ⊆ L′γ , P ⊆ M, and E ⊆ M2 such that

TC({a}) ∪ α + 1 ∪ ~β ∪ {~β} ⊆ M and (M,E ,P) |= θ(a, ~β).

• We may assume
E � TC({a})∪α+1∪ ~β∪{~β} = ∈� TC({a})∪α+1∪ ~β∪{~β}.
• There is an isomorphism π : (M,E ,P) ∼= (Vα,∈, α) such that

(Vα,∈) |= ϕ(π(a), π(~β)).

• But π(a) = a and π(~β) = ~β.

• So in the end (Vα,∈) |= ϕ(a, ~β). We have proved (1).
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Construction of the formula θ

θ(x , z) is the conjunction, in the vocabulary {E ,P}, of:

1. E is extensional and well-founded (i.e. there is no infinite
sequence (an) such that an+1Ean for all n.)

2. The class of the ordinals of the model is P.

3. If the cumulative hierarchy is built inside M using E as the
ε-relation, then at successor stages Ma+1 *every* subset of
Ma is in Ma+1.

4. ϕ(x , z) translated into the {E}-vocabulary.
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• Define HOD1 = C (L(H)), where H is the Henkin quantifier(
∀x ∃y
∀u ∃v

)
ϕ(x , y , u, v) ⇐⇒

∃f , g∀x , uϕ(x , f (x), u, g(u)) ⇐⇒ 7

∀x∀u∃y∃v(=(x , y)∧ =(u, v) ∧ ϕ(x , y , u, v))

• Equivalently, HOD1 = C (Σ1
1).

7[14]
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Note that for all β and A ∈ HOD1:

• {α < β : cfV (α) = ω} ∈ HOD1

• {(a, b) ∈ A2 : |a|V ≤ |b|V } ∈ HOD1

• {α < β : α cardinal in V } ∈ HOD1

• {α < β : (2|α|)V = (|α|+)V } ∈ HOD1
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Lemma ([6])

1. C ∗ ⊆ HOD1.

2. C (QMM,<ω
1 ) ⊆ HOD1.

3. If 0] exists, then 0] ∈ HOD1 (by 1).

• Naturally, HOD1 = HOD is consistent, since we can assume
V = L.

• Also HOD1 6= HOD is consistent relative to Con(ZF) ([6]).

• Now we ask the same questions in the presence of large
cardinals.
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Theorem ([6, 9])

It is consistent, relative to the consistency of a supercompact
cardinal that HOD = HOD1 and there is also a supercompact
cardinal.

We use [10] where it is proved that V = HOD is consistent with a
supercompact. The coding used in [10] gives also that V = HOD1

is consistent with a supercompact.
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Theorem ([6, 9])

It is consistent, relative to the consistency of a supercompact
cardinal that for some λ:

{κ < λ : κ weakly compact} /∈ HOD1,

and there is a supercompact cardinal.

Corollary

HOD 6= HOD1 is consistent with a supercompact.
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• [10] shows that one can start with any model with a
supercompact cardinal and force V = HOD preserving the
supercompact cardinal.

• It is enough to code subsets of cardinals κ such that κ = iκ.

• Menas codes subsets into the relation 2ℵα+1 = ℵα+ω+3.

• A set X ⊆ ℵν ends up being definable as

{α < ℵν : 2ℵe(ν)+α+1 = ℵe(ν)+α+3},

where e(ν) is the νth ordinal α such that α = iα.

• Hence his model satisfies V = HOD1.
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To be done on the blackboard

• We assume V0 has a supercompact cardinal and satisfies
V = HOD1.

• Let κn, n < ω be a sequence of weakly compact cardinals and
λ = supn κn.

• Let Dδ be the forcing notion for adding a Cohen subset of the
regular cardinal δ.

• We proceed as in [7]. Let η < κ be two regular cardinals. We
denote by Rη,κ the Easton support iteration of Dδ for
η ≤ δ ≤ κ.
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To be done on the blackboard

• The forcing Rκ+
n−1,κn

, where for n = 0 we take κ−1 = ω1, we

denote by Pn.

• Note that forcing with Pn preserves the weak compactness of
κn.

• Note that Pn ∗ Dκn is forcing equivalent to Pn.

• Let Q be the full support product of Pn, n < ω. Let V ∗ = VQ
0 .

• Q can be decomposed as Qn × Pn ×Qn where Qn has
cardinality κn−1 and Qn is κ+

n closed.

• Hence Qn and Qn do not change the weak compactness of
κn, which is preserved by Pn.

• For n < ω, the cardinal κn is weakly compact in V ∗.
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To be done on the blackboard

• As in [7], we define in V Pn a forcing Sn to be the canonical
forcing which introduces a κn homogeneous Soulin tree. It
kills the weak compactness of κn.

• Let Tn be the forcing which introduces a branch through the
tree forced by Sn.

• Sn ∗ Tn is forcing equivalent to Dκn .

• If we force with Tn over V Pn∗Sn , we regain the weak
compactness of κn.

• Also a generic object for Dκn introduces a generic object for
Tn.
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To be done on the blackboard
• Let V ∗1 = VQ

0 .
• Let Gn be the generic filter in Pn, introduced by Q.
• The model V ∗3 is the model one gets from V ∗1 by forcing over

it with the full support product of Dκn . (Dκn is as realized
according to Gn.).
• Let Hn ⊆ Dκn be the generic filter introduced by this forcing.
• Note that V ∗3 can also be obtained from V0 by forcing with Q.

In particular both in V1 and in V ∗3 the cardinals κn are weakly
compact for every n < ω. Let V3 be an extension of V ∗3 by
adding a Cohen real a ⊆ ω.
• Let A be the Cohen forcing on ω.
• Let V1 = V ∗1 (a). Both V1 and V3 are obtained by forcing over
V0 with Q× A which is a homogenous forcing notion. Hence
HODV1 = HODV3 .
• Again we did not kill the weak compactness of the cardinals
κn.

92 / 104



1. Basics 1. Tame! 1. Tame? 2. L(aa) 2. CD 2. CH 3. C(L2) 3. HOD1 3. C2(ω) References

To be done on the blackboard

• Each Hn introduces a generic filter for the forcing Sn (As
defined according to Gn). Let Kn ⊆ Sn be this generic filter.

• We define V2 = V1[a, 〈Kn|n 6∈ a〉, 〈Hn|n ∈ a〉].
• For n < ω we define
Wn = V0(a, 〈Gi |i ≤ n〉, 〈Ki |i ≤ n, i 6∈ a〉, 〈Hi |i ≤ n, i ∈ a〉).
• If n ∈ a then Wn is obtained from V0 by a product of Pn ∗ Dn

and some forcings of size < κn. Since Pn ∗ Dn preserves the
weak compactness of κn, κn is weakly compact in Wn.

• If n 6∈ a then Kn generates a tree on κn which is still Souslin
in Wn. (Small forcings do not change the Souslinity of a
tree.) So κn is not weakly compact in Wn.

• κn is weakly compact in Wn iff n ∈ a.
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To be done on the blackboard

• By the standard arguments analysing the power-set of a
cardinal δ under a forcing which is the product of a forcing of
size µ < δ, a forcing of size δ which is µ+-distributive, and a
forcing which is δ+-distributive:

• For n < ω P(κn)V2 = P(κn)Wn .

• V2 |= a = {n < ω|κn is weakly compact}.
• a ∈ HODV2 .
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To be done on the blackboard

• The proof of the Theorem will be finished if we show that
HODV2

1 = V0.

• For an ordinal α let L1
α, L

2
α, L

3
α be the α-th step of the

construction of (C (Σ1
1))V1 , (C (Σ1

1))V2 , (C (Σ1
1))V3

respectively.

• (?) For every α: L1
α = L2

α = L3
α.

• The proof of (?) is by induction on α where the cases α = 0
and α limit are obvious.

• By the induction assumption on α we can put
M = L1

α = L2
α = L3

α.

• Note that M ∈ V0 since M ∈ HODV1 = V0.

• Let Φ(~x) be a Σ1
1 formula and let ~b be a vector of elements of

M.

95 / 104



1. Basics 1. Tame! 1. Tame? 2. L(aa) 2. CD 2. CH 3. C(L2) 3. HOD1 3. C2(ω) References

To be done on the blackboard

Lemma
The following are equivalent

1. (M |= Φ(~b))V1 .

2. (M |= Φ(~b))V3 .

3. (M |= Φ(~b))V2 .
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To be done on the blackboard

• Without loss of generality, Φ(~x) has the form ∃XΨ(X , ~x).

• Both V1 and V3 are obtained form V0 by forcing over V0 with
Q× A. This forcing is homogeneous.

• M and all the elements of the vector ~b are in V0.

• So (1) is clearly equivalent to (2).

• Suppose that (M |= Φ(~b))V2 . Let Z ⊆ M be the witness for
the existential quantifier of Φ. Then (M |= Ψ(Z , ~b))V2 . But
all the quantifiers of Ψ are first order, so (M |= Ψ(Z , ~b))V3 .

• So (3) implies (2), and hence (1).

• For the other direction, if (M |= Φ(~b))V3 , then we know that
(M |= Φ(~b))V1 . Let Z ∈ V1 satisfy M |= Ψ(Z , ~b). So
(M |= Ψ(Z , ~b))V2 , and therefore (M |= Φ(~b))V2 .
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To be done on the blackboard

• It follows from the lemma that every Σ1
1 formula defines the

same subset of M in V1, V2 and V3.

• It follows that L1
α+1 = L2

α+1 = L3
α+1.

• This proves the lemma and the theorem.

• Conclusion: Large cardinals cannot decide the question
“HOD = HOD1?”
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Quantifying over countable sets8: C 2(ω) [9]

• L2(ω) is second order logic where the second order variables
range over countable sets.

• C 2(ω) =def C (L2(ω)).

• C ∗ ⊆ C 2(ω).

• Consistently C 2(ω) 6⊆ C ∗: Force over L a ∆1
3-non

constructible real. That real is in C 2(ω), but the forcing is
CCC, so C (aa) = C ∗ = L. Likewise C 2(ω) 6⊆ C (aa).

• Consistently C (aa) 6⊆ C 2(ω): Start with L. Add a Cohen real.
Still C 2(ω) = L as the forcing is homogeneous. Now code by
further forcing the Cohen real into stationarity of some
L-stationary sets. The forcing does not add new countable
sets, so still C 2(ω) = L. But now the Cohen real is in C (aa).

8Joint work with Menachem Magidor.
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Quantifying over countable sets9: C 2(ω)

• ZFC ` C 2(ω) ⊆ HODCω1ω1 . Hence Th(C 2(ω)) is forcing
absolute, assuming a proper class of Woodin limits of
Woodins. (Woodin)

• V = C 2(ω) implies there are no measurable cardinals.

• ωV
1 is strongly Mahlo in C 2(ω), assuming a Woodin limit of

Woodins. [9]

• C 2(ω) contains, for every n, the inner model with n Woodin
cardinals.

• If there is a proper class of Woodin limits of Woodin
cardinals, then every regular cardinal is measurable in
C 2(ω, aa) and C 2(ω, aa) is forcing absolute [9].

• CH?

9Joint work with Menachem Magidor.
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Recent developments

1. Assume a proper class of Woodin cardinals. The reals of
C (aa) (and also of C ∗) are in M1. C (aa) has no inner model
with a Woodin cardinal. (Magidor-Schindler)

2. Assume Club Determinacy. Then Ultrapower Axiom and GCH
hold in C (aa). (Goldberg-Steel)

3. Assume Club Determinacy. If κ is regular in C (aa) with
cof (κ) ≥ ωV

2 , then o(κ)C(aa) ≥ 2. Moreover, then
o(ωV

3 )C(aa) ≥ 3. (Goldberg-Rajala)

4. If V = Lµ, then V = C (aa). (Goldberg, Magidor, Schindler,
Steel)

5. There is ongoing investigation on what kind of mice can be
found inside models such as C ∗ and C (aa). (Goldberg,
Magidor, Schindler, Steel)
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A summary of this lecture

• The second logic version of L is actually HOD.

• The Henkin quantifier version of L, called HOD1, can be
smaller than HOD

• Quantifying over countable subsets yields an inner model
C 2(ω, aa) which is, assuming large cardinals, forcing absolute
and has measurable cardinals. Does it have CH?
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[3] Kurt Gödel. The Consistency of the Continuum Hypothesis, volume No. 3 of
Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1940.
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Thank you!
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