Topological fractals (and maybe also self regenerating fractals)

Klára Karasová

Winter school in Abstract analysis 2024

Joint work with Benjamin Vejnar, paper in preparation

Peano continua

Klára Karasová Topological fractals (and maybe also self regenerating fractals)

<ロ> <同> <同> <同> <同> < 同>

э

Continuum is a nonempty connected compact metric space. Peano continuum is a locally connected continuum.

(E)

Continuum is a nonempty connected compact metric space. Peano continuum is a locally connected continuum.

 A metric space is a Peano continuum iff it is a continuous image of I = [0, 1],

• • = • • = •

Continuum is a nonempty connected compact metric space. Peano continuum is a locally connected continuum.

- A metric space is a Peano continuum iff it is a continuous image of I = [0, 1],
- A continuum X is a Peano continuum iff it has the property S, i.e. iff for every ε > 0 there exists a finite cover of X formed by connected sets with diameter smaller than ε.

Self-similar sets

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

We say that a nonempty compact $X \subseteq \mathbb{R}^n$ is self-similar if there exist similarities $f_1, f_2, \ldots, f_n : X \to X$ with ratio strictly less than 1 such that $X = f_1(X) \cup \cdots \cup f_n(X)$.

.

We say that a nonempty compact $X \subseteq \mathbb{R}^n$ is self-similar if there exist similarities $f_1, f_2, \ldots, f_n : X \to X$ with ratio strictly less than 1 such that $X = f_1(X) \cup \cdots \cup f_n(X)$.

• Examples: a point, the unit interval, the Cantor set

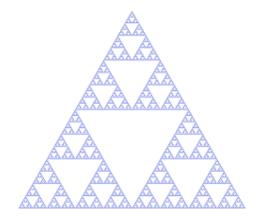
- Examples: a point, the unit interval, the Cantor set
- $[0, 1]^n$ is self-similar for every natural n

- Examples: a point, the unit interval, the Cantor set
- $[0, 1]^n$ is self-similar for every natural n
- Sierpinski triangle, Koch snowflake

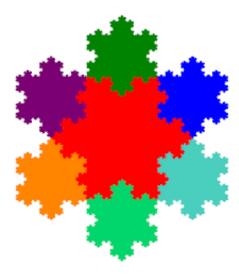
- Examples: a point, the unit interval, the Cantor set
- $[0, 1]^n$ is self-similar for every natural n
- Sierpinski triangle, Koch snowflake
- The circle and the Koch curve are not self-similar

- Examples: a point, the unit interval, the Cantor set
- $[0, 1]^n$ is self-similar for every natural n
- Sierpinski triangle, Koch snowflake
- The circle and the Koch curve are not self-similar
- Every connected self-similar set is a Peano continuum

Sierpinski triangle

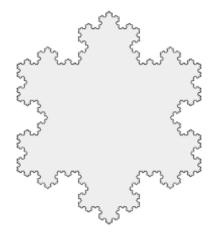


Koch snowlake as a union of smaller Koch snowlakes



Klára Karasová Topological fractals (and maybe also self regenerating fractals)

Koch curve



-

æ

-≣ ▶

Metric fractals - definition, examples

Klára Karasová Topological fractals (and maybe also self regenerating fractals)

We say that a nonempty compact metric space X is a metric fractal if there exist contractions $f_1, f_2, \ldots, f_n : X \to X$ such that $X = f_1(X) \cup \cdots \cup f_n(X)$.

< 同 > < 三 > < 三 >

We say that a nonempty compact metric space X is a metric fractal if there exist contractions $f_1, f_2, \ldots, f_n : X \to X$ such that $X = f_1(X) \cup \cdots \cup f_n(X)$.

• Every self-similar set is a metric fractal

伺 ト イヨト イヨト

We say that a nonempty compact metric space X is a metric fractal if there exist contractions $f_1, f_2, \ldots, f_n : X \to X$ such that $X = f_1(X) \cup \cdots \cup f_n(X)$.

- Every self-similar set is a metric fractal
- Metric fractals that are not self-similar: the circle, Koch curve

周 ト イ ヨ ト イ ヨ ト

We say that a nonempty compact metric space X is a metric fractal if there exist contractions $f_1, f_2, \ldots, f_n : X \to X$ such that $X = f_1(X) \cup \cdots \cup f_n(X)$.

- Every self-similar set is a metric fractal
- Metric fractals that are not self-similar: the circle, Koch curve
- $[0, 1]^n$ is a metric fractal for every natural *n*, but $[0, 1]^{\mathbb{N}}$ is not a metric fractal

・ 同 ト ・ ヨ ト ・ ヨ ト

Metric fractals - properties

Klára Karasová Topological fractals (and maybe also self regenerating fractals)

▶ ∢ ≣

• Every connected metric fractal has a property S and thus is a Peano continuum

• • = • • = •

- Every connected metric fractal has a property S and thus is a Peano continuum
- All metric fractals are of a finite topological dimension

- Every connected metric fractal has a property S and thus is a Peano continuum
- All metric fractals are of a finite topological dimension
- Hata's conjecture (1985): Every Peano continuum of a finite topological dimension is a metric fractal

- Every connected metric fractal has a property S and thus is a Peano continuum
- All metric fractals are of a finite topological dimension
- Hata's conjecture (1985): Every Peano continuum of a finite topological dimension is a metric fractal
- There exists a one dimensional plane Peano continuum that is not even homeomorphic to any metric fractal (T. Banakh, M. Nowak; 2013)

Topological fractals, Hata's conjecture

We say that a nonempty compact metric space X is a topological fractal if there exist continuous functions $f_1, \ldots, f_n : X \to X$ satisfying $f_1(X) \cup \cdots \cup f_n(X) = X$ such that for every $\varepsilon > 0$ there exists $k \in \mathbb{N}$ such that for every $1 \le i_1, i_2, \ldots, i_k \le n$ is the diameter of the set $f_{i_1}f_{i_2} \ldots f_{i_k}(X)$ less than ε .

We say that a nonempty compact metric space X is a topological fractal if there exist continuous functions $f_1, \ldots, f_n : X \to X$ satisfying $f_1(X) \cup \cdots \cup f_n(X) = X$ such that for every $\varepsilon > 0$ there exists $k \in \mathbb{N}$ such that for every $1 \le i_1, i_2, \ldots, i_k \le n$ is the diameter of the set $f_{i_1}f_{i_2} \ldots f_{i_k}(X)$ less than ε .

• Again every connected topological fractal has a property S and thus is a Peano continuum

We say that a nonempty compact metric space X is a topological fractal if there exist continuous functions $f_1, \ldots, f_n : X \to X$ satisfying $f_1(X) \cup \cdots \cup f_n(X) = X$ such that for every $\varepsilon > 0$ there exists $k \in \mathbb{N}$ such that for every $1 \leq i_1, i_2, \ldots, i_k \leq n$ is the diameter of the set $f_{i_1}f_{i_2} \ldots f_{i_k}(X)$ less than ε .

- Again every connected topological fractal has a property S and thus is a Peano continuum
- Hata's conjecture (unsolved since 1985): Every Peano continuum is a topological fractal

・ 同 ト ・ ヨ ト ・ ヨ ト

Klára Karasová Topological fractals (and maybe also self regenerating fractals)

・ロト ・四ト ・ヨト ・ヨト

2

 [0, 1]ⁿ is a topological fractal for every natural n and moreover, two maps suffice, but it is not known whether [0, 1]^N is a topological fractal

・ 同 ト ・ ヨ ト ・ ヨ ト …

- [0, 1]ⁿ is a topological fractal for every natural n and moreover, two maps suffice, but it is not known whether [0, 1]^N is a topological fractal
- For every Peano continuum X, glueing to X an arc yields a topological fractal (Dumitru 2011)

• (1) • (

- [0, 1]ⁿ is a topological fractal for every natural n and moreover, two maps suffice, but it is not known whether [0, 1]^N is a topological fractal
- For every Peano continuum X, glueing to X an arc yields a topological fractal (Dumitru 2011)
- Every Peano continuum that contains a self-regenerating fractal as a subset with nonempty interior is a topological fractal (Nowak 2021)

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

The main result

Klára Karasová Topological fractals (and maybe also self regenerating fractals)

æ

Let X be a connected TS and $x \in X$. We say that x is a cut point of X if $X \setminus \{x\}$ is not connected.

伺 ト イヨ ト イヨト

Let X be a connected TS and $x \in X$. We say that x is a cut point of X if $X \setminus \{x\}$ is not connected.

Theorem

Every Peano continuum with uncountably many cut points is a topological fractal. Moreover, there is a structure of a topological fractal consisting of just two maps.

Let X be a connected TS and $x \in X$. We say that x is a cut point of X if $X \setminus \{x\}$ is not connected.

Theorem

Every Peano continuum with uncountably many cut points is a topological fractal. Moreover, there is a structure of a topological fractal consisting of just two maps.

This is the optimal result for all non-degenerate spaces.

The main result

Klára Karasová Topological fractals (and maybe also self regenerating fractals)

æ

Let X be a TS and $x \in X$. We say that x is a local cut point of X if there exists U a connected neighborhood of x such that $U \setminus \{x\}$ is not connected.

伺 ト イヨ ト イヨト

Let X be a TS and $x \in X$. We say that x is a local cut point of X if there exists U a connected neighborhood of x such that $U \setminus \{x\}$ is not connected.

The circle has no cut points but all its points are its local cut points.

Let X be a TS and $x \in X$. We say that x is a local cut point of X if there exists U a connected neighborhood of x such that $U \setminus \{x\}$ is not connected.

The circle has no cut points but all its points are its local cut points.

Theorem

Every Peano continuum with uncountably many local cut points is a topological fractal. Moreover, there is a structure of a topological fractal consisting of just three maps.

・ 同 ト ・ ヨ ト ・ ヨ ト

We say that a nonempty compact metric space X is a self regenerating fractal if for every nonempty open set $U \subseteq X$ there exist continuous functions $f_1, \ldots, f_n : X \to X$ constant on the complement of U that witness that X is a topological fractal.

周 ト イ ヨ ト イ ヨ ト

We say that a nonempty compact metric space X is a self regenerating fractal if for every nonempty open set $U \subseteq X$ there exist continuous functions $f_1, \ldots, f_n : X \to X$ constant on the complement of U that witness that X is a topological fractal.

• Self regenerating fractals are topological fractals

周 ト イ ヨ ト イ ヨ ト

We say that a nonempty compact metric space X is a self regenerating fractal if for every nonempty open set $U \subseteq X$ there exist continuous functions $f_1, \ldots, f_n : X \to X$ constant on the complement of U that witness that X is a topological fractal.

- Self regenerating fractals are topological fractals
- Examples of self-regenerating fractals: the interval, the Cantor set, the Sierpinski triangle, ...

・ 同 ト ・ ヨ ト ・ ヨ ト

We say that a nonempty compact metric space X is a self regenerating fractal if for every nonempty open set $U \subseteq X$ there exist continuous functions $f_1, \ldots, f_n : X \to X$ constant on the complement of U that witness that X is a topological fractal.

- Self regenerating fractals are topological fractals
- Examples of self-regenerating fractals: the interval, the Cantor set, the Sierpinski triangle, ...

Theorem (M. Nowak, 2021)

Every Peano continuum containing a self regenerating fractal as a subset with nonempty interior is a topological fractal itself.

< ロ > < 同 > < 三 > < 三 >

Theorem

If every Peano continuum that is a topological fractal contains a self regenerating fractal as a subset with nonempty interior, then every Peano continuum contains a self regenerating fractal as a subset with nonempty interior, and thus in particular every Peano continuum is a topological fractal (Hata's conjecture).

Open problems

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

• Is the number 3 for Peano continua with uncountably many local cut points optimal?

< 同 > < 国 > < 国 >

Open problems

- Is the number 3 for Peano continua with uncountably many local cut points optimal?
- In particular, is there a two-element structure for the circle? And what about higher dimensional spheres?

伺 ト イヨト イヨト

- Is the number 3 for Peano continua with uncountably many local cut points optimal?
- In particular, is there a two-element structure for the circle? And what about higher dimensional spheres?
- A characterization / A description of Peano continua admitting a two-element structure? We know that it must cover Peano continua with uncountably many local cut points as well as [0, 1]ⁿ for all natural n

伺下 イヨト イヨト

- Is the number 3 for Peano continua with uncountably many local cut points optimal?
- In particular, is there a two-element structure for the circle? And what about higher dimensional spheres?
- A characterization / A description of Peano continua admitting a two-element structure? We know that it must cover Peano continua with uncountably many local cut points as well as [0, 1]ⁿ for all natural n
- Which graphs are topological fractals with two maps and for which we need three maps?

伺下 イヨト イヨト

- Is the number 3 for Peano continua with uncountably many local cut points optimal?
- In particular, is there a two-element structure for the circle? And what about higher dimensional spheres?
- A characterization / A description of Peano continua admitting a two-element structure? We know that it must cover Peano continua with uncountably many local cut points as well as [0, 1]ⁿ for all natural n
- Which graphs are topological fractals with two maps and for which we need three maps?
- What about rim-finite continua (have a basis formed by sets with finite boundary)?

くぼ くちょう くちょう

- Is the number 3 for Peano continua with uncountably many local cut points optimal?
- In particular, is there a two-element structure for the circle? And what about higher dimensional spheres?
- A characterization / A description of Peano continua admitting a two-element structure? We know that it must cover Peano continua with uncountably many local cut points as well as [0, 1]ⁿ for all natural n
- Which graphs are topological fractals with two maps and for which we need three maps?
- What about rim-finite continua (have a basis formed by sets with finite boundary)?

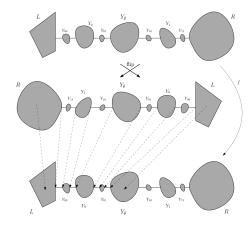
• ...

・ 同 ト ・ ヨ ト ・ ヨ ト …

Thank you for your attention.

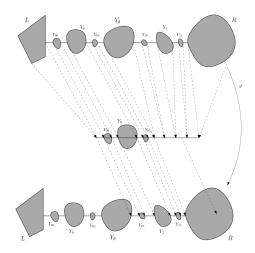
-

Encore



・ロト ・四ト ・ヨト ・ヨト

æ



∃ ► < ∃ ►</p>

æ

Thank you for your attention.

-