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Peano continua

Definition

Continuum is a nonempty connected compact metric space. Peano
continuum is a locally connected continuum.

A metric space is a Peano continuum iff it is a continuous
image of I = [0, 1],

A continuum X is a Peano continuum iff it has the property
S, i.e. iff for every ε > 0 there exists a finite cover of X
formed by connected sets with diameter smaller than ε.

Klára Karasová Topological fractals (and maybe also self regenerating fractals)



Peano continua

Definition

Continuum is a nonempty connected compact metric space. Peano
continuum is a locally connected continuum.

A metric space is a Peano continuum iff it is a continuous
image of I = [0, 1],

A continuum X is a Peano continuum iff it has the property
S, i.e. iff for every ε > 0 there exists a finite cover of X
formed by connected sets with diameter smaller than ε.
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Self–similar sets

Definition

We say that a nonempty compact X ⊆ Rn is self–similar if there
exist similarities f1, f2, . . . , fn : X → X with ratio strictly less than
1 such that X = f1(X ) ∪ · · · ∪ fn(X ).

Examples: a point, the unit interval, the Cantor set

[0, 1]n is self–similar for every natural n

Sierpinski triangle, Koch snowflake

The circle and the Koch curve are not self-similar

Every connected self–similar set is a Peano continuum
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Sierpinski triangle
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Koch snowlake as a union of smaller Koch snowlakes
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Koch curve
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Metric fractals - definition, examples

Definition

We say that a nonempty compact metric space X is a metric
fractal if there exist contractions f1, f2, . . . , fn : X → X such that
X = f1(X ) ∪ · · · ∪ fn(X ).

Every self–similar set is a metric fractal

Metric fractals that are not self–similar: the circle, Koch curve

[0, 1]n is a metric fractal for every natural n, but [0, 1]N is not
a metric fractal
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Metric fractals - properties

Every connected metric fractal has a property S and thus is a
Peano continuum

All metric fractals are of a finite topological dimension

Hata’s conjecture (1985): Every Peano continuum of a finite
topological dimension is a metric fractal

There exists a one dimensional plane Peano continuum that is
not even homeomorphic to any metric fractal (T. Banakh, M.
Nowak; 2013)
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Klára Karasová Topological fractals (and maybe also self regenerating fractals)



Metric fractals - properties

Every connected metric fractal has a property S and thus is a
Peano continuum

All metric fractals are of a finite topological dimension

Hata’s conjecture (1985): Every Peano continuum of a finite
topological dimension is a metric fractal

There exists a one dimensional plane Peano continuum that is
not even homeomorphic to any metric fractal (T. Banakh, M.
Nowak; 2013)
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Topological fractals, Hata’s conjecture

Definition

We say that a nonempty compact metric space X is a topological
fractal if there exist continuous functions f1, . . . , fn : X → X
satisfying f1(X ) ∪ · · · ∪ fn(X ) = X such that for every ε > 0 there
exists k ∈ N such that for every 1 ≤ i1, i2, . . . , ik ≤ n is the
diameter of the set fi1fi2 . . . fik (X ) less than ε.

Again every connected topological fractal has a property S
and thus is a Peano continuum

Hata’s conjecture (unsolved since 1985): Every Peano
continuum is a topological fractal
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Known results

[0, 1]n is a topological fractal for every natural n and
moreover, two maps suffice, but it is not known whether
[0, 1]N is a topological fractal

For every Peano continuum X , glueing to X an arc yields a
topological fractal (Dumitru 2011)

Every Peano continuum that contains a self–regenerating
fractal as a subset with nonempty interior is a topological
fractal (Nowak 2021)
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The main result

Definition

Let X be a connected TS and x ∈ X . We say that x is a cut point
of X if X \ {x} is not connected.

Theorem

Every Peano continuum with uncountably many cut points is a
topological fractal. Moreover, there is a structure of a topological
fractal consisting of just two maps.

This is the optimal result for all non–degenerate spaces.
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The main result

Definition

Let X be a TS and x ∈ X . We say that x is a local cut point of X
if there exists U a connected neighborhood of x such that U \ {x}
is not connected.

The circle has no cut points but all its points are its local cut
points.

Theorem

Every Peano continuum with uncountably many local cut points is
a topological fractal. Moreover, there is a structure of a topological
fractal consisting of just three maps.
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Self regenerating fractals

Definition

We say that a nonempty compact metric space X is a self
regenerating fractal if for every nonempty open set U ⊆ X there
exist continuous functions f1, . . . , fn : X → X constant on the
complement of U that witness that X is a topological fractal.

Self regenerating fractals are topological fractals

Examples of self–regenerating fractals: the interval, the Cantor
set, the Sierpinski triangle, . . .

Theorem (M. Nowak, 2021)

Every Peano continuum containing a self regenerating fractal as a
subset with nonempty interior is a topological fractal itself.
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Theorem

If every Peano continuum that is a topological fractal contains a
self regenerating fractal as a subset with nonempty interior, then
every Peano continuum contains a self regenerating fractal as a
subset with nonempty interior, and thus in particular every Peano
continuum is a topological fractal (Hata’s conjecture).
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Open problems

Is the number 3 for Peano continua with uncountably many
local cut points optimal?

In particular, is there a two–element structure for the circle?
And what about higher dimensional spheres?

A characterization / A description of Peano continua
admitting a two–element structure? We know that it must
cover Peano continua with uncountably many local cut points
as well as [0, 1]n for all natural n

Which graphs are topological fractals with two maps and for
which we need three maps?

What about rim–finite continua (have a basis formed by sets
with finite boundary)?

...
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Thank you for your attention.
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