Epic math battle of history: Grothendieck vs Nikodym Round 1

Agnieszka Widz
Institute of Mathematics
Łódź University of Technology

Winter School in Abstract Analysis 2024 section Set Theory \& Topology

The Grothendieck property

Definition

A Banach space X has the Grothendieck property, if every weak*-convergent sequence in X^{*} is weakly convergent.

The Grothendieck property

Definition

A Banach space X has the Grothendieck property, if every weak*-convergent sequence in X^{*} is weakly convergent.

Examples:

4 reflexive Banach spaces
\& ℓ_{∞}
\& $C(\operatorname{St}(\mathbb{B}))$, where \mathbb{B} is a complete Boolean algebra

The Grothendieck property

Definition

A Banach space X has the Grothendieck property, if every weak*-convergent sequence in X^{*} is weakly convergent.

Examples:

4 reflexive Banach spaces
\& ℓ_{∞}
4 $C(\operatorname{St}(\mathbb{B}))$, where \mathbb{B} is a complete Boolean algebra

Definition

A Boolean algebra \mathbb{B} has the Grothendieck property, if $C(\operatorname{St}(\mathbb{B}))$ has the Grothendieck property.

Measures on Boolean algebras

4 measure on $\mathbb{B}=$ finitely additive real-valued bounded function on \mathbb{B}

Measures on Boolean algebras

4 measure on $\mathbb{B}=$ finitely additive real-valued bounded function on \mathbb{B}

Folklore

4. Every measure on \mathbb{B} uniquely extends to a Radon measure on $\operatorname{St}(\mathbb{B})$

* The restriction of a Radon measure on $\operatorname{St}(\mathbb{B})$ to the clopen sets is a measure on \mathbb{B}

Measures on Boolean algebras

4 $(\nu)_{n \in \mathbb{N}}$ on \mathbb{B} is pointwise convergent if there exist a measure ν on \mathbb{B} such that

$$
\forall_{A \in \mathbb{B}} \nu_{n}(A) \rightarrow \nu(A)
$$

Measures on Boolean algebras

\& $(\nu)_{n \in \mathbb{N}}$ on \mathbb{B} is pointwise convergent if there exist a measure ν on \mathbb{B} such that

$$
\forall_{A \in \mathbb{B}} \nu_{n}(A) \rightarrow \nu(A)
$$

4 Variation of a measure ν on \mathbb{B}

$$
|\nu|(X)=\sup \{|\nu(A)|+|\nu(B)|: A, B \in \mathbb{B} ; A, B \subset X ; A \cap B=\varnothing\}
$$

Measures on Boolean algebras

\& $(\nu)_{n \in \mathbb{N}}$ on \mathbb{B} is pointwise convergent if there exist a measure ν on \mathbb{B} such that

$$
\forall_{A \in \mathbb{B}} \nu_{n}(A) \rightarrow \nu(A)
$$

4 Variation of a measure ν on \mathbb{B}

$$
|\nu|(X)=\sup \{|\nu(A)|+|\nu(B)|: A, B \in \mathbb{B} ; A, B \subset X ; A \cap B=\varnothing\}
$$

4 Norm of a measure ν on \mathbb{B}

$$
\|\nu\|=|\nu|(1)
$$

The Nikodym property

Definition

We say that a Boolean algebra \mathbb{B} has the Nikodym property, if every pointwise convergent sequence $\left(\nu_{n}\right)_{n \in \mathbb{N}}$ of measures on \mathbb{B} is bounded in norm (i.e. $\sup _{n \in \mathbb{N}}\left\|\nu_{n}\right\|<\infty$).

The Nikodym property

Definition

We say that a Boolean algebra \mathbb{B} has the Nikodym property, if every pointwise convergent sequence $\left(\nu_{n}\right)_{n \in \mathbb{N}}$ of measures on \mathbb{B} is bounded in norm (i.e. $\sup _{n \in \mathbb{N}}\left\|\nu_{n}\right\|<\infty$).

Theorem (Andô)
Complete Boolean algebras have the Nikodym property.

More examples

Algebras with the Nikodym property

Algebras with the Grothendieck property

\& σ - complete algebras have both the Nikodym and Grothendieck properties

More examples

Algebras with the Nikodym property

Algebras with the Grothendieck property

4σ - complete algebras have both the Nikodym and Grothendieck properties
\& Schachermayer (1982): the Boolean algebra \mathbb{J} of Jordan measurable subsets of $[0,1]$ has the Nikodym property, but not the Grothendieck property

More examples

Algebras with the Nikodym property
Algebras with the Grothendieck property

4σ-complete algebras have both the Nikodym and Grothendieck properties

* Schachermayer (1982): the Boolean algebra \mathbb{J} of Jordan measurable subsets of $[0,1]$ has the Nikodym property, but not the Grothendieck property
\& Talagrand (1984): Assuming CH there is a Boolean algebra \mathbb{T} with the Grothendieck property and without the Nikodym property

More examples

Algebras with the Nikodym property

Algebras with the Grothendieck property

IF σ-complete algebras have both the Nikodym and Grothendieck properties
\& Schachermayer (1982): the Boolean algebra \mathbb{J} of Jordan measurable subsets of $[0,1]$ has the Nikodym property, but not the Grothendieck property
\& Talagrand (1984): Assuming CH there is a Boolean algebra \mathbb{T} with the Grothendieck property and without the Nikodym property

4 The algebra $\operatorname{Clop}(C)$ of all clopen subsets of the Cantor set does not have neither the Nikodym property nor the Grothendieck property

Grothendieck vs Nikodym under $\neg \mathrm{CH}$

Open question

Is there (in ZFC) a Boolean algebra with the Grothendieck property and without the Nikodym property?

Grothendieck vs Nikodym under $\neg \mathrm{CH}$

Open question

Is there (in ZFC) a Boolean algebra with the Grothendieck property and without the Nikodym property?

Theorem (Głodkowski \& W.)

The existence of a Boolean algebra with the Grothendieck property and without the Nikodym property is consistent with $\mathfrak{c}>\omega_{1}$.

Notation

Clop(C)
The algebra $\operatorname{Clop}(C)$ of all clopen subsets of the Cantor set does not have the Nikodym property.

To show it we need some notions:
4 Cantor set: $C=\{-1,1\}^{\mathbb{N}}$

Notation

Clop(C)
The algebra $\operatorname{Clop}(C)$ of all clopen subsets of the Cantor set does not have the Nikodym property.

To show it we need some notions:
4 Cantor set: $C=\{-1,1\}^{\mathbb{N}}$
\& $\operatorname{Bor}(C)=$ the Borel subsets of C

Notation

Clop(C)
The algebra $\operatorname{Clop}(C)$ of all clopen subsets of the Cantor set does not have the Nikodym property.

To show it we need some notions:
4 Cantor set: $C=\{-1,1\}^{\mathbb{N}}$
$4 \operatorname{Bor}(C)=$ the Borel subsets of C
4. $\operatorname{Clop}(C)=$ the clopen subsets of C

Notation

Clop(C)

The algebra $\operatorname{Clop}(C)$ of all clopen subsets of the Cantor set does not have the Nikodym property.

To show it we need some notions:
4 Cantor set: $C=\{-1,1\}^{\mathbb{N}}$
$4 \operatorname{Bor}(C)=$ the Borel subsets of C

* $\operatorname{Clop}(C)=$ the clopen subsets of C

4 $\lambda=$ the standard product probability measure on $\operatorname{Bor}(C)$

Notation

For $n \in \mathbb{N}$ we put $\delta_{n}: C \rightarrow\{-1,1\}, \delta_{n}(x)=x_{n}$ (the n-th coordinate of x) and we define a measure φ_{n} on $\operatorname{Bor}(C)$ by

$$
\varphi_{n}(A)=\int_{A} \delta_{n} d \lambda
$$

Notation

For $n \in \mathbb{N}$ we put $\delta_{n}: C \rightarrow\{-1,1\}, \delta_{n}(x)=x_{n}$ (the n-th coordinate of x) and we define a measure φ_{n} on $\operatorname{Bor}(C)$ by

$$
\varphi_{n}(A)=\int_{A} \delta_{n} d \lambda
$$

Notation

For $n \in \mathbb{N}$ we put $\delta_{n}: C \rightarrow\{-1,1\}, \delta_{n}(x)=x_{n}$ (the n-th coordinate of x) and we define a measure φ_{n} on $\operatorname{Bor}(C)$ by

$$
\varphi_{n}(A)=\int_{A} \delta_{n} d \lambda
$$

Notation

For $n \in \mathbb{N}$ we put $\delta_{n}: C \rightarrow\{-1,1\}, \delta_{n}(x)=x_{n}$ (the n-th coordinate of x) and we define a measure φ_{n} on $\operatorname{Bor}(C)$ by

$$
\varphi_{n}(A)=\int_{A} \delta_{n} d \lambda
$$

Note that for each $n \in \mathbb{N}$ we have $\left|\varphi_{n}\right|=\lambda$ and $\left\|\varphi_{n}\right\|=1$

Clopen sets

Example

$\operatorname{Clop}(C)$ does not have the Nikodym property.
A witness for the lack of the Nikodym property for $\operatorname{Clop}(C)$ is as follows:

$$
\mu_{n}(A)=n \cdot \varphi_{n}(A)=n \cdot \int_{A} \delta_{n} d \lambda
$$

\& $\left(\mu_{n}\right)$ is poinwise convergent to zero.
$4\left(\mu_{n}\right)$ is not bounded in norm

Clopen sets

Example

$\operatorname{Clop}(C)$ does not have the Nikodym property.
A witness for the lack of the Nikodym property for $\operatorname{Clop}(C)$ is as follows:

$$
\mu_{n}(A)=n \cdot \varphi_{n}(A)=n \cdot \int_{A} \delta_{n} d \lambda
$$

* $\left(\mu_{n}\right)$ is poinwise convergent to zero.
$4\left(\mu_{n}\right)$ is not bounded in norm

Clopen sets

Example

$\operatorname{Clop}(C)$ does not have the Nikodym property.
A witness for the lack of the Nikodym property for $\operatorname{Clop}(C)$ is as follows:

$$
\mu_{n}(A)=n \cdot \varphi_{n}(A)=n \cdot \int_{A} \delta_{n} d \lambda
$$

\% $\left(\mu_{n}\right)$ is poinwise convergent to zero.
$4\left(\mu_{n}\right)$ is not bounded in norm

~~~

\section*{Balanced algebras}

Let \(m \in \mathbb{N}\) and \(\varepsilon>0\). We say that \(A \in \operatorname{Bor}(C)=\operatorname{Bor}\left(\{-1,1\}^{\omega}\right)\) is ( \(m, \varepsilon\) )-balanced, if for every \(s \in\{-1,1\}^{m}\) we have
\[
\approx \frac{\lambda(A \cap(s\rangle)}{\lambda(\langle s\rangle)}<\frac{\varepsilon}{m} \text { or } \frac{\lambda(\langle s\rangle \backslash A)}{\lambda(\langle s\rangle)}<\frac{\varepsilon}{m},
\]
where \(\langle s\rangle=\{x \in C: x \upharpoonright m=s\}\)

\section*{Balanced algebras}

Let \(m \in \mathbb{N}\) and \(\varepsilon>0\). We say that \(A \in \operatorname{Bor}(C)=\operatorname{Bor}\left(\{-1,1\}^{\omega}\right)\) is \((m, \varepsilon)\)-balanced, if for every \(s \in\{-1,1\}^{m}\) we have
\[
\equiv \frac{\lambda(A \cap\langle s\rangle)}{\lambda(\langle s\rangle)}<\frac{\varepsilon}{m} \text { or } \frac{\lambda(\langle s\rangle \backslash A)}{\lambda(\langle s\rangle)}<\frac{\varepsilon}{m},
\]
where \(\langle s\rangle=\{x \in C: x \upharpoonright m=s\}\)
A A


\section*{Balanced algebras}

Let \(m \in \mathbb{N}\) and \(\varepsilon>0\). We say that \(A \in \operatorname{Bor}(C)=\operatorname{Bor}\left(\{-1,1\}^{\omega}\right)\) is \((m, \varepsilon)\)-balanced, if for every \(s \in\{-1,1\}^{m}\) we have
\[
\text { E } \frac{\lambda(A \cap\langle s\rangle)}{\lambda(\langle s\rangle)}<\frac{\varepsilon}{m} \text { or } \frac{\lambda(\langle s\rangle \backslash A)}{\lambda(\langle s\rangle)}<\frac{\varepsilon}{m},
\]
where \(\langle s\rangle=\{x \in C: x \upharpoonright m=s\}\)

(-) \(\forall r>m\left|\varphi_{r}(A)\right|<\frac{\varepsilon}{r}\)
for every \(r>m\)

\section*{Balanced algebras}

Let \(m \in \mathbb{N}\) and \(\varepsilon>0\). We say that \(A \in \operatorname{Bor}(C)=\operatorname{Bor}\left(\{-1,1\}^{\omega}\right)\) is \((m, \varepsilon)\)-balanced, if for every \(s \in\{-1,1\}^{m}\) we have
\[
\approx \frac{\lambda(A \cap\langle s\rangle)}{\lambda(\langle s\rangle)}<\frac{\varepsilon}{m} \text { or } \frac{\lambda(\langle s\rangle \backslash A)}{\lambda(\langle s\rangle)}<\frac{\varepsilon}{m},
\]
where \(\langle s\rangle=\{x \in C: x \upharpoonright m=s\}\)

(0) \(\forall r>m\left|\varphi_{r}(A)\right|<\frac{\varepsilon}{r}\)
for every \(r>m\)
\(r\)-th level for \(r>m\)


\section*{Balanced algebras}

Let \(m \in \mathbb{N}\) and \(\varepsilon>0\). A set \(A\) is \((m, \varepsilon)\)-balanced, if for every \(s \in\{-1,1\}^{m}\)
- \(\frac{\lambda(A \cap\langle s\rangle)}{\lambda(\langle s\rangle)}<\frac{\varepsilon}{m}\) or \(\frac{\lambda(\langle s\rangle \backslash A)}{\lambda(\langle s\rangle)}<\frac{\varepsilon}{m}\),
(0) \(\forall r>m\left|\varphi_{r}(A)\right|<\frac{\varepsilon}{r}, \quad\) for every \(r>m\)

4 A finite family \(\mathcal{A}\) of Borel sets is ( \(m, \varepsilon\) )-balanced if each \(A \in \mathcal{A}\) is ( \(m, \varepsilon\) )-balanced.

\section*{Balanced algebras}

Let \(m \in \mathbb{N}\) and \(\varepsilon>0\). A set \(A\) is \((m, \varepsilon)\)-balanced, if for every \(s \in\{-1,1\}^{m}\)
- \(\frac{\lambda(A \cap\langle s\rangle)}{\lambda(\langle s\rangle)}<\frac{\varepsilon}{m}\) or \(\frac{\lambda(\langle s\rangle \backslash A)}{\lambda(\langle s\rangle)}<\frac{\varepsilon}{m}\),
(0) \(\forall r>m\left|\varphi_{r}(A)\right|<\frac{\varepsilon}{r}, \quad\) for every \(r>m\)

4 A finite family \(\mathcal{A}\) of Borel sets is ( \(m, \varepsilon\) )-balanced if each \(A \in \mathcal{A}\) is ( \(m, \varepsilon\) )-balanced.
4 We say that a Boolean algebra \(\mathbb{B} \subseteq \operatorname{Bor}(C)\) is balanced if for every finite family \(\mathcal{A} \subseteq \mathbb{B}\) and \(\varepsilon>0\) there is \(m \in \mathbb{N}\) such that \(\mathcal{A}\) is ( \(m, \varepsilon\) )-balanced.

\section*{Balanced algebras}

Let \(m \in \mathbb{N}\) and \(\varepsilon>0\). A set \(A\) is \((m, \varepsilon)\)-balanced, if for every \(s \in\{-1,1\}^{m}\)
- \(\frac{\lambda(A \cap\langle s\rangle)}{\lambda(\langle s\rangle)}<\frac{\varepsilon}{m}\) or \(\frac{\lambda(\langle s\rangle \backslash A)}{\lambda(\langle s\rangle)}<\frac{\varepsilon}{m}\),
(-) \(\forall r>m\left|\varphi_{r}(A)\right|<\frac{\varepsilon}{r}, \quad\) for every \(r>m\)
4 A finite family \(\mathcal{A}\) of Borel sets is ( \(m, \varepsilon\) )-balanced if each \(A \in \mathcal{A}\) is ( \(m, \varepsilon\) )-balanced.
4 We say that a Boolean algebra \(\mathbb{B} \subseteq \operatorname{Bor}(C)\) is balanced if for every finite family \(\mathcal{A} \subseteq \mathbb{B}\) and \(\varepsilon>0\) there is \(m \in \mathbb{N}\) such that \(\mathcal{A}\) is ( \(m, \varepsilon\) )-balanced.

\section*{First observation}
\(\operatorname{Clop}(C)\) is balanced.

\section*{Examples}

\section*{Second observation}

There exists a balanced set which is not clopen


\section*{Example}

\section*{Third observation}

If \(\mathbb{B} \subseteq \operatorname{Bor}(C)\) is balanced, then it does not have the Nikodym property.

To see that take \(\mu_{n}=n \varphi_{n}\). The sequence \(\left(\mu_{n}\right)_{n \in \mathbb{N}}\) is pointwise convergent to 0 , but \(\left\|\mu_{n}\right\|=n\) for every \(n \in \mathbb{N}\)

\section*{Extensions of countable balanced algebras}

Let \(\mathbb{B} \subseteq \operatorname{Bor}(C)\) be a countable balanced Boolean algebra. Suppose that
\& \(\left(\mathbb{B}_{n}\right)_{n \in \mathbb{N}}\) is an increasing sequence of finite Boolean algebras such that
\[
\bigcup_{n \in \mathbb{N}} \mathbb{B}_{n}=\mathbb{B}
\]
* \(\left(m_{n}\right)_{n \in \mathbb{N}}\) is a strictly increasing sequence of natural numbers
\& \(\left(\varepsilon_{n}\right)_{n \in \mathbb{N}}\) is a sequence of positive numbers converging to 0
\& \(\left(G_{n}\right)_{n \in \mathbb{N}} \subseteq \mathbb{B}\) is a sequence of pairwise disjoint sets and
\[
\forall k \in \mathbb{N} \forall n \leqslant k \mathcal{F}\left(\mathbb{B}_{n}, \bigcup_{i \leqslant k} G_{i}\right) \text { is }\left(m_{n}, \varepsilon_{n}\right) \text {-balanced }
\]

Then \(\mathcal{F}\left(\mathbb{B}, \bigcup_{n \in \mathbb{N}} G_{i}\right)\) is balanced.

\section*{Keeping balance}

\section*{Theorem (simplified version)}

Let \(\mathbb{B} \subseteq \operatorname{Bor}(C)\) be a balanced algebra, \(m \in \mathbb{N}, \varepsilon>0\). Suppose that
\[
G \in \mathbb{B} \text { is }(m, \varepsilon) \text {-balanced }
\]

Then there is \(\theta>0\) such that
* for every \(L \in \mathbb{B}\) such that \(\lambda(L)<\theta\)
* there is a "very small" set \(M \in \mathbb{B}\) such that
\[
G \cup L \cup M \text { is }(m, \varepsilon) \text {-balanced }
\]

and
\[
L \cap M=\varnothing
\]

\section*{Keeping balance}

\section*{Theorem (simplified version)}

Let \(\mathbb{B} \subseteq \operatorname{Bor}(C)\) be a balanced algebra, \(m \in \mathbb{N}, \varepsilon>0\). Suppose that
\[
G \in \mathbb{B} \text { is }(m, \varepsilon) \text {-balanced }
\]

Then there is \(\theta>0\) such that
* for every \(L \in \mathbb{B}\) such that \(\lambda(L)<\theta\)
* there is a "very small" set \(M \in \mathbb{B}\) such that
\[
G \cup L \cup M \text { is }(m, \varepsilon) \text {-balanced }
\]

and
\[
L \cap M=\varnothing
\]

\section*{Keeping balance}

\section*{Theorem (simplified version)}

Let \(\mathbb{B} \subseteq \operatorname{Bor}(C)\) be a balanced algebra, \(m \in \mathbb{N}, \varepsilon>0\). Suppose that
\[
G \in \mathbb{B} \text { is }(m, \varepsilon) \text {-balanced }
\]

Then there is \(\theta>0\) such that
* for every \(L \in \mathbb{B}\) such that \(\lambda(L)<\theta\)
* there is a "very small" set \(M \in \mathbb{B}\) such that
\[
G \cup L \cup M \text { is }(m, \varepsilon) \text {-balanced }
\]
and
\[
L \cap M=\varnothing
\]

\section*{Keeping balance}

\section*{Theorem (full version)}

Let \(k \in \mathbb{N}, \eta>0\). Let \(\left(m_{n}\right)_{n \leqslant k}\) be an increasing sequence of natural numbers. Let \(\mathbb{B}^{*} \subseteq \mathbb{B} \subseteq \operatorname{Bor}(C)\) be balanced Boolean algebras and assume that \(\operatorname{Clop}(C) \subseteq \mathbb{B}^{*}\). Let \(\left(\mathbb{B}_{n}\right)_{n \leqslant k} \subseteq \mathbb{B}\) be finite subalgebras. Suppose that \(G, P \in \mathbb{B}^{*}\) and the following are satisfied:
\(* G \subseteq P\),
\(4 \forall n \leqslant k \mathcal{F}\left(\mathbb{B}_{n}, G\right)\) is \(\left(m_{n}, 2^{-n}\right)\)-balanced.
Then there is \(\theta>0\) such that for every \(L, Q \in \mathbb{B}^{*}\) satisfying
\(4 \max \{\lambda(L), \lambda(Q)\}<\theta\),
* \(L \cap P=\varnothing\),
there is \(M \in \mathbb{B}^{*}\) such that
\(4 M \cap(P \cup Q)=\varnothing\),
\& \(\lambda(M)<\eta\),
* \(\forall n \leqslant k \mathcal{F}\left(\mathbb{B}_{n}, G \cup L \cup M\right)\) is \(\left(m_{n}, 2^{-n}\right)\)-balanced.

\section*{8 hodín spánku} počas pracovného týždňa:

\section*{4 hodiny spánku} cez víkend:
~~~

