Epic math battle of history: Grothendieck vs Nikodym -Round 1

Agnieszka Widz

Institute of Mathematics Łódź University of Technology

Winter School in Abstract Analysis 2024 section Set Theory & Topology

A Banach space X has the **Grothendieck property**, if every weak*-convergent sequence in X^* is weakly convergent.

A Banach space X has the **Grothendieck property**, if every weak*-convergent sequence in X^* is weakly convergent.

Examples:

- 🦊 reflexive Banach spaces
- $\not\models \ \ell_\infty$
- \clubsuit $C(\operatorname{St}(\mathbb{B}))$, where \mathbb{B} is a complete Boolean algebra

A Banach space X has the **Grothendieck property**, if every weak*-convergent sequence in X^* is weakly convergent.

Examples:

- ✤ reflexive Banach spaces
- $\not\models \ell_{\infty}$

Definition

A Boolean algebra \mathbb{B} has the **Grothendieck property**, if $C(St(\mathbb{B}))$ has the Grothendieck property.

< □ > < 同 > < 三 > <

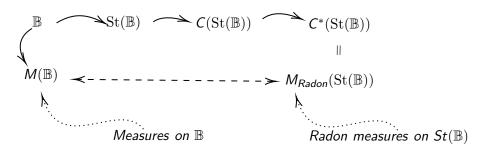
Measures on Boolean algebras

measure on $\mathbb{B} =$ finitely additive real-valued bounded function on \mathbb{B}

- E > - E >

Measures on Boolean algebras

mid measure on $\mathbb{B}=$ finitely additive real-valued bounded function on \mathbb{B}



Folklore

✓ The restriction of a Radon measure on St(B) to the clopen sets is a measure on B

< □ > < □ > < □ > < □ > < □ > < □ >

↓ (ν)_{n∈ℕ} on 𝔅 is **pointwise convergent** if there exist a measure ν on 𝔅 such that

 $\forall_{A \in \mathbb{B}} \ \nu_n(A) \to \nu(A)$

(日) (同) (三) (三)

↓ (ν)_{n∈ℕ} on 𝔅 is **pointwise convergent** if there exist a measure ν on 𝔅 such that

$$\forall_{A\in\mathbb{B}} \ \nu_n(A) \to \nu(A)$$

eq Variation of a measure u on $\mathbb B$

 $|\nu|(X) = \sup\{|\nu(A)| + |\nu(B)| : A, B \in \mathbb{B}; A, B \subset X; A \cap B = \emptyset\}$

・日本 ・日本 ・日本

↓ (ν)_{n∈ℕ} on 𝔅 is **pointwise convergent** if there exist a measure ν on 𝔅 such that

$$\forall_{A\in\mathbb{B}} \ \nu_n(A) \to \nu(A)$$

eq Variation of a measure u on $\mathbb B$

 $|\nu|(X) = \sup\{|\nu(A)| + |\nu(B)| : A, B \in \mathbb{B}; A, B \subset X; A \cap B = \emptyset\}$

 \clubsuit **Norm** of a measure u on \mathbb{B}

$$||\nu|| = |\nu|(1)$$

<日

<</p>

We say that a Boolean algebra \mathbb{B} has the **Nikodym property**, if every pointwise convergent sequence $(\nu_n)_{n \in \mathbb{N}}$ of measures on \mathbb{B} is bounded in norm (i.e. $\sup_{n \in \mathbb{N}} \|\nu_n\| < \infty$).

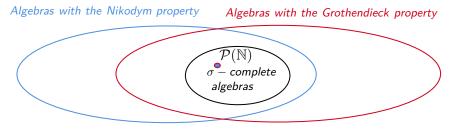
< 日 > < 同 > < 三 > < 三 >

We say that a Boolean algebra \mathbb{B} has the **Nikodym property**, if every pointwise convergent sequence $(\nu_n)_{n \in \mathbb{N}}$ of measures on \mathbb{B} is bounded in norm (i.e. $\sup_{n \in \mathbb{N}} ||\nu_n|| < \infty$).

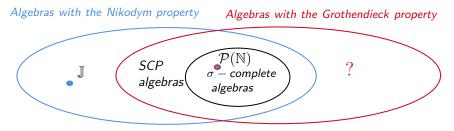
Theorem (Andô)

Complete Boolean algebras have the Nikodym property.

・ロト ・四ト・ モン・ モン

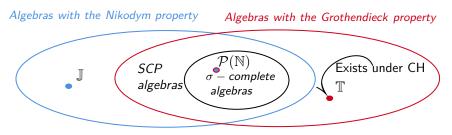


σ- complete algebras have both the Nikodym and Grothendieck
properties



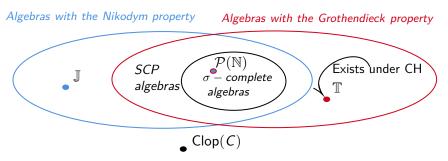
- σ- complete algebras have both the Nikodym and Grothendieck properties
- Schachermayer (1982): the Boolean algebra J of Jordan measurable subsets of [0, 1] has the Nikodym property, but not the Grothendieck property

More examples



- *σ* complete algebras have both the Nikodym and Grothendieck properties
- Schachermayer (1982): the Boolean algebra J of Jordan measurable subsets of [0, 1] has the Nikodym property, but not the Grothendieck property
- Talagrand (1984): Assuming CH there is a Boolean algebra T with the Grothendieck property and without the Nikodym property

More examples



 $ightarrow \sigma$ - complete algebras have both the Nikodym and Grothendieck properties

- Schachermayer (1982): the Boolean algebra J of Jordan measurable subsets of [0,1] has the Nikodym property, but not the Grothendieck property
- Talagrand (1984): Assuming CH there is a Boolean algebra T with the Grothendieck property and without the Nikodym property
- The algebra Clop(C) of all clopen subsets of the Cantor set does not have neither the Nikodym property nor the Grothendieck property

Open question

Is there (in ZFC) a Boolean algebra with the Grothendieck property and without the Nikodym property?

Open question

Is there (in ZFC) a Boolean algebra with the Grothendieck property and without the Nikodym property?

Theorem (Głodkowski & W.)

The existence of a Boolean algebra with the Grothendieck property and without the Nikodym property is consistent with $\mathfrak{c} > \omega_1$.

The algebra ${\rm Clop}({\it C})$ of all clopen subsets of the Cantor set does not have the Nikodym property.

To show it we need some notions:

 \clubsuit Cantor set: $C = \{-1, 1\}^{\mathbb{N}}$

The algebra $\mathrm{Clop}(\mathcal{C})$ of all clopen subsets of the Cantor set does not have the Nikodym property.

To show it we need some notions:

- \clubsuit Cantor set: $C = \{-1, 1\}^{\mathbb{N}}$
- \clubsuit Bor(*C*) = the Borel subsets of *C*

The algebra $\operatorname{Clop}(C)$ of all clopen subsets of the Cantor set does not have the Nikodym property.

To show it we need some notions:

- \clubsuit Cantor set: $C = \{-1, 1\}^{\mathbb{N}}$
- \clubsuit Bor(*C*) = the Borel subsets of *C*
- $\clubsuit \operatorname{Clop}(C) = \text{the clopen subsets of } C$

The algebra $\operatorname{Clop}(C)$ of all clopen subsets of the Cantor set does not have the Nikodym property.

To show it we need some notions:

- \clubsuit Cantor set: $C = \{-1, 1\}^{\mathbb{N}}$
- \clubsuit Bor(*C*) = the Borel subsets of *C*
- $\clubsuit \operatorname{Clop}(\mathcal{C}) = \mathsf{the clopen subsets of } \mathcal{C}$
- $\not\models$ λ = the standard product probability measure on Bor(C)

For $n \in \mathbb{N}$ we put $\delta_n \colon C \to \{-1, 1\}$, $\delta_n(x) = x_n$ (the *n*-th coordinate of x) and we define a measure φ_n on Bor(C) by

$$\varphi_n(A) = \int_A \delta_n d\lambda$$

э

(日) (同) (三) (三)

For $n \in \mathbb{N}$ we put $\delta_n: C \to \{-1, 1\}$, $\delta_n(x) = x_n$ (the *n*-th coordinate of x) and we define a measure φ_n on Bor(C) by

$$\varphi_n(A) = \int_A \delta_n d\lambda$$

< ロト < 同ト < ヨト < ヨト

For $n \in \mathbb{N}$ we put $\delta_n: C \to \{-1, 1\}$, $\delta_n(x) = x_n$ (the *n*-th coordinate of x) and we define a measure φ_n on Bor(C) by

$$\varphi_n(A) = \int_A \delta_n d\lambda$$

< ロト < 同ト < ヨト < ヨト

For $n \in \mathbb{N}$ we put $\delta_n \colon C \to \{-1, 1\}$, $\delta_n(x) = x_n$ (the *n*-th coordinate of *x*) and we define a measure φ_n on Bor(*C*) by

$$\varphi_n(A) = \int_A \delta_n d\lambda$$

Note that for each $n \in \mathbb{N}$ we have $|\varphi_n| = \lambda$ and $||\varphi_n|| = 1$

くロト く伺 ト くきト くきト

Example

 $\operatorname{Clop}(\mathcal{C})$ does not have the Nikodym property.

A witness for the lack of the Nikodym property for Clop(C) is as follows:

$$\mu_n(A) = n \cdot \varphi_n(A) = n \cdot \int_A \delta_n d\lambda$$

- \clubsuit (μ_n) is poinwise convergent to zero.
- $\not\models$ (μ_n) is not bounded in norm

Example

 $\operatorname{Clop}(\mathcal{C})$ does not have the Nikodym property.

A witness for the lack of the Nikodym property for Clop(C) is as follows:

$$\mu_n(A) = n \cdot \varphi_n(A) = n \cdot \int_A \delta_n d\lambda$$

 $\not\models (\mu_n) \text{ is poinwise convergent to zero.}$ $\not\models (\mu_n) \text{ is not bounded in norm}$

Example

 $\operatorname{Clop}(\mathcal{C})$ does not have the Nikodym property.

A witness for the lack of the Nikodym property for Clop(C) is as follows:

$$\mu_n(A) = n \cdot \varphi_n(A) = n \cdot \int_A \delta_n d\lambda$$

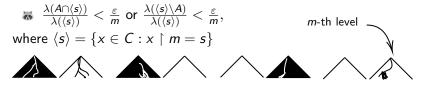
 $(\mu_n) \text{ is poinwise convergent to zero.}$ $(\mu_n) \text{ is not bounded in norm}$

Let $m \in \mathbb{N}$ and $\varepsilon > 0$. We say that $A \in Bor(\mathcal{C}) = Bor(\{-1, 1\}^{\omega})$ is (m, ε) -balanced, if for every $s \in \{-1, 1\}^m$ we have

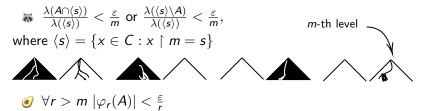
 $\begin{array}{l} \overleftarrow{\mathbf{s}} \quad \frac{\lambda(A \cap \langle \mathbf{s} \rangle)}{\lambda(\langle \mathbf{s} \rangle)} < \frac{\varepsilon}{m} \text{ or } \frac{\lambda(\langle \mathbf{s} \rangle \setminus A)}{\lambda(\langle \mathbf{s} \rangle)} < \frac{\varepsilon}{m}, \\ \text{where } \langle \mathbf{s} \rangle = \{ x \in \mathcal{C} : x \upharpoonright m = \mathbf{s} \} \end{array}$

< 日 > < 同 > < 回 > < 回 > < 回 > <

Let $m \in \mathbb{N}$ and $\varepsilon > 0$. We say that $A \in Bor(\mathcal{C}) = Bor(\{-1, 1\}^{\omega})$ is (m, ε) -balanced, if for every $s \in \{-1, 1\}^m$ we have



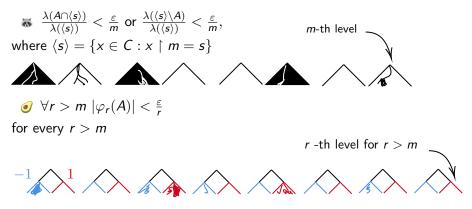
Let $m \in \mathbb{N}$ and $\varepsilon > 0$. We say that $A \in Bor(\mathcal{C}) = Bor(\{-1, 1\}^{\omega})$ is (m, ε) -balanced, if for every $s \in \{-1, 1\}^m$ we have



for every r > m

< (17) > < (27 >)

Let $m \in \mathbb{N}$ and $\varepsilon > 0$. We say that $A \in Bor(\mathcal{C}) = Bor(\{-1, 1\}^{\omega})$ is (m, ε) -balanced, if for every $s \in \{-1, 1\}^m$ we have



Let $m \in \mathbb{N}$ and $\varepsilon > 0$. A set A is (m, ε) -balanced, if for every $s \in \{-1, 1\}^m$

$$\label{eq:linear_states} \ensuremath{\overline{\sc s}} \ \frac{\lambda(A \cap \langle s \rangle)}{\lambda(\langle s \rangle)} < \frac{\varepsilon}{m} \ \text{or} \ \frac{\lambda(\langle s \rangle \backslash A)}{\lambda(\langle s \rangle)} < \frac{\varepsilon}{m},$$

- A finite family A of Borel sets is (m, ε) -balanced if each $A \in A$ is (m, ε) -balanced.

< ロト < 同ト < ヨト < ヨト

Let $m \in \mathbb{N}$ and $\varepsilon > 0$. A set A is (m, ε) -balanced, if for every $s \in \{-1, 1\}^m$

$$\label{eq:linear_states} \ensuremath{\overline{\sc s}} \ensuremath{\frac{\lambda(A \cap \langle s \rangle)}{\lambda(\langle s \rangle)}} < \frac{\varepsilon}{m} \mbox{ or } \frac{\lambda(\langle s \rangle \backslash A)}{\lambda(\langle s \rangle)} < \frac{\varepsilon}{m},$$

- A finite family A of Borel sets is (m, ε) -balanced if each $A \in A$ is (m, ε) -balanced.
- We say that a **Boolean algebra** $\mathbb{B} \subseteq Bor(\mathcal{C})$ is **balanced** if for every finite family $\mathcal{A} \subseteq \mathbb{B}$ and $\varepsilon > 0$ there is $m \in \mathbb{N}$ such that \mathcal{A} is (m, ε) -balanced.

くロト く伺 ト くきト くきト

Let $m \in \mathbb{N}$ and $\varepsilon > 0$. A set A is (m, ε) -balanced, if for every $s \in \{-1, 1\}^m$

$$\label{eq:linear_states} \ensuremath{\overline{\sc k}} \ensuremath{\frac{\lambda(A \cap \langle s \rangle)}{\lambda(\langle s \rangle)}} < \frac{\varepsilon}{m} \mbox{ or } \frac{\lambda(\langle s \rangle \backslash A)}{\lambda(\langle s \rangle)} < \frac{\varepsilon}{m},$$

- A finite family A of Borel sets is (m, ε) -balanced if each $A \in A$ is (m, ε) -balanced.
- We say that a **Boolean algebra** $\mathbb{B} \subseteq Bor(\mathcal{C})$ is **balanced** if for every finite family $\mathcal{A} \subseteq \mathbb{B}$ and $\varepsilon > 0$ there is $m \in \mathbb{N}$ such that \mathcal{A} is (m, ε) -balanced.

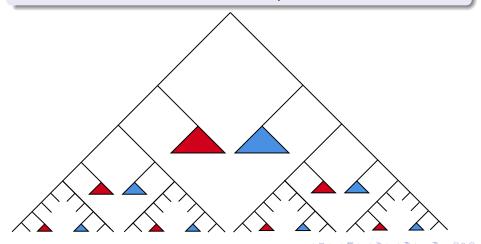
First observation

Clop(C) is balanced.

Examples

Second observation

There exists a balanced set which is not clopen



Third observation

If $\mathbb{B} \subseteq \operatorname{Bor}(C)$ is balanced, then it does not have the Nikodym property.

To see that take $\mu_n = n\varphi_n$. The sequence $(\mu_n)_{n \in \mathbb{N}}$ is pointwise convergent to 0, but $\|\mu_n\| = n$ for every $n \in \mathbb{N}$

Let $\mathbb{B} \subseteq \operatorname{Bor}(\mathcal{C})$ be a countable balanced Boolean algebra. Suppose that $\not\models (\mathbb{B}_n)_{n \in \mathbb{N}}$ is an increasing sequence of finite Boolean algebras such that

$$\bigcup_{n\in\mathbb{N}}\mathbb{B}_n=\mathbb{B}$$

 $\begin{array}{l} \not \Downarrow \quad (m_n)_{n\in\mathbb{N}} \text{ is a strictly increasing sequence of natural numbers} \\ \not \twoheadleftarrow \quad (\varepsilon_n)_{n\in\mathbb{N}} \text{ is a sequence of positive numbers converging to } 0 \\ \not \twoheadleftarrow \quad (G_n)_{n\in\mathbb{N}} \subseteq \mathbb{B} \text{ is a sequence of pairwise disjoint sets} \\ \text{and} \end{array}$

$$\forall k \in \mathbb{N} \ \forall n \leqslant k \ \mathcal{F}\left(\mathbb{B}_n, \bigcup_{i \leqslant k} G_i\right) \ ext{is} \ (m_n, \varepsilon_n) ext{-balanced}$$

Then $\mathcal{F}(\mathbb{B}, \bigcup_{n \in \mathbb{N}} G_i)$ is balanced.

Theorem (simplified version)

Let $\mathbb{B} \subseteq \operatorname{Bor}(\mathcal{C})$ be a balanced algebra, $m \in \mathbb{N}, \varepsilon > 0$. Suppose that

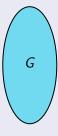
 $G \in \mathbb{B}$ is (m, ε) -balanced

Then there is $\theta > 0$ such that

```
\begin{array}{l} \not\models & \text{for every } L \in \mathbb{B} \text{ such that } \lambda(L) < \theta \\ \\ \not\models & \text{there is a "very small" set } M \in \mathbb{B} \text{ such that} \\ \\ & G \cup L \cup M \text{ is } (m, \varepsilon) \text{-balanced} \end{array}
```

and

$$L \cap M = \emptyset$$



Theorem (simplified version)

Let $\mathbb{B} \subseteq \operatorname{Bor}(\mathcal{C})$ be a balanced algebra, $m \in \mathbb{N}, \varepsilon > 0$. Suppose that

 $G \in \mathbb{B}$ is (m, ε) -balanced

Then there is $\theta > 0$ such that

```
\begin{array}{l} \clubsuit \\ \text{ for every } L \in \mathbb{B} \text{ such that } \lambda(L) < \theta \\ \\ \clubsuit \\ \text{ there is a "very small" set } M \in \mathbb{B} \text{ such that} \\ \\ G \cup L \cup M \text{ is } (m, \varepsilon) \text{-balanced} \end{array}
```

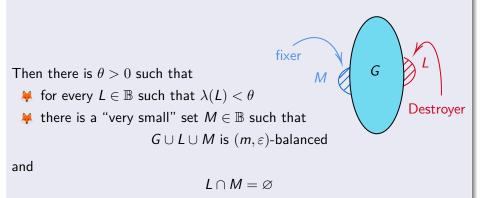
and

Destroyer

Theorem (simplified version)

Let $\mathbb{B} \subseteq \operatorname{Bor}(\mathcal{C})$ be a balanced algebra, $m \in \mathbb{N}, \varepsilon > 0$. Suppose that

 $G \in \mathbb{B}$ is (m, ε) -balanced



Theorem (full version)

Let $k \in \mathbb{N}$, $\eta > 0$. Let $(m_n)_{n \leq k}$ be an increasing sequence of natural numbers. Let $\mathbb{B}^* \subseteq \mathbb{B} \subseteq \operatorname{Bor}(C)$ be balanced Boolean algebras and assume that $\operatorname{Clop}(C) \subseteq \mathbb{B}^*$. Let $(\mathbb{B}_n)_{n \leq k} \subseteq \mathbb{B}$ be finite subalgebras. Suppose that $G, P \in \mathbb{B}^*$ and the following are satisfied:

$$\not\models G \subseteq P$$
,

$$\forall n \leq k \ \mathcal{F}(\mathbb{B}_n, G) \text{ is } (m_n, 2^{-n}) \text{-balanced}.$$

Then there is $\theta > 0$ such that for every $L, Q \in \mathbb{B}^*$ satisfying

$$\not\models \max\{\lambda(L),\lambda(Q)\} < \theta,$$

 $\not\models \ L \cap P = \varnothing,$

there is $M \in \mathbb{B}^*$ such that

$$\not\models M \cap (P \cup Q) = \varnothing,$$

$$\clubsuit \ \lambda(M) < \eta,$$

 $\forall n \leqslant k \ \mathcal{F}(\mathbb{B}_n, G \cup L \cup M) \text{ is } (m_n, 2^{-n})\text{-balanced}.$

8 hodín spánku počas 4 hodiny pracovného spánku týždňa: cez víkend:

