Dualizing the distributivity number \mathfrak{h} ?

Wolfgang Wohofsky

joint work in progress with Yurii Khomskii and Marlene Koelbing

Universität Wien (Kurt Gödel Research Center)
wolfgang. wohofsky@gmx.at
Winter School in Abstract Analysis 2024
30th of January 2024

A family $A \subseteq[\omega]^{\omega}$ is mad (maximal almost disjoint) if $|a \cap b|<\aleph_{0}$ for each distinct $a, b \in A$, and it is maximal with this property, i.e., for each $z \in[\omega]^{\omega}$ there is $a \in A$ with $|a \cap z|=\aleph_{0}$.

For two mad families A and B, we say that B refines A if for each $b \in B$ there is an $a \in A$ with $b \subseteq^{*} a$.

Definition (Distributivity number (of $\mathcal{P}(\omega) /$ fin))

\mathfrak{h} is the least size of a collection of mad families such that there is no single mad family refining all of them.

Claudio Agostini looked at a poster of mine about refining systems of mad families at the YSTW 2023 in Münster and asked me the following question:

Question

What is the least size of a collection of mad families such that each mad family is refined by one member of the collection?

A family $A \subseteq[\omega]^{\omega}$ is mad (maximal almost disjoint) if $|a \cap b|<\aleph_{0}$ for each distinct $a, b \in A$, and it is maximal with this property, i.e., for each $z \in[\omega]^{\omega}$ there is $a \in A$ with $|a \cap z|=\aleph_{0}$.

For two mad families A and B, we say that B refines A if for each $b \in B$ there is an $a \in A$ with $b \subseteq^{*} a$.

Definition (Distributivity number (of $\mathcal{P}(\omega) /$ fin $)$)

\mathfrak{h} is the least size of a collection of mad families such that there is no single mad family refining all of them.

Claudio Agostini looked at a poster of mine about refining systems of mad families at the YSTW 2023 in Münster and asked me the following question:

Question

What is the least size of a collection of mad families such that each mad family is refined by one member of the collection?

In some sense, this question is asking for a number which is dual to \mathfrak{h}.
Let us consider things in a more general setting:

In some sense, this question is asking for a number which is dual to \mathfrak{h}. Let us consider things in a more general setting:

A relational system is a triple $(\mathcal{X}, \mathcal{Y}, \sqsubseteq)$, where \mathcal{X} and \mathcal{Y} are sets, and $\sqsubseteq \subseteq \mathcal{X} \times \mathcal{Y}$ is a relation.

Well-known example:

In some sense, this question is asking for a number which is dual to \mathfrak{h}.
Let us consider things in a more general setting:
A relational system is a triple $(\mathcal{X}, \mathcal{Y}, \sqsubseteq)$, where \mathcal{X} and \mathcal{Y} are sets, and $\sqsubseteq \subseteq \mathcal{X} \times \mathcal{Y}$ is a relation.

Recall the corresponding bounding number and dominating number:
$\mathfrak{b}(\mathcal{X}, \mathcal{Y}, \sqsubseteq):=\min \{|X|: X \subseteq \mathcal{X}$ unbounded $\}$
($X \subseteq \mathcal{X}$ is unbounded $: \Longleftrightarrow$ there is no $y \in \mathcal{Y}$ with $x \sqsubseteq y$ for all $x \in X$)
$\mathfrak{d}(\mathcal{X}, \mathcal{Y}, \sqsubseteq):=\min \{|Y|: Y \subseteq \mathcal{Y}$ dominating $\}$
($Y \subseteq \mathcal{Y}$ is dominating $: \Longleftrightarrow$ for each $x \in \mathcal{X}$ there is $y \in \mathcal{Y}$ with $x \sqsubseteq y$)
Well-known example:
$\mathfrak{b}=\mathfrak{b}\left(\omega^{\omega}, \omega^{\omega}, \leq^{*}\right)$
$\mathfrak{d}=\mathfrak{d}\left(\omega^{\omega}, \omega^{\omega}, \leq^{*}\right)$

Let us now rephrase \mathfrak{h} and its dual version:

$$
\mathfrak{h}=\mathfrak{b}\left(\text { madfam }, \text { madfam }, \leftarrow_{r e f}\right)
$$

Question (Claudio Agostini)

What is $\mathfrak{d h}:=\mathfrak{d}$ (madfam, madfam, $\left.\leftarrow_{r e f}\right)$?
Thanks to discussions with Aleksander Cieślak a bit more than two weeks ago in Vienna, I realized that this is not the only way to "dualize" \mathfrak{h}.
it depends on how we "define" \mathfrak{h}

Fact
 $\mathfrak{h}=\mathfrak{h}^{b}:=\mathfrak{b}\left(\right.$ madfam, $\left.[\omega]^{\omega}, \leftarrow_{\text {sel }}\right)$
 Let us dualize this version:

Definition

Let us now rephrase \mathfrak{h} and its dual version:

$$
\mathfrak{h}=\mathfrak{b}\left(\text { madfam }, \text { madfam }, \leftarrow_{r e f}\right)
$$

Question (Claudio Agostini)

What is $\mathfrak{d h}:=\mathfrak{d}$ (madfam, madfam, $\left.\leftarrow_{\text {ref }}\right)$?
Thanks to discussions with Aleksander Cieślak a bit more than two weeks ago in Vienna, I realized that this is not the only way to "dualize" \mathfrak{h}...
... it depends on how we "define" \mathfrak{h} :

Fact

$\mathfrak{h}=\mathfrak{h}^{\mathfrak{b}}:=\mathfrak{b}\left(\right.$ madfam $\left.,[\omega]^{\omega}, \leftarrow_{\text {sel }}\right)$
Let us dualize this version:

Definition

Let us now rephrase \mathfrak{h} and its dual version:

$$
\mathfrak{h}=\mathfrak{b}\left(\text { madfam }, \text { madfam }, \leftarrow_{r e f}\right)
$$

Question (Claudio Agostini)

What is $\mathfrak{d h}:=\mathfrak{d}\left(\right.$ madfam, madfam,$\left.\leftarrow_{\text {ref }}\right)$?
Thanks to discussions with Aleksander Cieślak a bit more than two weeks ago in Vienna, I realized that this is not the only way to "dualize" \mathfrak{h}...
...it depends on how we "define" \mathfrak{h} :

Fact

$\mathfrak{h}=\mathfrak{h}^{\mathfrak{b}}:=\mathfrak{b}\left(\right.$ madfam, $\left.[\omega]^{\omega}, \leftarrow_{\text {sel }}\right)$
Let us dualize this version:

Definition

$\mathfrak{d} \mathfrak{h}^{b}:=\mathfrak{d}\left(\right.$ madfam, $\left.[\omega]^{\omega}, \leftarrow_{\text {sel }}\right)$

Why b?

Recall:

$\mathfrak{d h}:=\mathfrak{d}\left(\right.$ madfam, madfam,$\left.\leftarrow_{r e f}\right)$
$\mathfrak{d h}{ }^{b}:=\mathfrak{d}$ (madfam, $\left.[\omega]^{\omega}, \leftarrow_{\text {sel }}\right)$
Note that, trivially,
$\mathfrak{d h} \leq 2^{\mathfrak{c}}$, but
$\mathfrak{d h}{ }^{b} \leq \mathfrak{c}$
...i.e., in some sense, $\mathfrak{d h}^{\mathfrak{b}}$ is the lowered/flat/minor version of $\mathfrak{d h}$...

Let us generalize the definitions to arbitrary forcings:

$$
\begin{aligned}
& \mathfrak{h}(\mathbb{P})=\mathfrak{b}\left(\operatorname{macs}(\mathbb{P}), \operatorname{macs}(\mathbb{P}), \leftarrow_{r e f}\right) \\
& \mathfrak{d} \mathfrak{h}(\mathbb{P})=\mathfrak{d}\left(\operatorname{macs}(\mathbb{P}), \operatorname{macs}(\mathbb{P}), \leftarrow_{\text {ref }}\right) \\
& \mathfrak{h}^{b}(\mathbb{P})=\mathfrak{b}\left(\operatorname{macs}(\mathbb{P}), \mathbb{P}, \leftarrow_{\text {sel }}\right) \\
& \mathfrak{d} \mathfrak{h}^{b}(\mathbb{P})=\mathfrak{d}\left(\operatorname{macs}(\mathbb{P}), \mathbb{P}, \leftarrow_{\text {sel }}\right)
\end{aligned}
$$

Let us generalize the definitions to arbitrary forcings:

$$
\begin{aligned}
& \mathfrak{h}(\mathbb{P})=\mathfrak{b}\left(\operatorname{macs}(\mathbb{P}), \operatorname{macs}(\mathbb{P}), \leftarrow_{r e f}\right) \\
& \mathfrak{d} \mathfrak{h}(\mathbb{P})=\mathfrak{d}\left(\operatorname{macs}(\mathbb{P}), \operatorname{macs}(\mathbb{P}), \leftarrow_{\text {ref }}\right) \\
& \mathfrak{h}^{b}(\mathbb{P})=\mathfrak{b}\left(\operatorname{macs}(\mathbb{P}), \mathbb{P}, \leftarrow_{\text {sel }}\right) \\
& \mathfrak{d} \mathfrak{h}^{b}(\mathbb{P})=\mathfrak{d}\left(\operatorname{macs}(\mathbb{P}), \mathbb{P}, \leftarrow_{\text {sel }}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Fact } \\
& \mathfrak{h}=\mathfrak{h}(\mathcal{P}(\omega) / \text { fin })=\mathfrak{h}^{b}(\mathcal{P}(\omega) / \text { fin } \quad \text { (uses homogeneity of } \mathcal{P}(\omega) / \text { fin) } \\
& \mathfrak{d h}=\mathfrak{d h}(\mathcal{P}(\omega) / \text { fin }) \\
& \mathfrak{d h}^{b}=\mathfrak{d} \mathfrak{h}^{b}(\mathcal{P}(\omega) / \text { fin })
\end{aligned}
$$

Fact

- $\mathfrak{d h}(\mathbb{P}) \leq 2^{\mathbb{P}}$ (for any forcing \mathbb{P})
- if \mathbb{P} has the λ^{+}-c.c., then $\mathfrak{d h}(\mathbb{P}) \leq|\mathbb{P}|^{\lambda}$
- for c.c.c. forcings on the reals (such as Cohen, random, Hechler), we have $\mathfrak{d h}(\mathbb{P}) \leq \mathfrak{c}^{\omega}=\mathfrak{c}$

Lemma

If \mathbb{P} has an antichain of size κ, then $\kappa<\mathfrak{d h}(\mathbb{P})$

Coroliary

- For non-c.c.c. forcings on the reals such as Sacks, Miller, Laver, Mathias, Silver, Full-miller, and also $\mathcal{P}(\omega) /$ fin (more on this later), we have $\mathfrak{c}<\mathfrak{d h}(\mathbb{P}) \leq 2^{\mathfrak{c}}$
- For c.c.c. forcings on the reals such as Cohen, random, Hechler, etc. we have $\omega<\mathfrak{d h}(\mathbb{P}) \leq \mathfrak{c}$

Fact

- $\mathfrak{d h}(\mathbb{P}) \leq 2^{\mathbb{P}}($ for any forcing $\mathbb{P})$
- if \mathbb{P} has the λ^{+}-c.c., then $\mathfrak{d h}(\mathbb{P}) \leq|\mathbb{P}|^{\lambda}$
- for c.c.c. forcings on the reals (such as Cohen, random, Hechler), we have $\mathfrak{d h}(\mathbb{P}) \leq \mathfrak{c}^{\omega}=\mathfrak{c}$

Lemma

If \mathbb{P} has an antichain of size κ, then $\kappa<\mathfrak{d h}(\mathbb{P})$.

Coroliary

- For non-c.c.c. forcings on the reals such as Sacks, Miller, Laver, Mathias, Silver, Full-miller, and also $\mathcal{P}(\omega) /$ fin (more on this later), we have $\mathfrak{c}<\mathfrak{d h}(\mathbb{P}) \leq 2^{\mathfrak{c}}$
- For c.c.c. forcings on the reals such as Cohen, random, Hechler, etc., we have $\omega<\mathfrak{d h}(\mathbb{P}) \leq \mathfrak{c}$.

Fact

- $\mathfrak{d h}(\mathbb{P}) \leq 2^{\mathbb{P}}$ (for any forcing \mathbb{P})
- if \mathbb{P} has the λ^{+}-c.c., then $\mathfrak{d h}(\mathbb{P}) \leq|\mathbb{P}|^{\lambda}$
- for c.c.c. forcings on the reals (such as Cohen, random, Hechler), we have $\mathfrak{d h}(\mathbb{P}) \leq \mathfrak{c}^{\omega}=\mathfrak{c}$

Lemma

If \mathbb{P} has an antichain of size κ, then $\kappa<\mathfrak{d h}(\mathbb{P})$.

Corollary

- For non-c.c.c. forcings on the reals such as Sacks, Miller, Laver, Mathias, Silver, Full-miller, and also $\mathcal{P}(\omega) /$ fin (more on this later), we have $\mathfrak{c}<\mathfrak{d h}(\mathbb{P}) \leq 2^{\mathfrak{c}}$.
- For c.c.c. forcings on the reals such as Cohen, random, Hechler, etc., we have $\omega<\mathfrak{d h}(\mathbb{P}) \leq \mathfrak{c}$.

Instead of maximal antichains of \mathbb{P} also open dense sets of \mathbb{P} can be used.
Let opd (\mathbb{P}) denote the filter generated by the sets open dense in \mathbb{P}; equivalently, $D \subseteq \mathbb{P}$ is in $\operatorname{opd}(\mathbb{P})$ if and only if for each $p \in \mathbb{P}$ there is $q \leq p$ such that $r \in D$ for all $r \leq q$.

$$
\begin{array}{ll}
\text { Fact } & \\
\mathfrak{h}(\mathbb{P})=\mathfrak{b}(\operatorname{opd}(\mathbb{P}), \operatorname{opd}(\mathbb{P}), \supseteq) & =\operatorname{add}(\operatorname{opd}(\mathbb{P})) \\
\mathfrak{h}^{b}(\mathbb{P})=\mathfrak{b}(\operatorname{opd}(\mathbb{P}), \mathbb{P}, \ni) & =\operatorname{cov}(\operatorname{opd}(\mathbb{P})) \\
\mathfrak{d h}^{b}(\mathbb{P})=\mathfrak{d}(\operatorname{opd}(\mathbb{P}), \mathbb{P}, \ni) & =\operatorname{non}(\operatorname{opd}(\mathbb{P})) \\
\mathfrak{d h}(\mathbb{P})=\mathfrak{d}(\operatorname{opd}(\mathbb{P}), \operatorname{opd}(\mathbb{P}), \supseteq) & =\operatorname{cof}(\operatorname{opd}(\mathbb{P})) \\
\mathfrak{h}(\mathbb{P})=\mathfrak{b}\left(\operatorname{macs}(\mathbb{P}), \operatorname{macs}(\mathbb{P}), \leftarrow_{\text {ref }}\right) \\
\mathfrak{h}^{b}(\mathbb{P})=\mathfrak{b}\left(\operatorname{macs}(\mathbb{P}), \mathbb{P}, \leftarrow_{\text {sel }}\right) \\
\mathfrak{d h}^{b}(\mathbb{P})=\mathfrak{d}\left(\operatorname{macs}(\mathbb{P}), \mathbb{P}, \leftarrow_{\text {sel }}\right) \\
\mathfrak{d h}(\mathbb{P})=\mathfrak{d}\left(\operatorname{macs}(\mathbb{P}), \operatorname{macs}(\mathbb{P}), \leftarrow_{\text {ref }}\right)
\end{array}
$$

Let \mathbb{P} be a tree forcings on 2^{ω} (or ω^{ω} or $[\omega]^{\omega}$). For a tree $T \in \mathbb{P}$, let

$$
[p]:=\left\{x \in 2^{\omega}: x \mid n \in p \text { for each } n \in \omega\right\}
$$

the body of p (i.e., the set of branches through p).
Let p^{0} denote the Marczewksi-null ideal associated to \mathbb{P} :

Definition

$p^{0}:=\left\{X \subseteq 2^{\omega}: \forall p \in \mathbb{P} \exists q \leq p\right.$ such that $\left.[q] \cap X=\emptyset\right\}$
Lemma
$\operatorname{cof}\left(p^{0}\right) \leq \mathfrak{o h}(\mathbb{P})$
Lemma
$\operatorname{non}\left(p^{0}\right) \leq \mathfrak{d h}^{b}(\mathbb{P})$

Let \mathbb{P} be a tree forcings on 2^{ω} (or ω^{ω} or $[\omega]^{\omega}$). For a tree $T \in \mathbb{P}$, let

$$
[p]:=\left\{x \in 2^{\omega}: x \mid n \in p \text { for each } n \in \omega\right\}
$$

the body of p (i.e., the set of branches through p).
Let p^{0} denote the Marczewksi-null ideal associated to \mathbb{P} :

Definition

$p^{0}:=\left\{X \subseteq 2^{\omega}: \forall p \in \mathbb{P} \exists q \leq p\right.$ such that $\left.[q] \cap X=\emptyset\right\}$
Lemma
$\operatorname{cof}\left(p^{0}\right) \leq \mathfrak{d h}(\mathbb{P})$

Lemma

$\operatorname{non}\left(p^{0}\right) \leq \partial h^{b}(\mathbb{P})$

Let \mathbb{P} be a tree forcings on 2^{ω} (or ω^{ω} or $[\omega]^{\omega}$). For a tree $T \in \mathbb{P}$, let

$$
\left.[p]:=\left\{x \in 2^{\omega}: x\right\rceil n \in p \text { for each } n \in \omega\right\}
$$

the body of p (i.e., the set of branches through p).
Let p^{0} denote the Marczewksi-null ideal associated to \mathbb{P} :

Definition

$p^{0}:=\left\{X \subseteq 2^{\omega}: \forall p \in \mathbb{P} \exists q \leq p\right.$ such that $\left.[q] \cap X=\emptyset\right\}$

Lemma

$\operatorname{cof}\left(p^{0}\right) \leq \mathfrak{d h}(\mathbb{P})$

Lemma

$\operatorname{non}\left(p^{0}\right) \leq \mathfrak{d h}^{b}(\mathbb{P})$

$\mathcal{P}(\omega) /$ fin

$\mathcal{P}(\omega) /$ fin is not an actual tree forcing, but let us treat the conditions as if it were, define "bodies" of conditions, and define a "Marczewski-style ideal":

Definition

Lemma

\square

$\mathcal{P}(\omega) /$ fin

$\mathcal{P}(\omega) /$ fin is not an actual tree forcing, but let us treat the conditions as if it were, define "bodies" of conditions, and define a "Marczewski-style ideal":

For $a \in[\omega]^{\omega}$, let $\langle a\rangle:=\left\{c \in[\omega]^{\omega}: c \subseteq^{*} a\right\}$.

Definition

$p \omega^{0}=\left\{X \subseteq[\omega]^{\omega}: \forall\langle a\rangle \exists\langle b\rangle \subseteq\langle a\rangle(\langle b\rangle \cap X=\emptyset)\right\}$

$$
\begin{aligned}
& \forall a \in[\omega]^{\omega} \exists b \subseteq^{*} a(\langle b\rangle \cap X=\emptyset) \\
& \forall a \in[\omega]^{\omega} \exists b \subseteq a(\langle b\rangle \cap X=\emptyset)
\end{aligned}
$$

Lemma

\square

$\mathcal{P}(\omega) /$ fin

$\mathcal{P}(\omega) /$ fin is not an actual tree forcing, but let us treat the conditions as if it were, define "bodies" of conditions, and define a "Marczewski-style ideal":

For $a \in[\omega]^{\omega}$, let $\langle a\rangle:=\left\{c \in[\omega]^{\omega}: c \subseteq^{*} a\right\}$.

Definition

$$
p \omega^{0}=\left\{X \subseteq[\omega]^{\omega}: \forall\langle a\rangle \exists\langle b\rangle \subseteq\langle a\rangle(\langle b\rangle \cap X=\emptyset)\right\}
$$

$$
\begin{aligned}
& \forall a \in[\omega]^{\omega} \exists b \subseteq^{*} a(\langle b\rangle \cap X=\emptyset) \\
& \forall a \in[\omega]^{\omega} \exists b \subseteq a(\langle b\rangle \cap X=\emptyset)
\end{aligned}
$$

Lemma

$\mathfrak{c}<\operatorname{cof}\left(p \omega^{0}\right) \leq \mathfrak{d h}$

r^{0} (the Marczewski-null ideal for Mathias forcing)

....also called "Ramsey null" ideal or "nowhere Ramsey" ideal. . .

$$
\begin{aligned}
& \text { Lemma (Plewik? } \left.\left(\text { where } \operatorname{add}\left(r^{0}\right)=\operatorname{cov}\left(r^{0}\right)=\mathfrak{h} \text { proved }\right)\right) \\
& p \omega^{0}=r^{0}
\end{aligned}
$$

\square
\square
$\mathfrak{c}<\operatorname{cof}\left(r^{0}\right) \leq \mathfrak{d h}($ Mathias $)$
$\mathfrak{c}<\operatorname{cof}\left(s^{0}\right) \leq \mathfrak{d h}($ Sacks $)$
$\mathfrak{c}<\operatorname{cof}\left(\ell^{0}\right) \leq \mathfrak{o h}($ Laver $)$
$\mathfrak{c}<\operatorname{cof}\left(m^{0}\right) \leq \mathfrak{d h}($ Miller $)$
$\mathfrak{c}<\operatorname{cof}\left(v^{0}\right) \leq \mathfrak{o h}($ Silver $)$

r^{0} (the Marczewski-null ideal for Mathias forcing)

....also called "Ramsey null" ideal or "nowhere Ramsey" ideal. . .

$$
\begin{aligned}
& \text { Lemma (Plewik? (where add } \left.\left.\left(r^{0}\right)=\operatorname{cov}\left(r^{0}\right)=\mathfrak{h} \text { proved }\right)\right) \\
& p \omega^{0}=r^{0}
\end{aligned}
$$

Corollary

$\operatorname{cof}\left(r^{0}\right) \leq \mathfrak{d h}$

r^{0} (the Marczewski-null ideal for Mathias forcing)

...also called "Ramsey null" ideal or "nowhere Ramsey" ideal. . .
Lemma (Plewik? (where $\operatorname{add}\left(r^{0}\right)=\operatorname{cov}\left(r^{0}\right)=\mathfrak{h}$ proved))
$p \omega^{0}=r^{0}$

Corollary
$\operatorname{cof}\left(r^{0}\right) \leq \mathfrak{d h}$
Also:
$\mathfrak{c}<\operatorname{cof}\left(r^{0}\right) \leq \mathfrak{d h}$ (Mathias)
$\mathfrak{c}<\operatorname{cof}\left(s^{0}\right) \leq \mathfrak{d h}$ (Sacks)
$\mathfrak{c}<\operatorname{cof}\left(\ell^{0}\right) \leq \mathfrak{d h}$ (Laver)
$\mathfrak{c}<\operatorname{cof}\left(m^{0}\right) \leq \mathfrak{d h}$ (Miller)
$\mathfrak{c}<\operatorname{cof}\left(v^{0}\right) \leq \mathfrak{d h}$ (Silver)

Recall:

Lemma

$$
\operatorname{non}\left(p^{0}\right) \leq \mathfrak{d h}^{b}(\mathbb{P})
$$

Therefore, we get the following:

Lemma

$$
\operatorname{non}\left(p \omega^{0}\right) \leq \mathfrak{d} \mathfrak{h}^{b} \leq \mathfrak{c}
$$

But, as usual for non-c.c.c. "tree" forcings (in fact, due to c-sized antichains with disjoint bodies), we have:
\square

Corollary (the variant I dicussed with Alek)

Recall:

Lemma

$$
\operatorname{non}\left(p^{0}\right) \leq \mathfrak{d h}^{b}(\mathbb{P})
$$

Therefore, we get the following:

Lemma

$$
\operatorname{non}\left(p \omega^{0}\right) \leq \mathfrak{d} \mathfrak{h}^{b} \leq \mathfrak{c}
$$

But, as usual for non-c.c.c. "tree" forcings (in fact, due to c-sized antichains with disjoint bodies), we have:

```
Fact
non(p\mp@subsup{\omega}{}{0})=\mathfrak{c}
```

Corollary (the variant I dicussed with Alek)

Recall:

Lemma

$$
\operatorname{non}\left(p^{0}\right) \leq \mathfrak{d h}^{b}(\mathbb{P})
$$

Therefore, we get the following:

Lemma

$$
\operatorname{non}\left(p \omega^{0}\right) \leq \mathfrak{d h}{ }^{b} \leq \mathfrak{c}
$$

But, as usual for non-c.c.c. "tree" forcings (in fact, due to c-sized antichains with disjoint bodies), we have:

Fact

$$
\operatorname{non}\left(p \omega^{0}\right)=\mathfrak{c}
$$

Corollary (the variant I dicussed with Alek)

$$
\mathfrak{d} \mathfrak{h}^{\mathfrak{b}}=\mathfrak{c}
$$

For those who are interested in fresh functions and/or can remember past talks of mine about fresh function spectra etc.:

Lemma

$\operatorname{FRESH}(\mathbb{P}) \subseteq\left[\mathfrak{h}(\mathbb{P}), \mathfrak{d h}^{b}(\mathbb{P})\right]_{\text {Reg }}$.
Recall from some other talk (uses the base matrix theorem):
$\operatorname{FRESH}(\mathcal{P}(\omega) /$ fin $)=[\mathfrak{h}(\mathbb{P}), \mathfrak{c}]_{\text {Reg }}$.
Corollary (again, unnecessarily complicated)
$\mathfrak{d} \mathfrak{h}^{b}=\mathfrak{c}$

Cohen forcing \mathbb{C}

Let c^{0} denote the ideal of nowhere dense subsets of 2^{ω}.
Lemma (from general lemma above)
$\operatorname{cof}\left(c^{0}\right) \leq \mathfrak{d h}(\mathbb{C}) \leq \mathfrak{c}$
In fact: $\operatorname{cof}\left(c^{0}\right)=\mathfrak{d h}(\mathbb{C})!!!? ? ?$

> Theorem (Fremlin?; Balcar-Hernández-Hernández-Hrušák?) $\mathfrak{d h}(\mathbb{C})=\operatorname{cof}(\mathcal{M})$ Hechler forcing: $\mathfrak{o h}(\mathbb{D})=\mathfrak{c}$

Eventually different forcing: $\mathfrak{d h}(\mathbb{E})=\mathfrak{c}$
same for filter-Laver for analytic filter.
\square

Cohen forcing \mathbb{C}

Let c^{0} denote the ideal of nowhere dense subsets of 2^{ω}.
Lemma (from general lemma above)
$\operatorname{cof}\left(c^{0}\right) \leq \mathfrak{d h}(\mathbb{C}) \leq \mathfrak{c}$
In fact: $\operatorname{cof}\left(c^{0}\right)=\mathfrak{d h}(\mathbb{C})$!!!???
Theorem (Fremlin?; Balcar-Hernández-Hernández-Hrušák?)
$\mathfrak{d h}(\mathbb{C})=\operatorname{cof}(\mathcal{M})$
Hechler forcing: $\mathfrak{d h}(\mathbb{D})=\mathfrak{c}$
Eventually different forcing: $\mathfrak{d h}(\mathbb{E})=\mathfrak{c}$
... same for filter-Laver for analytic filter. . .
Random: $\operatorname{cof}(\mathcal{N}) \leq \mathfrak{d h}(\mathbb{B}) \leq \mathfrak{c} \quad \ldots$ so what is $\mathfrak{d h}(\mathbb{B})$?

Recall:
$\operatorname{cof}\left(p^{0}\right) \leq \mathfrak{d h}(\mathbb{P}) \leq \mid\{A \subseteq \mathbb{P}: A$ is a maximal antichain $\} \mid$

Question

Is it consistent that $\operatorname{cof}\left(p^{0}\right)<\mathfrak{d h}(\mathbb{P})$ for some \mathbb{P} ?

Thank you for your attention and enjoy the Winter School. . .

Vienna, Augarten, 3rd December 2020

Thank you for your attention and enjoy the Winter School. . .

Vienna, Old KGRC (Josephinum), 9th April 2020

