Dualizing the distributivity number \mathfrak{h} ?

Wolfgang Wohofsky

joint work in progress with Yurii Khomskii and Marlene Koelbing

Universität Wien (Kurt Gödel Research Center)

wolfgang.wohofsky@gmx.at

Winter School in Abstract Analysis 2024 30th of January 2024 A family $A \subseteq [\omega]^{\omega}$ is mad (maximal almost disjoint) if $|a \cap b| < \aleph_0$ for each distinct $a, b \in A$, and it is maximal with this property, i.e., for each $z \in [\omega]^{\omega}$ there is $a \in A$ with $|a \cap z| = \aleph_0$.

For two mad families A and B, we say that B refines A if for each $b \in B$ there is an $a \in A$ with $b \subseteq^* a$.

Definition (Distributivity number (of $\mathcal{P}(\omega)/\text{fin}$))

 ${\mathfrak h}$ is the least size of a collection of mad families such that there is no single mad family refining all of them.

Claudio Agostini looked at a poster of mine about refining systems of mad families at the YSTW 2023 in Münster and asked me the following question:

Question

What is the least size of a collection of mad families such that each mad family is refined by one member of the collection?

A family $A \subseteq [\omega]^{\omega}$ is mad (maximal almost disjoint) if $|a \cap b| < \aleph_0$ for each distinct $a, b \in A$, and it is maximal with this property, i.e., for each $z \in [\omega]^{\omega}$ there is $a \in A$ with $|a \cap z| = \aleph_0$.

For two mad families A and B, we say that B refines A if for each $b \in B$ there is an $a \in A$ with $b \subseteq^* a$.

Definition (Distributivity number (of $\mathcal{P}(\omega)/\text{fin}$))

 ${\mathfrak h}$ is the least size of a collection of mad families such that there is no single mad family refining all of them.

Claudio Agostini looked at a poster of mine about refining systems of mad families at the YSTW 2023 in Münster and asked me the following question:

Question

What is the least size of a collection of mad families such that each mad family is refined by one member of the collection?

In some sense, this question is asking for a number which is dual to \mathfrak{h} . Let us consider things in a more general setting:

A relational system is a triple $(\mathcal{X}, \mathcal{Y}, \sqsubseteq)$, where \mathcal{X} and \mathcal{Y} are sets, and $\sqsubseteq \subseteq \mathcal{X} \times \mathcal{Y}$ is a relation.

Recall the corresponding bounding number and dominating number:

 $\mathfrak{b}(\mathcal{X}, \mathcal{Y}, \sqsubseteq) := \min\{|X| : X \subseteq \mathcal{X} \text{ unbounded}\} \\ (X \subseteq \mathcal{X} \text{ is unbounded} : \iff \text{ there is no } y \in \mathcal{Y} \text{ with } x \sqsubseteq y \text{ for all } x \in X)$

 $\mathfrak{d}(\mathcal{X}, \mathcal{Y}, \sqsubseteq) := \min\{|Y| : Y \subseteq \mathcal{Y} \text{ dominating}\}\$ (Y \sum \mathcal{Y} is *dominating* : \leftarrow for each x \in \mathcal{X} there is y \in \mathcal{Y} with x \sum y)

Well-known example:

$$\mathfrak{b} = \mathfrak{b}(\omega^{\omega}, \omega^{\omega}, \leq^*)$$
$$\mathfrak{d} = \mathfrak{d}(\omega^{\omega}, \omega^{\omega}, <^*)$$

э

イロト 不得 トイヨト イヨト

In some sense, this question is asking for a number which is dual to \mathfrak{h} .

Let us consider things in a more general setting:

A relational system is a triple $(\mathcal{X}, \mathcal{Y}, \sqsubseteq)$, where \mathcal{X} and \mathcal{Y} are sets, and $\sqsubseteq \subseteq \mathcal{X} \times \mathcal{Y}$ is a relation.

Recall the corresponding bounding number and dominating number:

 $\mathfrak{b}(\mathcal{X}, \mathcal{Y}, \sqsubseteq) := \min\{|X| : X \subseteq \mathcal{X} \text{ unbounded}\} \\ (X \subseteq \mathcal{X} \text{ is unbounded} : \iff \text{ there is no } y \in \mathcal{Y} \text{ with } x \sqsubseteq y \text{ for all } x \in X)$

 $\mathfrak{d}(\mathcal{X}, \mathcal{Y}, \sqsubseteq) := \min\{|Y| : Y \subseteq \mathcal{Y} \text{ dominating}\}\$ (Y \sum \mathcal{Y} is *dominating* : \leftarrow for each x \in \mathcal{X} there is y \in \mathcal{Y} with x \sum y)

Well-known example:

$$\mathfrak{b} = \mathfrak{b}(\omega^{\omega}, \omega^{\omega}, \leq^*)$$
$$\mathfrak{d} = \mathfrak{d}(\omega^{\omega}, \omega^{\omega}, <^*)$$

3

(日)

In some sense, this question is asking for a number which is dual to \mathfrak{h} .

Let us consider things in a more general setting:

A relational system is a triple $(\mathcal{X}, \mathcal{Y}, \sqsubseteq)$, where \mathcal{X} and \mathcal{Y} are sets, and $\sqsubseteq \subseteq \mathcal{X} \times \mathcal{Y}$ is a relation.

Recall the corresponding bounding number and dominating number:

 $b(\mathcal{X}, \mathcal{Y}, \sqsubseteq) := \min\{|X| : X \subseteq \mathcal{X} \text{ unbounded}\} \\ (X \subseteq \mathcal{X} \text{ is unbounded} : \iff \text{ there is no } y \in \mathcal{Y} \text{ with } x \sqsubseteq y \text{ for all } x \in X) \\ b(\mathcal{X}, \mathcal{Y}, \sqsubseteq) := \min\{|Y| : Y \subseteq \mathcal{Y} \text{ dominating}\} \\ (Y \subseteq \mathcal{Y} \text{ is dominating} : \iff \text{ for each } x \in \mathcal{X} \text{ there is } y \in \mathcal{Y} \text{ with } x \sqsubseteq y) \\ \cdots \cdots \cdots$

Well-known example:

$$egin{aligned} \mathfrak{b} &= \mathfrak{b}(\omega^\omega, \omega^\omega, \leq^*) \ \mathfrak{d} &= \mathfrak{d}(\omega^\omega, \omega^\omega, \leq^*) \end{aligned}$$

3

Let us now rephrase \mathfrak{h} and its dual version:

 $\mathfrak{h} = \mathfrak{b}(\mathrm{madfam}, \mathrm{madfam}, \leftarrow_{ref})$

Question (Claudio Agostini)

What is $\mathfrak{dh} := \mathfrak{d}(\mathrm{madfam}, \mathrm{madfam}, \leftarrow_{ref})$?

Thanks to discussions with Aleksander Cieślak a bit more than two weeks ago in Vienna, I realized that this is not the only way to "dualize" $\mathfrak{h}...$

 \ldots it depends on how we "define" $\mathfrak{h}\colon$

Let us now rephrase \mathfrak{h} and its dual version:

 $\mathfrak{h} = \mathfrak{b}(\mathrm{madfam}, \mathrm{madfam}, \leftarrow_{ref})$

Question (Claudio Agostini)

What is $\mathfrak{dh} := \mathfrak{d}(\mathrm{madfam}, \mathrm{madfam}, \leftarrow_{ref})$?

Thanks to discussions with Aleksander Cieślak a bit more than two weeks ago in Vienna, I realized that this is not the only way to "dualize" $\mathfrak{h}\ldots$

 \ldots it depends on how we "define" \mathfrak{h} :

Fact

$$\mathfrak{h} = \mathfrak{h}^{\mathfrak{b}} := \mathfrak{b}(\mathrm{madfam}, [\omega]^{\omega}, \leftarrow_{sel})$$

Let us dualize this version:
Definition
 $\mathfrak{d}\mathfrak{h}^{\mathfrak{b}} := \mathfrak{d}(\mathrm{madfam}, [\omega]^{\omega}, \leftarrow_{sel})$

Let us now rephrase \mathfrak{h} and its dual version:

 $\mathfrak{h} = \mathfrak{b}(\mathrm{madfam}, \mathrm{madfam}, \leftarrow_{ref})$

Question (Claudio Agostini)

What is $\mathfrak{dh} := \mathfrak{d}(\mathrm{madfam}, \mathrm{madfam}, \leftarrow_{ref})$?

Thanks to discussions with Aleksander Cieślak a bit more than two weeks ago in Vienna, I realized that this is not the only way to "dualize" $\mathfrak{h}...$

 \ldots it depends on how we "define" $\mathfrak{h}:$

Fact

$$\mathfrak{h} = \mathfrak{h}^{\flat} := \mathfrak{b}(\mathrm{madfam}, [\omega]^{\omega}, \leftarrow_{sel})$$

Let us dualize this version:

$\begin{array}{l} \textbf{Definition}\\ \mathfrak{d}\mathfrak{h}^{\mathfrak{b}} := \mathfrak{d}(\mathrm{madfam}, [\omega]^{\omega}, \leftarrow_{\mathit{sel}}) \end{array}$

4/17

 $\mathfrak{dh} := \mathfrak{d}(\mathrm{madfam}, \mathrm{madfam}, \leftarrow_{ref})$ $\mathfrak{dh}^{\flat} := \mathfrak{d}(\mathrm{madfam}, [\omega]^{\omega}, \leftarrow_{sel})$

Note that, trivially,

 $\mathfrak{dh} \leq 2^{\mathfrak{c}},$ but

 $\mathfrak{dh}^\flat \leq \mathfrak{c}$

...i.e., in some sense, \mathfrak{dh}^\flat is the lowered/flat/minor version of $\mathfrak{dh}...$

Let us generalize the definitions to arbitrary forcings: $\mathfrak{h}(\mathbb{P}) = \mathfrak{b}(\mathrm{macs}(\mathbb{P}), \mathrm{macs}(\mathbb{P}), \leftarrow_{ref})$ $\mathfrak{dh}(\mathbb{P}) = \mathfrak{d}(\mathrm{macs}(\mathbb{P}), \mathrm{macs}(\mathbb{P}), \leftarrow_{ref})$ $\mathfrak{h}^{\flat}(\mathbb{P}) = \mathfrak{b}(\mathrm{macs}(\mathbb{P}), \mathbb{P}, \leftarrow_{sel})$ $\mathfrak{dh}^{\flat}(\mathbb{P}) = \mathfrak{d}(\mathrm{macs}(\mathbb{P}), \mathbb{P}, \leftarrow_{sel})$

Fact

$$\begin{split} \mathfrak{h} &= \mathfrak{h}(\mathcal{P}(\omega)/fin) = \mathfrak{h}^{\flat}(\mathcal{P}(\omega)/fin) \qquad (\textit{uses homogeneity of } \mathcal{P}(\omega)/fin) \\ \mathfrak{dh} &= \mathfrak{dh}(\mathcal{P}(\omega)/fin) \\ \mathfrak{dh}^{\flat} &= \mathfrak{dh}^{\flat}(\mathcal{P}(\omega)/fin) \end{split}$$

э

く 何 ト く ヨ ト く ヨ ト

Let us generalize the definitions to arbitrary forcings:

$$\mathfrak{h}(\mathbb{P}) = \mathfrak{b}(\mathrm{macs}(\mathbb{P}),\mathrm{macs}(\mathbb{P}),\leftarrow_{\mathit{ref}})$$

$$\mathfrak{dh}(\mathbb{P}) = \mathfrak{d}(\mathrm{macs}(\mathbb{P}),\mathrm{macs}(\mathbb{P}),\leftarrow_{\mathit{ref}})$$

$$\mathfrak{h}^{\flat}(\mathbb{P}) = \mathfrak{b}(\mathrm{macs}(\mathbb{P}), \mathbb{P}, \leftarrow_{\mathit{sel}})$$

$$\mathfrak{dh}^{\flat}(\mathbb{P}) = \mathfrak{d}(\mathrm{macs}(\mathbb{P}), \mathbb{P}, \leftarrow_{\mathit{sel}})$$

Fact

$\mathfrak{h}=\mathfrak{h}(\mathcal{P}(\omega)/\mathit{fin})=\mathfrak{h}^{lat}(\mathcal{P}(\omega)/\mathit{fin})$	(uses homogeneity of $\mathcal{P}(\omega)/\mathit{fin})$
$\mathfrak{dh}=\mathfrak{dh}(\mathcal{P}(\omega)/\mathit{fin})$	
$\mathfrak{dh}^{\flat}=\mathfrak{dh}^{\flat}(\mathcal{P}(\omega)/\mathit{fin})$	

∃ >

э

Fact

- $\mathfrak{dh}(\mathbb{P}) \leq 2^{\mathbb{P}}$ (for any forcing \mathbb{P})
- if \mathbb{P} has the λ^+ -c.c., then $\mathfrak{dh}(\mathbb{P}) \leq |\mathbb{P}|^{\lambda}$
- for c.c.c. forcings on the reals (such as Cohen, random, Hechler), we have ∂h(ℙ) ≤ c^ω = c

Lemma

If \mathbb{P} has an antichain of size κ , then $\kappa < \mathfrak{dh}(\mathbb{P})$.

Corollary

• For non-c.c.c. forcings on the reals such as Sacks, Miller, Laver, Mathias, Silver, Full-miller, and also $\mathcal{P}(\omega)/\text{fin}$ (more on this later), we have $\mathfrak{c} < \mathfrak{dh}(\mathbb{P}) \leq 2^{\mathfrak{c}}$.

 For c.c.c. forcings on the reals such as Cohen, random, Hechler, etc., we have ω < ∂h(P) ≤ c.

<日× × × × × × ×

Fact

- $\mathfrak{dh}(\mathbb{P}) \leq 2^{\mathbb{P}}$ (for any forcing \mathbb{P})
- if \mathbb{P} has the λ^+ -c.c., then $\mathfrak{dh}(\mathbb{P}) \leq |\mathbb{P}|^{\lambda}$
- for c.c.c. forcings on the reals (such as Cohen, random, Hechler), we have ∂h(ℙ) ≤ c^ω = c

Lemma

If \mathbb{P} has an antichain of size κ , then $\kappa < \mathfrak{dh}(\mathbb{P})$.

Corollary

• For non-c.c.c. forcings on the reals such as Sacks, Miller, Laver, Mathias, Silver, Full-miller, and also $\mathcal{P}(\omega)/\text{fin}$ (more on this later), we have $\mathfrak{c} < \mathfrak{dh}(\mathbb{P}) \leq 2^{\mathfrak{c}}$.

 For c.c.c. forcings on the reals such as Cohen, random, Hechler, etc., we have ω < ∂h(P) ≤ c.

<日× × × × × × ×

Fact

- $\mathfrak{dh}(\mathbb{P}) \leq 2^{\mathbb{P}}$ (for any forcing \mathbb{P})
- if \mathbb{P} has the λ^+ -c.c., then $\mathfrak{dh}(\mathbb{P}) \leq |\mathbb{P}|^{\lambda}$
- for c.c.c. forcings on the reals (such as Cohen, random, Hechler), we have ∂h(P) ≤ c^ω = c

Lemma

If \mathbb{P} has an antichain of size κ , then $\kappa < \mathfrak{dh}(\mathbb{P})$.

Corollary

- For non-c.c.c. forcings on the reals such as Sacks, Miller, Laver, Mathias, Silver, Full-miller, and also $\mathcal{P}(\omega)/\text{fin}$ (more on this later), we have $\mathfrak{c} < \mathfrak{dh}(\mathbb{P}) \leq 2^{\mathfrak{c}}$.
- For c.c.c. forcings on the reals such as Cohen, random, Hechler, etc., we have ω < ∂h(ℙ) ≤ c.

A (1) > A (2) > A

Instead of maximal antichains of $\mathbb P$ also open dense sets of $\mathbb P$ can be used.

Let $opd(\mathbb{P})$ denote the filter generated by the sets open dense in \mathbb{P} ; equivalently, $D \subseteq \mathbb{P}$ is in $opd(\mathbb{P})$ if and only if for each $p \in \mathbb{P}$ there is $q \leq p$ such that $r \in D$ for all $r \leq q$.

Fact			
$\mathfrak{h}(\mathbb{P}) = \mathfrak{b}(\mathrm{opd}(\mathbb{P}),\mathrm{opd}(\mathbb{P}),\supseteq)$	$= \mathrm{add}(\mathrm{opd}(\mathbb{P}))$		
$\mathfrak{h}^{\flat}(\mathbb{P}) = \mathfrak{b}(\mathrm{opd}(\mathbb{P}),\mathbb{P}, i)$	$= \operatorname{cov}(\operatorname{opd}(\mathbb{P}))$		
$\mathfrak{dh}^{\flat}(\mathbb{P}) = \mathfrak{d}(\mathrm{opd}(\mathbb{P}),\mathbb{P}, i)$	$= \operatorname{non}(\operatorname{opd}(\mathbb{P}))$		
$\mathfrak{dh}(\mathbb{P}) = \mathfrak{d}(\mathrm{opd}(\mathbb{P}),\mathrm{opd}(\mathbb{P}),\supseteq)$	$= \operatorname{cof}(\operatorname{opd}(\mathbb{P}))$		
$\mathfrak{h}(\mathbb{P}) = \mathfrak{b}(\mathrm{macs}(\mathbb{P}),\mathrm{macs}(\mathbb{P}),\leftarrow$	ref)		_
$\mathfrak{h}^{\flat}(\mathbb{P}) = \mathfrak{b}(\mathrm{macs}(\mathbb{P}), \mathbb{P}, \leftarrow_{\mathit{sel}})$			
$\mathfrak{dh}^{\flat}(\mathbb{P}) = \mathfrak{d}(\mathrm{macs}(\mathbb{P}), \mathbb{P}, \leftarrow_{\mathit{sel}})$			
$\mathfrak{dh}(\mathbb{P}) = \mathfrak{d}(\mathrm{macs}(\mathbb{P}),\mathrm{macs}(\mathbb{P}), \leftarrow$	- _{ref})	(四)	৩৫৫
Wohofsky (KGRC)	Dualizing h?	Heinice 2024	8/17

Let \mathbb{P} be a tree forcings on 2^{ω} (or ω^{ω} or $[\omega]^{\omega}$). For a tree $\mathcal{T} \in \mathbb{P}$, let

$$[p] := \{ x \in 2^{\omega} : x \restriction n \in p \text{ for each } n \in \omega \}$$

the body of p (i.e., the set of branches through p).

Let p^0 denote the Marczewksi-null ideal associated to \mathbb{P} :

Definition

$$p^0 := \{X \subseteq 2^\omega : \forall p \in \mathbb{P} \; \exists q \leq p \text{ such that } [q] \cap X = \emptyset\}$$

Lemma

 $\operatorname{cof}(p^0) \leq \mathfrak{dh}(\mathbb{P})$

Lemma

 $\operatorname{non}(p^0) \leq \mathfrak{dh}^{\flat}(\mathbb{P})$

э

イロト イヨト イヨト -

Let \mathbb{P} be a tree forcings on 2^{ω} (or ω^{ω} or $[\omega]^{\omega}$). For a tree $\mathcal{T} \in \mathbb{P}$, let

$$[p] := \{ x \in 2^{\omega} : x \upharpoonright n \in p \text{ for each } n \in \omega \}$$

the body of p (i.e., the set of branches through p).

Let p^0 denote the Marczewksi-null ideal associated to \mathbb{P} :

Definition

$$p^0 := \{X \subseteq 2^\omega : \forall p \in \mathbb{P} \; \exists q \leq p \text{ such that } [q] \cap X = \emptyset\}$$

Lemma

 $\operatorname{cof}(p^0) \leq \mathfrak{dh}(\mathbb{P})$

Lemma

 $\operatorname{non}(p^0) \leq \mathfrak{dh}^{\flat}(\mathbb{P})$

э

イロト イヨト イヨト -

Let \mathbb{P} be a tree forcings on 2^{ω} (or ω^{ω} or $[\omega]^{\omega}$). For a tree $T \in \mathbb{P}$, let

$$[p] := \{ x \in 2^{\omega} : x \upharpoonright n \in p \text{ for each } n \in \omega \}$$

the body of p (i.e., the set of branches through p).

Let p^0 denote the Marczewksi-null ideal associated to \mathbb{P} :

Definition

$$p^0 := \{X \subseteq 2^\omega : \forall p \in \mathbb{P} \; \exists q \leq p \text{ such that } [q] \cap X = \emptyset\}$$

Lemma

 $\operatorname{cof}(p^0) \leq \mathfrak{dh}(\mathbb{P})$

Lemma

 $\operatorname{non}(p^0) \leq \mathfrak{dh}^{\flat}(\mathbb{P})$

$\mathcal{P}(\omega)/\mathsf{fin}$

 $\mathcal{P}(\omega)$ /fin is not an actual tree forcing, but let us treat the conditions as if it were, define "bodies" of conditions, and define a "Marczewski-style ideal":

For $a \in [\omega]^{\omega}$, let $\langle a \rangle := \{ c \in [\omega]^{\omega} : c \subseteq^* a \}.$

Definition

 $p\omega^{0} = \{ X \subseteq [\omega]^{\omega} : \forall \langle a \rangle \exists \langle b \rangle \subseteq \langle a \rangle \; (\langle b \rangle \cap X = \emptyset) \}$

$$\forall a \in [\omega]^{\omega} \exists b \subseteq^* a (\langle b \rangle \cap X = \emptyset) \forall a \in [\omega]^{\omega} \exists b \subseteq a (\langle b \rangle \cap X = \emptyset)$$

Lemma

 $\mathfrak{c} < \operatorname{cof}(p\omega^0) \leq \mathfrak{dh}$

э

イロト イヨト イヨト

$\mathcal{P}(\omega)/\mathsf{fin}$

 $\mathcal{P}(\omega)$ /fin is not an actual tree forcing, but let us treat the conditions as if it were, define "bodies" of conditions, and define a "Marczewski-style ideal":

For
$$a \in [\omega]^{\omega}$$
, let $\langle a \rangle := \{ c \in [\omega]^{\omega} : c \subseteq^* a \}.$

Definition

$$p\omega^0 = \{ X \subseteq [\omega]^\omega : \forall \langle a \rangle \; \exists \langle b \rangle \subseteq \langle a \rangle \; (\langle b \rangle \cap X = \emptyset) \}$$

$$orall a \in [\omega]^{\omega} \exists b \subseteq^* a (\langle b
angle \cap X = \emptyset) \ orall a \in [\omega]^{\omega} \exists b \subseteq a (\langle b
angle \cap X = \emptyset)$$

Lemma

 $\mathfrak{c} < \mathrm{cof}(
ho\omega^0) \leq \mathfrak{dh}$

(日) (四) (日) (日) (日)

$\mathcal{P}(\omega)/\mathsf{fin}$

 $\mathcal{P}(\omega)$ /fin is not an actual tree forcing, but let us treat the conditions as if it were, define "bodies" of conditions, and define a "Marczewski-style ideal":

For
$$a \in [\omega]^{\omega}$$
, let $\langle a \rangle := \{ c \in [\omega]^{\omega} : c \subseteq^* a \}.$

Definition

$$p\omega^0 = \{X \subseteq [\omega]^\omega : orall \langle a
angle \; \exists \langle b
angle \subseteq \langle a
angle \; (\langle b
angle \cap X = \emptyset) \}$$

$$orall a \in [\omega]^{\omega} \exists b \subseteq^* a (\langle b
angle \cap X = \emptyset) \ orall a \in [\omega]^{\omega} \exists b \subseteq a (\langle b
angle \cap X = \emptyset)$$

Lemma

 $\mathfrak{c} < \operatorname{cof}(\rho\omega^0) \leq \mathfrak{dh}$

(日) (四) (日) (日) (日)

r^0 (the Marczewski-null ideal for Mathias forcing)

... also called "Ramsey null" ideal or "nowhere Ramsey" ideal...

Lemma (Plewik? (where $\operatorname{add}(r^0) = \operatorname{cov}(r^0) = \mathfrak{h}$ proved))	
$p\omega^0 = r^0$	J
Corollary	
$\operatorname{cof}(r^0) \leq \mathfrak{dh}$	J

Also: $c < cof(r^0) \le \partial h(Mathias)$ $c < cof(s^0) \le \partial h(Sacks)$ $c < cof(\ell^0) \le \partial h(Laver)$ $c < cof(m^0) \le \partial h(Miller)$ $c < cof(v^0) \le \partial h(Silver)$

11/17

r^0 (the Marczewski-null ideal for Mathias forcing)

... also called "Ramsey null" ideal or "nowhere Ramsey" ideal...

Lemma (Plewik? (where $add(r^0) = cov(r^0) = \mathfrak{h}$ proved)) $p\omega^0 = r^0$

Corollary

 $\operatorname{cof}(r^0) \leq \mathfrak{dh}$

Also: $c < cof(r^0) \le \partial h(Mathias)$ $c < cof(s^0) \le \partial h(Sacks)$ $c < cof(\ell^0) \le \partial h(Laver)$ $c < cof(m^0) \le \partial h(Miller)$ $c < cof(v^0) \le \partial h(Silver)$

э

11/17

く 何 ト く ヨ ト く ヨ ト

r^0 (the Marczewski-null ideal for Mathias forcing)

... also called "Ramsey null" ideal or "nowhere Ramsey" ideal...

Lemma (Plewik? (where $add(r^0) = cov(r^0) = \mathfrak{h}$ proved)) $p\omega^0 = r^0$

Corollary

 $\operatorname{cof}(r^0) \leq \mathfrak{dh}$

 $\begin{array}{l} \mbox{Also:} \\ \mathfrak{c} < \mathrm{cof}(r^0) \leq \mathfrak{dh}(Mathias) \\ \mathfrak{c} < \mathrm{cof}(s^0) \leq \mathfrak{dh}(Sacks) \\ \mathfrak{c} < \mathrm{cof}(\ell^0) \leq \mathfrak{dh}(Laver) \\ \mathfrak{c} < \mathrm{cof}(m^0) \leq \mathfrak{dh}(Miller) \\ \mathfrak{c} < \mathrm{cof}(v^0) \leq \mathfrak{dh}(Silver) \end{array}$

Lemma

 $\operatorname{non}(p^0) \leq \mathfrak{dh}^{\flat}(\mathbb{P})$

Therefore, we get the following:

Lemma

 $\operatorname{non}(p\omega^0) \leq \mathfrak{dh}^\flat \leq \mathfrak{c}$

But, as usual for non-c.c.c. "tree" forcings (in fact, due to c-sized antichains with disjoint bodies), we have:

Fact

 $\operatorname{non}(p\omega^0) = \mathfrak{c}$

Corollary (the variant I dicussed with Alek)

 $\mathfrak{dh}^\flat = \mathfrak{c}$

Wohofsky (KGRC)

Lemma

 $\operatorname{non}(p^0) \leq \mathfrak{dh}^{\flat}(\mathbb{P})$

Therefore, we get the following:

Lemma

 $\operatorname{non}(p\omega^0) \leq \mathfrak{dh}^\flat \leq \mathfrak{c}$

But, as usual for non-c.c.c. "tree" forcings (in fact, due to c-sized antichains with disjoint bodies), we have:

Lemma

 $\operatorname{non}(p^0) \leq \mathfrak{dh}^{\flat}(\mathbb{P})$

Therefore, we get the following:

Lemma

 $\operatorname{non}(p\omega^0) \leq \mathfrak{dh}^\flat \leq \mathfrak{c}$

But, as usual for non-c.c.c. "tree" forcings (in fact, due to c-sized antichains with disjoint bodies), we have:

Fact $non(p\omega^0) = c$ Corollary (the variant I dicussed with Alek)

 $\mathfrak{dh}^{\flat} = \mathfrak{c}$

Wohofsky (KGRC)

For those who are interested in fresh functions and/or can remember past talks of mine about fresh function spectra etc.:

Lemma

 $\mathsf{FRESH}(\mathbb{P}) \subseteq [\mathfrak{h}(\mathbb{P}), \mathfrak{dh}^{\flat}(\mathbb{P})]_{Reg}.$

Recall from some other talk (uses the base matrix theorem):

 $\mathsf{FRESH}(\mathcal{P}(\omega)/\mathsf{fin}) = [\mathfrak{h}(\mathbb{P}), \mathfrak{c}]_{\mathsf{Reg}}.$

Corollary (again, unnecessarily complicated)

 $\mathfrak{dh}^\flat = \mathfrak{c}$

Cohen forcing ${\mathbb C}$

Let c^0 denote the ideal of nowhere dense subsets of 2^{ω} .

Lemma (from general lemma above)

 $\operatorname{cof}(c^0) \leq \mathfrak{dh}(\mathbb{C}) \leq \mathfrak{c}$

In fact: $\operatorname{cof}(c^0) = \mathfrak{dh}(\mathbb{C})$!!!???

Theorem (Fremlin?; Balcar-Hernández-Hernández-Hrušák?)

 $\mathfrak{dh}(\mathbb{C}) = \mathrm{cof}(\mathcal{M})$

Hechler forcing: $\mathfrak{dh}(\mathbb{D}) = \mathfrak{c}$

Eventually different forcing: $\mathfrak{dh}(\mathbb{E}) = \mathfrak{c}$

... same for filter-Laver for analytic filter...

Random: $cof(\mathcal{N}) \leq \mathfrak{dh}(\mathbb{B}) \leq \mathfrak{c}$... so what is $\mathfrak{dh}(\mathbb{B})$?

<ロト < 四ト < 三ト < 三ト = 三

$\mathsf{Cohen}\ \mathsf{forcing}\ \mathbb{C}$

Let c^0 denote the ideal of nowhere dense subsets of 2^{ω} .

Lemma (from general lemma above)

 $\operatorname{cof}(c^0) \leq \mathfrak{dh}(\mathbb{C}) \leq \mathfrak{c}$

In fact: $\operatorname{cof}(c^0) = \mathfrak{dh}(\mathbb{C})$!!!???

Theorem (Fremlin?; Balcar-Hernández-Hernández-Hrušák?)

 $\mathfrak{dh}(\mathbb{C}) = \mathrm{cof}(\mathcal{M})$

Hechler forcing: $\mathfrak{dh}(\mathbb{D}) = \mathfrak{c}$

Eventually different forcing: $\mathfrak{dh}(\mathbb{E}) = \mathfrak{c}$

... same for filter-Laver for analytic filter...

Random: $cof(\mathcal{N}) \leq \mathfrak{dh}(\mathbb{B}) \leq \mathfrak{c}$... so what is $\mathfrak{dh}(\mathbb{B})$?

→ 문 ▶ 문

 $\operatorname{cof}(p^0) \leq \mathfrak{dh}(\mathbb{P}) \leq |\{A \subseteq \mathbb{P} : A \text{ is a maximal antichain}\}|$

Question

Is it consistent that $\operatorname{cof}(p^0) < \mathfrak{dh}(\mathbb{P})$ for some \mathbb{P} ?

æ

<日

<</p>

Thank you

Thank you for your attention and enjoy the Winter School...

Vienna, Augarten, 3rd December 2020

Wohofsky (KGRC)

イロト イヨト イヨト

э

Thank you

Thank you for your attention and enjoy the Winter School...

Vienna, Old KGRC (Josephinum), 9th April 2020

イロト イヨト イヨト イヨト

э