On the Binary Linear Ordering

Thilo Weinert Mathematical Institute Università degli Studi di Udine Udine, Friuli Italy

Winterschool in Abstract Analysis, Section Set Theory and Topology, Hejnice, Sunday, 28th January 2024

Joint work in progress with Garrett Ervin and Alberto Marcone

- 2 Towards general order types
- 3 The real line
- 4 Scattered Orderings
- 5 Conjectures
- 6 The Axiom of Choice
- 7 Number Theory
- 8 Further Reading

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

An ordinal is α called *additively decomposable* if there are ordinals $\beta, \gamma < \alpha$ such that $\beta + \gamma = \alpha$, otherwise it is called *indecomposable*.

Definition

An ordinal is α called *multiplicatively decomposable* if there are ordinals $\beta, \gamma < \alpha$ such that $\beta \cdot \gamma = \alpha$, otherwise it is called *indecomposable*.

Folklore

The infinite additively indecomposable ordinals are exactly those of the form ω^{α} for some positive ordinal α .

Folklore

The infinite multiplicatively indecomposable ordinals are exactly those of the form $\omega^{\omega^{\alpha}}$ for some positive ordinal α .

Question

Which ordinals are multiplicatively indecomposable but additively decomposable?

Memory

There are none.

- 0 is additively indecomposable,
- 1 is additively indecomposable,
- 2 is additively decomposable but multiplicatively indecomposable.

Question

Which ordinals are multiplicatively indecomposable but additively decomposable?

Memory	
There are no	ne.

- 0 is additively indecomposable,
- 1 is additively indecomposable,
- 2 is additively decomposable but multiplicatively indecomposable.

Question

Which ordinals are multiplicatively indecomposable but additively decomposable?

Memory

There are no infinite ones.

- 0 is additively indecomposable,
- 1 is additively indecomposable,
- 2 is additively decomposable but multiplicatively indecomposable.

We call an order-type φ transcendable if there are types $\rho, \psi < \varphi$ such that $\varphi \leqslant \rho \psi$, otherwise we call it untranscendable.

Observation

- Both 2 and 3 are additively decomposable and multiplicatively indecomposable but 3 is transcendable while 2 is untranscendable.
- 2 is the only finite linear ordering which is additively decomposable yet untranscendable.

We write $\rho \longrightarrow (\varphi)_n^m$ to mean that for every partition of the *m*-element subsets of an ordered X set of type ρ into *n* classes, there is a $Y \subset X$ such that all *m*-element subsets of Y belong to the same class, otherwise we write $\rho \not\longrightarrow (\varphi)_n^m$.

We are mostly interested in the case where m = 1, n = 2, and where $\rho = \varphi$, i.e. forms of the pigeonhole principle. If $\varphi \longrightarrow (\varphi)_2^1$ we also say that φ has Big Ramsey degree 1 for points or simply, that φ is *indivisible*.

Observation

2 is the only divisible untranscendable ordinal α .

For any linear order types ρ and φ , we let $\rho + \varphi$ be the type of the ordering $(P \cup R, <)$ where $(P, <_P)$ is an ordering of type φ and $(R, <_R)$ is an ordering of type ρ and we let

$$x < y \text{ iff } (x \in P \land y \in R) \tag{1}$$

$$\forall (\{x,y\} \subset P \land x <_P y) \tag{2}$$

$$\forall (\{x,y\} \subset R \land x <_R y). \tag{3}$$

Definition

For any linear order types ρ and φ , we lemt $\rho \cdot \varphi$ be the type of the ordering $(P \times R, <)$ where $(P, <_P)$ is an ordering of type φ and $(R, <_R)$ is an ordering of type ρ and we let

$$(a,x) < (b,y) \text{ iff } (a <_R b) \tag{4}$$

$$\forall (a = b \land x <_R y). \tag{5}$$

Notation

If < is an ordering, we denote its reversal by $<^*$. That is, a $<^*$ b if and only if b < a.

Observation

Whereas for ordinals α and β , the statements $\alpha \simeq \beta$ and $\alpha = \beta$ are equivalent, the same fails to hold for general linear orderings. For example

$$(\omega^* + \omega)\omega \simeq (\omega^* + \omega + 1)\omega, \text{ but}$$
(6)
$$(\omega^* + \omega)\omega \neq (\omega^* + \omega + 1)\omega.$$
(7)

$$\omega^* + \omega)\omega \neq (\omega^* + \omega + 1)\omega.$$
(7)

Definition

An order type is an equivalence class of orderings with respect to order-preserving bijections.

Notation

For order types φ and ρ we write $\varphi \leq \rho$ to say that for every ordering P of type φ and every ordering R of type ρ there is an order-preserving injection from P into R. We write

$$\varphi < \rho \text{ iff } \varphi \leqslant \rho \text{ but not } \rho \leqslant \varphi, \tag{8}$$

and
$$\varphi \simeq \rho$$
 iff both $\varphi \leqslant \rho$ and $\rho \leqslant \varphi$. (9)

Observation

If an order-type φ is additively decomposable, then φ is divisible; the converse does not hold, consider $(\omega^* + \omega)\omega$.

Exercise

The finite linear order type of cardinality 2 is the only linear order type which is additively decomposable yet untranscendable.

Notation

 $\eta = \operatorname{otp}(\mathbb{Q}) \text{ and } \lambda = \operatorname{otp}(\mathbb{R}).$

Exercise

 λ is untranscendable.

Theorem (Sierpiński [1932])

 λ is divisible.

Definition

A linear ordering φ is called *scattered* if $\eta \not\leq \varphi$.

Theorem (Hausdorff [1908])

The class of scattered linear orderings is the closure of $\{0,1\}$ under ordinal sums and reverse ordinal sums.

Theorem (Laver [1973])

Every scattered linear ordering is a finite sum of additively indecomposable order types.

Definition

A regular unbounded sum of order types φ_{α} is a sum $\sum_{\alpha < \kappa} \varphi_{\alpha}$ or a sum $\sum_{\alpha < \kappa}^{*}$, where κ is an infinite regular cardinal and $\forall \alpha < \kappa : | \{\beta < \kappa | \varphi_{\alpha} \leqslant \varphi_{\beta}\}| = \kappa.$

Theorem (Laver [1973])

The class of scattered additively indecomposable linear orderings is the closure of $\{0,1\}$ under regular unbounded sums.

Theorem (Ervin, Marcone, W., 2024)

If φ is a divisible untranscendable linear ordering which is scattered or countable, then $\varphi = 2$.

A linear ordering is σ -scattered if it can be presented as a countable union of scattered orderings.

Conjecture

If φ is a σ -scattered divisible untranscendable linear ordering, then $\varphi = 2$.

Definition

BE (**Binary Exceptionalism**) states that 2 is the only divisible transcendable linear ordering φ

Conjecture

ZF + BE is consistent.

The ordering principle O states that every set can be linearly ordered.

Theorem (Sierpiński [1947])

O implies the existence of a Lebesgue-nonmeasurable set.

Corollary

AD implies the failure of O.

Conjecture

ZF + O + BE is consistent.

A *Bernstein set* is an $X \subset \mathbb{R}$ such that neither X nor $\mathbb{R} \setminus X$ contain a perfect nonempty subset.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Observation

 \mathbb{R} is divisible if and only if there is a Bernstein set.

Question

Does ZF + O imply that there is a Bernstein set?

Theorem (Siksek [2016])

Every natural number besides 15, 22, 23, 50, 114, 167, 175, 186, 212, 238, 239, 303, 364, 420, 428, 454 *is the sum of at most seven positive cubes.*

Moral

Never let exceptions keep you from proving a theorem!

- Felix Hausdorff. Grundzüge einer Theorie der geordneten Mengen. Math. Ann., 65(4):435–505, 1908. ISSN 0025-5831. doi:10.1007/BF01451165. URL http://dx.doi.org/10.1007/BF01451165.
- Richard Joseph Laver. On Fraïssé's order type conjecture. Ann. of Math. (2), 93:89-111, 1971. ISSN 0003-486X.
- Richard Joseph Laver. An order type decomposition theorem. Ann. of Math. (2), 98:96–119, 1973. ISSN 0003-486X. doi:10.2307/1970907. URL https://doi.org/10.2307/1970907.
- Wacław Franciszek Sierpiński. Sur un probleme concernant les types de dimensions. Fundamenta Mathematicae, 19(1):65-71, 1932.
- Wacław Franciszek Sierpiński. Sur une proposition qui entraîne l'existence des ensembles non mesurables. Fund. Math., 34:157–162, 1947. ISSN 0016-2736,1730-6329. doi:10.4064/fm-34-1-157-162. URL https://doi.org/10.4064/fm-34-1-157-162.
- Samir Siksek. Every integer greater than 454 is the sum of at most seven positive cubes. Algebra Number Theory, 10(10):2093-2119, 2016. ISSN 1937-0652,1944-7833. doi:10.2140/ant.2016.10.2093. URL https://doi.org/10.2140/ant.2016.10.2093.

Missione realizzata nell'ambito del progetto PRIN 2022 - D.D. n. 104 del 02/02/2022 - (PRIN2022.DIMONTE - Models, sets and classifications - Codice 2022TECZJA.003) CUP N. G53D23001890006. Finanziato dall'Unione Europea – Next-GenerationEU – M4 C2 11.1

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @