On the Binary Linear Ordering

Thilo Weinert Mathematical Institute Università degli Studi di Udine
Udine, Friuli
Italy

Winterschool in Abstract Analysis, Section Set Theory and Topology, Hejnice, Sunday, $28^{\text {th }}$ January 2024

Joint work in progress with Garrett Ervin and Alberto Marcone
(1) Definitions
(2) Towards general order types
(3) The real line

4 Scattered Orderings
(5) Conjectures
(6) The Axiom of Choice
(7) Number Theory
(8) Further Reading

Definition

An ordinal is α called additively decomposable if there are ordinals $\beta, \gamma<\alpha$ such that $\beta+\gamma=\alpha$, otherwise it is called indecomposable.

Definition

An ordinal is α called multiplicatively decomposable if there are ordinals $\beta, \gamma<\alpha$ such that $\beta \cdot \gamma=\alpha$, otherwise it is called indecomposable.

Folklore

The infinite additively indecomposable ordinals are exactly those of the form ω^{α} for some positive ordinal α.

Folklore

The infinite multiplicatively indecomposable ordinals are exactly those of the form $\omega^{\omega^{\alpha}}$ for some positive ordinal α.

Question

Which ordinals are multiplicatively indecomposable but additively decomposable?

Memory

There are none.

- 0 is additively indecomposable,
- 1 is additively indecomposable,
- 2 is additively decomposable but multiplicatively indecomposable.

Question

Which ordinals are multiplicatively indecomposable but additively decomposable?

Memory

There are no ne.

- 0 is additively indecomposable,
- 1 is additively indecomposable,
- 2 is additively decomposable but multiplicatively indecomposable.

Question

Which ordinals are multiplicatively indecomposable but additively decomposable?

Memory

There are no infinite ones.

- 0 is additively indecomposable,
- 1 is additively indecomposable,
- 2 is additively decomposable but multiplicatively indecomposable.

Definition

We call an order-type φ transcendable if there are types $\rho, \psi<\varphi$ such that $\varphi \leqslant \rho \psi$, otherwise we call it untranscendable.

Observation

- Both 2 and 3 are additively decomposable and multiplicatively indecomposable but 3 is transcendable while 2 is untranscendable.
- 2 is the only finite linear ordering which is additively decomposable yet untranscendable.

Definition

We write $\rho \longrightarrow(\varphi)_{n}^{m}$ to mean that for every partition of the m-element subsets of an ordered X set of type ρ into n classes, there is a $Y \subset X$ such that all m-element subsets of Y belong to the same class, otherwise we write $\rho \nrightarrow(\varphi)_{n}^{m}$.

We are mostly interested in the case where $m=1, n=2$, and where $\rho=\varphi$, i.e. forms of the pigeonhole principle. If $\varphi \longrightarrow(\varphi)_{2}^{1}$ we also say that φ has Big Ramsey degree 1 for points or simply, that φ is indivisible.

Observation

2 is the only divisible untranscendable ordinal α.

Definition

For any linear order types ρ and φ, we let $\rho+\varphi$ be the type of the ordering $(P \cup R,<)$ where $\left(P,<_{p}\right)$ is an ordering of type φ and $\left(R,<_{R}\right)$ is an ordering of type ρ and we let

$$
\begin{align*}
& x<y \text { iff }(x \in P \wedge y \in R) \tag{1}\\
& \vee\left(\{x, y\} \subset P \wedge x<_{P} y\right) \tag{2}\\
& \vee\left(\{x, y\} \subset R \wedge x<_{R} y\right) \tag{3}
\end{align*}
$$

Definition

For any linear order types ρ and φ, we lemt $\rho \cdot \varphi$ be the type of the ordering $(P \times R,<)$ where $\left(P,<_{p}\right)$ is an ordering of type φ and $\left(R,<_{R}\right)$ is an ordering of type ρ and we let

$$
\begin{align*}
(a, x)< & (b, y) \text { iff }\left(a<_{R} b\right) \tag{4}\\
& \vee\left(a=b \wedge x<_{R} y\right) . \tag{5}
\end{align*}
$$

Notation

If $<$ is an ordering, we denote its reversal by $<^{*}$. That is, $a<^{*} b$ if and only if $b<a$.

Observation

Whereas for ordinals α and β, the statements $\alpha \simeq \beta$ and $\alpha=\beta$ are equivalent, the same fails to hold for general linear orderings. For example

$$
\begin{align*}
& \left(\omega^{*}+\omega\right) \omega \simeq\left(\omega^{*}+\omega+1\right) \omega, \text { but } \tag{6}\\
& \left(\omega^{*}+\omega\right) \omega \neq\left(\omega^{*}+\omega+1\right) \omega \tag{7}
\end{align*}
$$

Definition

An order type is an equivalence class of orderings with respect to order-preserving bijections.

Notation

For order types φ and ρ we write $\varphi \leqslant \rho$ to say that for every ordering P of type φ and every ordering R of type ρ there is an order-preserving injection from P into R. We write

$$
\begin{align*}
\varphi & <\rho \text { iff } \varphi \leqslant \rho \text { but not } \rho \leqslant \varphi \tag{8}\\
\text { and } \varphi & \simeq \rho \text { iff both } \varphi \leqslant \rho \text { and } \rho \leqslant \varphi \tag{9}
\end{align*}
$$

Observation

If an order-type φ is additively decomposable, then φ is divisible; the converse does not hold, consider $\left(\omega^{*}+\omega\right) \omega$.

Exercise

The finite linear order type of cardinality 2 is the only linear order type which is additively decomposable yet untranscendable.

Notation

$\eta=\operatorname{otp}(\mathbb{Q})$ and $\lambda=\operatorname{otp}(\mathbb{R})$.

Exercise

λ is untranscendable.

Theorem (Sierpiński [1932])

λ is divisible.

Definition

A linear ordering φ is called scattered if $\eta \nless \varphi$.

Theorem (Hausdorff [1908])

The class of scattered linear orderings is the closure of $\{0,1\}$ under ordinal sums and reverse ordinal sums.

Theorem (Laver [1973])

Every scattered linear ordering is a finite sum of additively indecomposable order types.

Definition

A regular unbounded sum of order types φ_{α} is a sum $\sum_{\alpha<\kappa} \varphi_{\alpha}$ or a sum $\sum_{\alpha<\kappa}^{*}$, where κ is an infinite regular cardinal and $\forall \alpha<\kappa:\left|\left\{\beta<\kappa \mid \varphi_{\alpha} \leqslant \varphi_{\beta}\right\}\right|=\kappa$.

Theorem (Laver [1973])

The class of scattered additively indecomposable linear orderings is the closure of $\{0,1\}$ under regular unbounded sums.

Theorem (Ervin, Marcone, W., 2024)

If φ is a divisible untranscendable linear ordering which is scattered or countable, then $\varphi=2$.

Definition

A linear ordering is σ-scattered if it can be presented as a countable union of scattered orderings.

Conjecture

If φ is a σ-scattered divisible untranscendable linear ordering, then $\varphi=2$.

Definition

BE (Binary Exceptionalism) states that 2 is the only divisible transcendable linear ordering φ

Conjecture

$\mathrm{ZF}+\mathrm{BE}$ is consistent.

Definition

The ordering principle O states that every set can be linearly ordered.

Theorem (Sierpiński [1947])

O implies the existence of a Lebesgue-nonmeasurable set.

Corollary
AD implies the failure of O .

Conjecture
$\mathrm{ZF}+\mathrm{O}+\mathrm{BE}$ is consistent.

Definition

A Bernstein set is an $X \subset \mathbb{R}$ such that neither X nor $\mathbb{R} \backslash X$ contain a perfect nonempty subset.

Observation

\mathbb{R} is divisible if and only if there is a Bernstein set.

Question

Does ZF +O imply that there is a Bernstein set?

Theorem (Siksek [2016])

Every natural number besides
$15,22,23,50,114,167,175,186,212,238,239,303,364,420,428,454$ is the sum of at most seven positive cubes.

Moral

Never let exceptions keep you from proving a theorem!

Felix Hausdorff. Grundzüge einer Theorie der geordneten Mengen. Math. Ann., 65(4):435-505, 1908. ISSN 0025-5831. doi:10.1007/BF01451165. URL http://dx.doi.org/10.1007/BF01451165.

Richard Joseph Laver. On Fraïssé's order type conjecture. Ann. of Math. (2), 93:89-111, 1971. ISSN 0003-486X.
Richard Joseph Laver. An order type decomposition theorem. Ann. of Math. (2), 98:96-119, 1973. ISSN 0003-486X. doi:10.2307/1970907. URL https://doi.org/10.2307/1970907.
Wacław Franciszek Sierpiński. Sur un probleme concernant les types de dimensions. Fundamenta Mathematicae, 19(1):65-71, 1932.
Wacław Franciszek Sierpiński. Sur une proposition qui entraîne l'existence des ensembles non mesurables. Fund. Math., 34:157-162, 1947. ISSN 0016-2736,1730-6329. doi:10.4064/fm-34-1-157-162. URL https://doi.org/10.4064/fm-34-1-157-162.
Samir Siksek. Every integer greater than 454 is the sum of at most seven positive cubes. Algebra Number Theory, 10(10):2093-2119, 2016. ISSN 1937-0652,1944-7833. doi:10.2140/ant.2016.10.2093. URL https://doi.org/10.2140/ant.2016.10.2093.

Missione realizzata nell'ambito del progetto PRIN 2022 - D.D. n. 104 del 02/02/2022 - (PRIN2022_DIMONTE - Models, sets and classifications - Codice 2022TECZJA_003) CUP N. G53D23001890006. Finanziato dall'Unione Europea - Next-GenerationEU - M4 C2 I1.1

