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Definitions

Definition

An ordinal is α called additively decomposable if there are ordinals
β, γ < α such that β + γ = α, otherwise it is called indecomposable.

Definition

An ordinal is α called multiplicatively decomposable if there are ordinals
β, γ < α such that β · γ = α, otherwise it is called indecomposable.

Folklore

The infinite additively indecomposable ordinals are exactly those of the
form ωα for some positive ordinal α.

Folklore

The infinite multiplicatively indecomposable ordinals are exactly those of
the form ωω

α
for some positive ordinal α.
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Definitions

Question

Which ordinals are multiplicatively indecomposable but additively
decomposable?

Memory

There are none.

0 is additively indecomposable,

1 is additively indecomposable,

2 is additively decomposable but multiplicatively indecomposable.
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Definitions

Question

Which ordinals are multiplicatively indecomposable but additively
decomposable?

Memory

There are no infinite ones.

0 is additively indecomposable,

1 is additively indecomposable,

2 is additively decomposable but multiplicatively indecomposable.
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Definitions

Definition

We call an order-type φ transcendable if there are types ρ, ψ < φ such
that φ ⩽ ρψ, otherwise we call it untranscendable.

Observation

Both 2 and 3 are additively decomposable and multiplicatively
indecomposable but 3 is transcendable while 2 is untranscendable.

2 is the only finite linear ordering which is additively decomposable
yet untranscendable.



On the Binary Linear Ordering

Definitions

Definition

We write ρ −→ (φ)mn to mean that for every partition of the m-element
subsets of an ordered X set of type ρ into n classes, there is a Y ⊂ X
such that all m-element subsets of Y belong to the same class,
otherwise we write ρ −̸→ (φ)mn .

We are mostly interested in the case where m = 1, n = 2, and where
ρ = φ, i.e. forms of the pigeonhole principle. If φ −→ (φ)1

2 we also say
that φ has Big Ramsey degree 1 for points or simply, that φ is indivisible.

Observation

2 is the only divisible untranscendable ordinal α.
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Towards general order types

Definition

For any linear order types ρ and φ, we let ρ+ φ be the type of the
ordering (P ∪ R, <) where (P, <P) is an ordering of type φ and (R, <R)
is an ordering of type ρ and we let

x < y iff (x ∈ P ∧ y ∈ R) (1)

∨({x , y} ⊂ P ∧ x <P y) (2)

∨({x , y} ⊂ R ∧ x <R y). (3)

Definition

For any linear order types ρ and φ, we lemt ρ · φ be the type of the
ordering (P × R, <) where (P, <P) is an ordering of type φ and (R, <R)
is an ordering of type ρ and we let

(a, x) < (b, y) iff (a <R b) (4)

∨(a = b ∧ x <R y). (5)
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Towards general order types

Notation

If < is an ordering, we denote its reversal by <∗. That is, a <∗ b if and
only if b < a.

Observation

Whereas for ordinals α and β, the statements α ≃ β and α = β are
equivalent, the same fails to hold for general linear orderings. For example

(ω∗ + ω)ω ≃(ω∗ + ω + 1)ω, but (6)

(ω∗ + ω)ω ̸=(ω∗ + ω + 1)ω. (7)

Definition

An order type is an equivalence class of orderings with respect to
order-preserving bijections.
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Towards general order types

Notation

For order types φ and ρ we write φ ⩽ ρ to say that for every ordering P
of type φ and every ordering R of type ρ there is an order-preserving
injection from P into R. We write

φ < ρ iff φ ⩽ ρ but not ρ ⩽ φ, (8)

and φ ≃ ρ iff both φ ⩽ ρ and ρ ⩽ φ. (9)

Observation

If an order-type φ is additively decomposable, then φ is divisible;
the converse does not hold, consider (ω∗ + ω)ω.

Exercise

The finite linear order type of cardinality 2 is the only linear order type
which is additively decomposable yet untranscendable.
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The real line

Notation

η = otp(Q) and λ = otp(R).

Exercise

λ is untranscendable.

Theorem (Sierpiński [1932])

λ is divisible.

Definition

A linear ordering φ is called scattered if η ̸⩽ φ.

Theorem (Hausdorff [1908])

The class of scattered linear orderings is the closure of {0, 1} under
ordinal sums and reverse ordinal sums.
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Scattered Orderings

Theorem (Laver [1973])

Every scattered linear ordering is a finite sum of additively
indecomposable order types.

Definition

A regular unbounded sum of order types φα is a sum
∑

α<κ φα or a sum∑∗
α<κ, where κ is an infinite regular cardinal and

∀α < κ : |
{
β < κ|φα ⩽ φβ

}
| = κ.

Theorem (Laver [1973])

The class of scattered additively indecomposable linear orderings is the
closure of {0, 1} under regular unbounded sums.

Theorem (Ervin, Marcone, W., 2024)

If φ is a divisible untranscendable linear ordering which is scattered or
countable, then φ = 2.
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Conjectures

Definition

A linear ordering is σ-scattered if it can be presented as a countable
union of scattered orderings.

Conjecture

If φ is a σ-scattered divisible untranscendable linear ordering, then φ = 2.

Definition

BE (Binary Exceptionalism) states that 2 is the only divisible
transcendable linear ordering φ

Conjecture

ZF+BE is consistent.
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The Axiom of Choice

Definition

The ordering principle O states that every set can be linearly ordered.

Theorem (Sierpiński [1947])

O implies the existence of a Lebesgue-nonmeasurable set.

Corollary

AD implies the failure of O.

Conjecture

ZF+O+BE is consistent.
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The Axiom of Choice

Definition

A Bernstein set is an X ⊂ R such that neither X nor R \ X contain a
perfect nonempty subset.

Observation

R is divisible if and only if there is a Bernstein set.

Question

Does ZF+O imply that there is a Bernstein set?
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Number Theory

Theorem (Siksek [2016])

Every natural number besides
15, 22, 23, 50, 114, 167, 175, 186, 212, 238, 239, 303, 364, 420, 428, 454
is the sum of at most seven positive cubes.

Moral

Never let exceptions keep you from proving a theorem!
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Wac law Franciszek Sierpiński. Sur un probleme concernant les types de dimensions. Fundamenta Mathematicae, 19(1):65–71, 1932.
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